Online Knapsack Problem with Items Delay

Hajer Ben-Romdharte@nd Saoussen Krichéh
1| ARODEC Laboratory, ISG of Tunis, 41 Rue de la Liberté, Le Bardo, Tunisia
2FSJEG de Jendouba, Avenue de I'U.M.A, 8189 Jendouba, Tunisia

Keywords: Online Optimization, Dynamic Programming, Knapsack problems, Optimal Stopping Problems.

Abstract: We address in this paper a special case of the online knapsack problem (OKP) that considers a number of
items arriving sequentially over time without any prior information about their features. As items features are
not known in advance but revealed at their arrival, we allow the decision maker to delay his decision about
incoming items (to select the current item or reject it) until observing the next ones. The main objective
in this problem is to load the best subset of items that maximizes the expected value of the total reward
without exceeding the knapsack capacity. The selection process can be stopped before observing all items
if the capacity constraint is exhausted. To solve this problem, we propose an exact solution approach that
decomposes the original problem dynamically and incorporates a stopping rule in order to decide whether to
load or not each new incoming item. We illustrate the proposed approach by numerical experimentations and
compare the obtained results for different utility functions using performance measures. We discuss thereafter
the effect of the decision maker’s utility function and his readiness to take risks over the final solution.

1 INTRODUCTION served requests and with partial or imperfect knowl-
edge about the potential ones (Albers, 2003).

Online optimization problems model a large range of In this article, we are particularly concerned with
real-world situations where the problem inputs are the knapsack problem (KP), one of the most widely
revealed over time (Mahdian et al., 2012). In such and extensively studied combinatorial optimization
problems, the final decision is made up of many sub- problems that knew several variations and extensions
choices that are taken before all data become avail-over years. In its static version (0-1KP), we are given
able. For instance, in the problem of hiring em- a number of items from which we are required to se-
ployees, candidates applying for the position arrive lect a subset to be carried into a knapsack of a lim-
sequentially and are interviewed one by one. The ited capacity. Items differ from each other by their
employer is required to make an irrevocable deci- rewards and their weights. The problem is to load
sion about each interviewed candidate before receiv-the subset of items which maximizes the total reward
ing the next ones, and while knowing nothing about of the knapsack contents without exceeding its ca-
their competency. Practical applications of online pacity. This variant of the KP supposes the simul-
optimization problems arise in (but not limited to): taneous availability of all items as well as a com-
dynamic resource allocation, inventory management, plete knowledge about their features (weight and re-
machine scheduling, and auctions. These problemsward). However, many real-world applications of
require algorithms that make the decision in an online the KP involve receiving items in an online man-
fashion for many considerations, among which: the ner (Kleywegt and Papastavrou, 1998)(Babaioff et al.,
importance of real-time decision making (e.g., many 2007). This includes web advertising, selling real-
requests may become unavailable after some time, theestate, and auctions (Zhou et al., 2008). Accordingly,
value of a given offer may decrease by time, or ad- the online knapsack problem (OKP) was introduced
ditional costs may be incurred), and waiting that all in (Marchetti-Spaccamela and Vercellis, 1995), and
data become available is costly (in terms of time and investigated since then in several studies. In (lwama
in terms of loss of good opportunities). An “online al- and Taketomi, 2002), it was shown that the OKP is
gorithm” is an algorithm that must make the decision inapproximable and that a relaxation (e.g. to assume
sequentially over time based only on the previously that items are removable, or to allow resource aug-

Ben-Romdhane H. and Krichen S.. 213
Online Knapsack Problem with Items Delay.

DOI: 10.5220/0004832702130220

In Proceedings of the 3rd International Conference on Operations Research and Enterprise Systems (ICORES-2014), pages 213-220

ISBN: 978-989-758-017-8

Copyright ¢ 2014 SCITEPRESS (Science and Technology Publications, Lda.)

ICORES 2014 - International Conference on Operations Research and Enterprise Systems

mentation) is needed to approach the optimal solution approach build-up the solution gradually through sub-
within a constant ratio. decisions made at each stage. The selection rule con-

This work introduces a new relaxed version of the Sists in computing the expected utilities of each of the
OKP that allows the delay of arriving items. We de- already received items based on the DM’s utility func-
fine the delay of an item as being the defer of the de- tion. The utility of a given item depends on its rank

cision about that item until observing the next one(s). @mong all potential items. We assume, without loss
That is, an iteni received at will still available for ~ Of generality, that ranks are awarded according to the

the selection in subsequent stages until it is loaded in itéMs density (the value of an item per unit weight).
the knapsack (at any stage-=t) orthe decisionpro- ~_ The expected utilities values help the DM to de-
cess ends (when all the potential items are received).cide whether it is wise to select one (or more) of the
Indeed, the OKP with delay is a more fair model of available offers, or to wait for better items that may
many real world scenarios where the revealed offers @8Ppear in next stages. If at a given stage more than
still available until a given deadline after which they One item are chosen and that the sum of their weights
are loosened. Therefore, discarding these offers earlyexceeds the remaining capacity in the knapsack, these
from the selection process may prove regrettable if the items are subjected to a 0-1KP to select the best ones
subsequent offers are less desirable. We note that thd0 be loaded in the knapsack. These steps allows the
delay of offers in online optimization problems has DM to decide which items to load at each stage and
been considered previously in the literature, namely Which ones to delay. Our approach is run on a large
with the optimal stopping problem (Kramer, 2010). ~ test bed of OKPs with sizes belonging{i0,100¢.
Accordingly, we define the OKP with delay as We also develop some metrics to show the_effecnve-
follows. A decision maker (DM) is receiving a set ness of our approach, baS(_ad on a comparison of the
of items sequentially, one at a time and in a random 1 Ioadeq Jiripe t'he L
order. He is allowed to select immediately the cur- TNE PreSent ggberTs GrydiZed as TOloWS.™Sec-

rent item or defer his decision about the item to next tion 2 focuses on a review of the relevant literature

stages. The decision about each item depends mainlyﬁseur:]r%légi'pgt.t:: ;%%'%5?;&2%2535 fvc\)”rtrg t?,;'g:]ogf_
on the already observed items and on the utility of Ipti ' it

the current item for the DM. If the DM chooses to ?nedgf(jﬁl' tt?:Eg(r)rneg g;edsiﬁntzltré?i;%u“\?vg ﬁl% 2;?;?
delay one (or more) item, it will be considered in the our a arosach by an epx erimgentgl stud ' in Section 5
next stage but it incurs a penalty in terms of utility (by PP y P y '

decreasing its utility). This penalization was consid- Our concluding remarks follow in the last section.
ered mainly in order to urge the DM to load the items
that he believes to be desirable as soon as possible be-
cause every time they are delayed, they lose of their2 RELATED LITERATURE
utility. The selection process ends if all the poten-
tial items are received, or when the knapsack is full. The first online version of the KP was studied by
The main dilemma in this problem consists in decid- (marchetti-Spaccamela and Vercellis, 1995) where it
ing the best moments to select items given that the de-js assumed that items arrive online, one by one, and
cision of loading an item is irrevocable. The OKP can with no information a priori. Each item can either be
hence be viewed as a constrained multiple choice op-joaded or discarded on arrival, and discarded items
timal stopping problem (Babaioff et al., 2007) where pecome unavailable in the next stages. In that work, a
a DM is required to select the best offers of the se- |inear time dynamic algorithm was proposed to ap-
quence of offers arriving over time. The stopping rule proximate the optimal solution. In (Lueker, 1995)
in optimal stopping problems consists in stopping the the algorithm of (Marchetti-Spaccamela and Vercel-
process when the DM believes that the current offer is |is, 1995) was improved by reducing the difference
the best of the sequence. Thisis translated in the OKPpetween the optimum and the approximate solution.
by stopping at the items that are expected to be the geyeral studies were concerned with the remov-
more desirable of the sequence, so to load them in thegpje OKP, in which loaded items can be removed from
knapsack. For more details about the optimal stop- {he knapsack to place other ones (Iwama and Zhang,
ping problem an_d its dynamic formulation, the reader 2010). The removability assumption was made to
is referred to (Gilbert and Mosteller, 2006). reach a competitive algorithm for the OKP since the
Therefore, we propose to make use of the dynamic original problem is inapproximable (Iwama and Take-
equations of the optimal stopping problem to solve the tomi, 2002). In (Han and Makino, 2009), a fractional
OKP with delay. We develop a dynamic programming version of the OKP was investigated and a greedy on-
strategy managed by a stopping rule. The proposedline algorithm was presented to solve the problem.

214

Online Knapsack Problem with Items Delay

The OKP was identically studied for auctions, where 3.1 Notations
a limited budget buyer would like to purchase items
from a given set of bids. In (Aggarwal and Hartline, We adhere to the following notations in this paper:
2006), the authors studied the knapsack auction prob- ¢ n: the total number of potential items
lem for advertising in web page and broadcast band-
width, and proposed a constant factor approximation L] o
for the unlimited capacity knapsack. Stochastic vari- © I* item's number (refers to thiéf received item)
ants of the OKP were also studied in (Papastavrouand ® j: stage’s number (i.e}. items were so far revealed)
Kleywegt, 2001). e v;: value (or reward) of item
In relation with the studied problem, we can not 4 w;: weight of itemi
ignore the study of (Babaioff et al., 2007) which in-
vestigated a weighted form of the secretary prob- o _]
lem (a special case of the optimal stopping problem). ¢ Ci* the remaining capacity of the knapsackj at
Indeed, the OKP can be seen as multiple-choice sec- e r: the relative rank of the current item
retary problem if all items weight are set to 1 and e k: the absolute rank
the knapsack capacity ks A 10e-competitive algo- e Ui(k, j): the utility function of itemi at |
rithm was proposed for arbitrary weights and en
competitive algorithm for the particular case where ,
items have equal weights. e EUL(j,r): the expected utility when accepting
Recently, the OKP was considered with a differ- e EUL(j): the expected utility when delayirig
ent selection rule where two DMs are involved and , p(kr, j): the probability of having givenr at j
the decision is built-up in a number of rounds. Each
round, the two DMs are required to select one item
from their individual sets, and the winner item is filled
in the knapsack (Marini et al., 2013).

e C: the knapsack weight capacity

e di: density ofi. It is given byd; = %

Wi

e EU™(j,r): the expected utility of the itern

e S the set of candidate items

3.2 Dynamic Formulation of the OKP
with Delay

3 PROBLEM STATEMENT We are givemn items arriving online, one at a time,

and a knapsack of capaci§. Each itemi is char-
id b . . acterized by two positive values, a weight and a
We consider a DM observing a sequence of items, ON€ ewardv;, which still unknown until the item appears.

atatime, in order to select the best ones to be filled in 1,4 problem asks to fill the knapsack, in an online
his limited capacity kngpsack. More formglly, let us fashion, in such a way to maximize the value of its
assume that items arrive overd|s<_:rete periods (the .gntents while respecting the capacity limit.

periodn corresponds to the deadline) and thatexactly — p¢ previously mentioned, the OKP has several
one item appears at each period. Each item has a spegjmijarities with the optimal stopping problem, in
cific weight as well as a certain reward which remain which an agent is receiving a number of offers over
unknown until the item is received. Once arrived, an 4ime in order to select the best one. Taking into ac-
item is evaluated and its importance is measured with ., 1t these resemblances. we develop our dynamic
regards to those already observed in previous stagest,mulation using the dynamic equations of the op-

The decision to select the item or to reject it can b_e timal stopping problem as a base. The problem can

made inst_antly or delayed to next stages. If an item is po \iewed as a decision process aiming to identify the
selected, itcannot be taken out of the knapsack. HOW- ey offers of the sequence of offers arriving succes-

ever, a rejected item can be re-examined and loaded agively Each new stage, the DM ranks the available
a subsequent stage. This last assumption was considiye g (the one received at the current stage and the

_ered to Erevent maklniqla wrong ghom? bfy dlscsrdlng delayed ones). Each item is attributed a relative rank
items -that may reveal later good- early from the se- '\, hich indicates its desirability among the so far re-

lection process. The DM stops receiving more items ¢ojyeq jtems (but not among all potential items). The

!f one of _the foII_owmg criteria is met: the knaps_ack absolute rank of an iter is its rank among the

i m"’ or item n is already ol_aserved. The DM aims jtems. As no prior information is available, the abso-

to find the optimal subset of items that maximizes his ;e rank k) of an item can only be determined when

profit without exceeding the knapsack capacity. all the items are received. Based on these ranks, the
DM decides to select or to delay each available item.

Our decision strategy is based on four compo-

nents: the utility function, the expected utility of a

215

ICORES 2014 - International Conference on Operations Research and Enterprise Systems

given item, its expected utility when stopping (when The expected utility of selecting an item is computed
selecting it), and its expected utility when continu- as the sum of the probability of each of the possible
ing (when delaying it). Each stage, two steps are per- absolute ranksk(e {r,...,n— j +r}) weighted by its
formed: computing the expected utilities of the avail- corresponding utility. However, the expected utility
able items, and solving a 0-1KP. when continuing with delaying itemat j, is com-
puted as the average sum of the expected utilities of
itemi until stagej + 1, and this to measure the effect
of delayingi for the next stage. It can be written as:

Computing the expected Utilities. The DM'’s utility
is a measure of its desirability of the consequences
to which can lead his decision. In our cakgB(k, j) _
denotes the DM’s utility of selecting itemwhose ab- i 1 £ - .
solute rank is equal th at thejt" stage. The utility is EU(]) = i1 ZEU (j+1,r) if j<n (3)
a non-increasing function of the absolute rank.) o=

As we are looking for the best subset of items to be Equation (3) indicates furthermore that at the last
packed in the knapsack, we adopted a utility function Stage { = n), no item can be delayed anymore and all
which attributes decreasing values in terms of the ab- the available items are nominated for the selection.
solute rank. Besides, a penalty of delay is incurred by ~ Thereby, the DM can identify which items to de-
delayed items. Therefore, our utility function is ex- 1y and the ones to be inserted in the knapsack (by
pressed in terms of the absolute rank and the stage’smeans of equation (1). However, if the the knapsack
number:U' = f(k, j). We assume that the utility of ~Cannot carry all items considered for the selection,
a delayed item is discounted to the utility of the next then only the best ones will be filled in the knapsack.
rank each time the item is delayed. In this work, two Ve denote bySthe subset of items verifying the in-
different utility functions are considered in order to €qualityEUs(j,r) > EUc(j) atj, hence it is the sub-
study their influence on the final decisiche inverse- = Set of candidates for selection. To insure selecting the
rank utility Ui (k, j), andthe regressive fraction utility ~ Dest of all items ir§, we solve a 0-1KP having as in-
Ui(k, j). Table 1 reports their mathematical formulas puts the set of itemS and as capacity constraint the

for delayed and non-delayed items. remaining capacity at
Table 1: Utility functions formulas Solving a 0-1 Knaps_ick Subproblem. The knapsack
Utility function | non-deiayed | ddiayed subproblem at stage(KP;) can be stated as:
Uik j) % % Mp1(1- gip) Maximize Z(x) = gsViXi “
| nki1 nki1 , ne(j-i) Subjectto 5 wixi < ¢
Uz (k. j) “no X A e

The solution ofKP;j is the subset of items to be

As the decision about a given iteiris between loaded in the knapsack at stageHence, at any stage
two alternatives (to select the item or to delay it), it j (j € [1,n]), the knapsack will contain items inserted
is reasonable to consider the expected utility of each during the previoug — 1 stages in addition to the
alternative as base to make the decision. We denoteitems selected gt
by EUL(j,r) the expected utility of selecting iteirat
j with a relative rank’. The expected utility when
continuing, denoted bigU((j), is the expected utility 4 THE PROPOSED SOLUTION
of delaying iteni at j and continuing to the next stage.

The decision at any stage of the selection pro- APPROACH

cess depends on the values of these two components\,N i lgorithm based d .
and the DM will react in accordance with the deci- ' C ProPos€ an oniine aigorithm based on dynamic

sion that maximizes his expected utility. That is, if programming decision rulgs to s_olve the OKP with
EUQ(j,r) > EUé(j), item i will be considered as a delay. In a first part of this section, we present the
candidate af, otherwise it is delayed to next stages. proposed approach and we Qraw up the_ pseudocode.
Therefore, the expected utility oCan be stated as: The sef:ond subsection details the_ solution steps of a
EL,Ji(j 1) = maxEU(j,r), EUL ()] 0 small size problem for demonstration purpose.
9 - s\J»" J» C

where the expected utility of selectings given by: 4.1 TheAlgorithm

EUL(j.r) = 3! UK) F (K),
5 We note that our algorithm iterates a number lower or
@ equal to the total number of itenms Each stage, two

N [()
wheref (klr, j) = 1(n)J fundamental steps are performed:

J

216

Online Knapsack Problem with Items Delay

1. First Selection: identifies the set of candidates j, the features of iten) becomes known). We note
based on the values of their expected utilities. that in this example we compute the expected utili-
ties using the utility functiot; (see Table 1). The
algorithm begins by computing the expected utilities
of the 5 items, each at its arrival stage, for all possible
ranks. The expected utilities values can be seenin Ta-
ble 2. This table shows tHeU!(j,r) andEUL(j), for
alli € {1,5}, wherej =i andr < j. Cells of the table

_The algorithm is given as inputs the total number ,resent the computed values according to the follow-
of items and the knapsack capacity. Items are reveale ng notation:(EUL(j,r); EUL(j))

then one per stage. When a new item is received, the

algorithm proceeds to the ranking of available items Table 2: Expected utilities far= 5.

by density. Available items at the current stage are Stages

those delayed from previous stages and the one re- 5 4 3 2 1
ceived at the current stage. The expected utilities of (L00,0) (0.90,0.46) 0.78,0.57) (.64,0.63) (0.460.64)
the available items are computed thereafter based or (050,0) (0.43p.46) (0.360.57) (0.270.63) -
the attributed ranks and the candidate items are iden- (0330) (0.280.46) (0.230.57) - -
tified. If the sum of the weights of candidate items (g'igig) (0-210.46) - - -
exceeds the remaining capacity, the algorithm makes O - - - -
appeal to theKP; to select items to be loaded fat

Items appearing in the solution &P; are filled in Based on these values, we decide on the loading
the knapsack and the remaining ones (in theSet or the delay of each item at its arrival stage. In what
are discarded definitively. Then, the capacity of the follows, we analyze stage by stage the solution.
knapsack is updated and the algorithm reiterates un- Stage 1: ltem O; appears. We can read from Ta-
til the capacity is exhausted or when all the expected ble 2: itemO; appears in the process at the first stage,
items are received. The pseudo-code of the proposedts EU} is greater than it€U2. The decision will

2. Second Selection: candidates items undergo a
second selection via a 0-1 knapsack subproblem
to select the best among them. This second selec-
tion is only required when the remaining capacity
cannot accommodate all candidates.

a b WN R

approach follows. be then to continue to the next stage without packing
Begi n it (so it is delayed to next stages).
Wile(j <= n) Stage 2: O, becomes available in addition @;.
{ Rank the observed items from1 to j; Their expected utilities are:
Wi le(i <= j) o o EUL(2,r = 2)=0.21 andEU}=0.63.
{ Conpute the expected utilities of itemi; EU2(2,r = 1)=0.27 andEU2=0.63.
IT(EUs{i} >= EUc{i}) . We can see that tHeUs of O; is greater than it& U,
{ SUi; [l Sis the set of candidates} L . . .
iz i+l) soitis a Candldatg for the selection, yvhﬁ]g |s_not.
W= Sum of weights of itens in S As the knapsack is empty ar@ at this step is the
if(cj <= W only candidate, we can lodb without going through
{ Load all itens inS; } the solution oKP,. Therefore, the knapsack contains
el se . . at the end of the second sta@e and the remaining
{ Solve (KPj (S cj)); capacity in the knapsack ¢ = 40— 10= 30.

Load the selected itens;
Update(c_j); }
If(c_j =0) // The knapsack is full

Stage 3: Available items ar&®; andO3. By com-
puting their expected utilities, we found tha is the

{ Quit the procedure; } unique candidate. Henc@®;3 is loaded in the knap-
else { j:5j+1;} sack and the remaining capacitycis= 27.
End. Stage 4: Available items at stage 4 a@ andO,.
Here alsoOy4 is a candidate, buD; is not. As the
4.2 An lllustrative Example remaining capacity in the knapsack is greater than the

weight of itemQy4, we can load it.

In order to help the reader better understand our ap- Stage 5: In the last stage, all items are already
proach, we detail the solution steps through a small received. We do not need to compute the expected
sized problem. we consider a knapsack of capac- utilities since all available items are candidates for
ity C = 40, and a set of items with the following the final selection. As the remaining capacity is not
values and weightsy;={100,150,120,200,250and enough to carry both items, we solve &5 to se-
w;={9,10,7,13,2%, wherei € {1,2,3,4,5. lect the fittest one. Therefore, the solution will be

These values are provided to the algorithm as soonto selectO;. Subsequently, the solution of this on-
as the item in question becomes available (i.e, at stageline problem is the subset of item&01,02,03,04}.

217

ICORES 2014 - International Conference on Operations Research and Enterprise Systems

i
o
1)

The accumulated reward is 570 and the remaining ca- -~
pacity is about 1. Compared to the solution provided o e
by a branch-and-bound algorithm, we can say that we

reach the optimal solution.

=
o

©
S

@
<)

First loading stage (%)
o~
S o

@
S

5 COMPUTATIONAL
EXPERIMENTS »

IS
S

100 200 300 400 500 600 700 800 900 1000
Problem size

We illustrate the proposed approach by an experimen- Figure 1: A comparison of FLS values usidg andU.

tal study. Our algorithm is implemented in java lan-

guage on a Intel Centrino Duo processor and 2GB of - \we can see from Table 3 and Figure 1 that FLS
RAM under Microsoft Vista. Itis run for several in- yalyes using the utility functiod; are always greater
stance sizes ranging in size from 10 to 1000. To the than those ofJ> (except with instance of size 10).
best of our knowledge, there is no available bench- Therefore, wa can say that the utility functioh is
mark for the OKP. Therefore, we generate items fea- more convenient for DMs who desire to make deci-
tures for each size of the problem randomly and uni- sjons in a close time horizon, whilg; is more suit-

formlyin'[1,1000, and we set the knapsack capac- able for DMs who desire to delay their decisions until
|ty in each instance to 50% of the sum of all items a considerable number of items appears_

weight. In what follows, we analyze the results of our
algorithm based on several performance measures. -5.1.2 The Per centage of L oads Before the L ast
Stage (LBLS)

5.1 Experimental Results

This performance measures assesses the ability of the
This section is concerned with the interpretation of @lgorithm to select desirable items in an online man-
the obtained results. We compare our results to thosen€r- Indeed, when the final stage is reached the prob-
provided by a branch-and-bound algorithm (Pisinger, lem becomes static _(aII items are already re_zvealed).
1995) having as input the static counterpart of the on- 1 hanks to the dynamic approach, we can begin to load
line problem we already solved with our algorithm. {t€ms as soon as they appear, and we do not need to
Moreover, we solve each instance with each of the Wait until all items are received. LBLS is stated as

two utility functions defined previouslyJy andU,). follows:
Table 3 reports the results of our algorithm in terms NLIBE
of different performance measures, which are respec- LBLS= NG 100 (5)

tively: the total number of loaded items (NLI), the _
average reward (AR), the first loading stage (FLS), Where NLIBF and NLI denote respectively: the
the percentage of loads before the last stage (LBLS), number of loaded |tems_before the final stage and the
and the CPU time. From Table 3 we can see that NLI, total number of loaded items. The greater is LBLS,
AR, and CPU increase proportionally to the problem the more performing the algorithm.
size. Besides, NLI and AR values provided by each

of the utility functions are equal. This means that we

reached in all cases the same final solution with both 30\\/\’__\/_
utility functions. In what follows, we define rest of “ '
performance measures and analyze their results.

—o—U1

- U,

—— 0-1KP

LBLS (%)
5

5.1.1 TheFirst Loading Stage (FLS) ¥

This measurement indicates at which stage of the pro-
cess the algorithm began to load items. That is, the 1000030 biem size [00

Stage in Wh|Ch the DM met ItS firSt deSil’ab|e Oﬁer. Figure 2: Comparison of LBLS values usibq andUZ_
Figure 1 draws the FLSs with regards to their position

in the selection process. The figure compares FLS Figure 2 reports the LBLS behavior for each of the
values obtained by each of the utility functions to the used utility functions with regards to the static case.
static case (where FLS is the last stage). LBLS values usindJ; indicate that the final stage still

218

Online Knapsack Problem with Items Delay

of a considerable importance regarding the number of REFERENCES

items selected at it: it monopolizes the biggest propor-

tion of loads. However, the LBLS is higher usibg: Aggarwal, G. and Hartline, J. D. (2006). Knapsack auc-
about 25% of items are loaded before the last stage. tions. INSODA '06: Proceedings of the seventeenth
We notice that both curves have similar shapes butthe ~ annual ACM-SIAM symposium on Discrete algorithm

one ofU is lowest: this is due to the penalty of de- pages 1083-1092. ACM.

lay. IndeedU; penalizes delayed items more severely A'berf;}fb%g?fr)ﬁm?ﬁgg?ﬁ'%c;r-gr_‘?g: a survégathemat-

thapr doUz. lud that | ithm h Babaioff, M., Immorlica, N., Kempe, D., and Kleinberg, R.
0 conclude, we can say that our algorithm has (2007). A knapsack secretary problem with applica-
proved to be efficient in solving the OKP. Compared tions. In Approximation, Randomization, and Com-

with the results provided in the static case, we reached binatorial Optimization. Algorithms and Techniques
almost the same overall profits. Besides to respecting volume 4627 ofLecture Notes in Computer Science

the capacity constraint, we were able to fill at maxi- pages 16-28.
mum the knapsack while making decision in oppor- Gilbert, J. and Mosteller, F. (2006). Recognizing the max-
tune time. As to the utility functions, we noted that imum of a sequence. I6elected Papers of Freder-

the utility functionU, proved to be more convenient i:)?gSMostellerSpringer Series in Statistics, pages 355—

in terms of FLS and LBLS: it gives more interest in . :
. . . Han, X. and Makino, K. (2009). Online knapsack problems
newcomers if compared witth, which prefers to de- with limited cuts. InAlgorithms and Computatign

lay as much as possible and makes decision in latest olyme 5878 of_ecture Notes in Computer Science

stages. However, the utility function does not con- pages 341-351. Springer Berlin Heidelberg.

tribute in the overall reward: we reached all the time |wama, K. and Taketomi, S. (2002). Removable online

the same values using either functions of utility. knapsack: problems. IAutomata, Languages and
The weak point in our algorithm is its high com- Programming Lecture Notes in Computer Science,

plexity. As it can be seen in Table 3, the CPU time pages 293-305. Springer Berlin Heidelberg.

is very high and increases exponentially as the size of lwama, K. and Zhang, G. (2010). Online knapsack with re-

the problem increases. We think that this should be ig‘;g’e augmentatiornf. Process. Lettpages 1016~

given more attention in future works.
Kleywegt, A. J. and Papastavrou, J. D. (1998). The dy-

namic and stochastic knapsack proble®perations
Research46:17-35.
6 CONCLUSIONS Kramer, A. D. I. (2010). Delaying decisions in order to
learn the distribution of optionsPhD thesis.
In this paper, we proposed a dynamic approach for Lueker, G. S. (1995). Average-case analysis of off-line and
the OKP with delay that incorporates a stopping rule on-line knapsack problems. BODA '95: Proceed-
at each stage of the loading process to enable the DM Bgs OI th? SI)'(ttf? annual A1C7'\g'31|8A8MSSymF;°Sf'U"} on
to select his best items in an online manner. This ap- ISCrete aigornimepages 2 /== o9, Society for In-

| dustrial and Applied Mathematics.
proach was adopted to reduce the OKP to a Seresy andian, M., Nazerzadeh, H., and Saberi, A. (2012). On-

of static knapsack subproblems. Using the optimal line optimization with uncertain information ACM
stopping terminology, we stated our decision strategy Trans. Algorithms8:2:1—2:29.

based on a dynamic formulation. Experimental re- marchetti-Spaccamela, A. and Vercellis, C. (1995).
sults showed that we were able to reach optimal so- Stochastic on-line knapsack problenmdathematical
lution using our online approach. Besides, the use of Programming 68:73-104.

two different utility functions allowed us to come up Marini, C., Nicosia, G., Pacifici, A., and Pferschy, U.
to the desired solution while involving two different (2013). Strategies in competing subset selectiom:
attitudes to risk. nals of Operations Research07(1):181-200.

Future works may include improvements of the Papastavrou, J. D._and Kleywegt, A. J. (20(_)1). The dyna}mic
present algorithm in order to reduce the CPU time. A and SthhaSt'.C knapsack F;:gbz'gm with random sized
possible generalization of the present work is to study Pisinltems. perations Researc#9:26-41.

i . o L er, D. (1995). An expanding-core algorithm for the
the OKP with delay while considering the possibility gxact 0_(1 kna|)osack propblerEu?opean Jguma| of Op-

of losing a number of items during the selection pro- erational ResearctB7(1):175 — 187.
cess. The ot.her aspect that we \(vould like to explore Zhou, Y., Chakrabarty, D., and Lukose, R. (2008). Budget
in the future is the OKP with multiple DM. constrained bidding in keyword auctions and online

knapsack problems. Iimternet and Network Eco-
nomics volume 5385 ofLecture Notes in Computer
Sciencepages 566-576.

219

ICORES 2014 - International Conference on Operations Research and Enterprise Systems

Table 3: Comparison of the results provided by the propoppdoach in terms of several performance measures.
n NLI AR FLS LBLS (%) CPU
Uu U, U; U, 2 U; U,
Min 5 5 3507 3507 4 4 0.0 0.0 0.0001
10 Ay 6 6 3848 3825 7 7 23.14 33.57 0.0004
Max 7 7 4202 4202 10 10 33.33 66.66 0.0014
Min 30 30 17884 17884 17 14 3.032 21.87 0.001
50 Ag 32 32 20019 20019 28 23 7.38 28.29 0.017
Max 33 33 23202 23202 43 39 125 33.33 0.002
Min 60 60 39332 39332 33 3 161 18.03 0.003
100 Ayg 62 62 41283 41283 68 . 58 372 239 0.011
Max 65 65 42311 42311 97 85 6.15 30 0.015
Min 121 121 78016 78016 93 56 0.81 240 0.14
200 Avg 124 124 81557 81557 143 93 362 26.43 0.15
Max 127 127 84735 84735 198 172 578 29.75 0.17
Min 183 184 118636 118636 122 88 0.0 19.78 0.51
300 Avg 190 - 190 123109 123110 228 169 19 2411 0.74
Max 197 197 127096 127096 300 215 3.14 25.38 0.80
Min 243 243 154889 154889 133 107 0.4 21.82 1.66
400 Avg 251 251 161030 161031 260 142 2.08 2471 2.24
Max 257 257 166775 166775 373 184 357 29.62 2.65
Min 309 308 191223 191223 223 138 0.63 22.72 211
500 Avg 314 314 202696 202696 353 268 1.78 24.84 5.08
Max 320 320 214782 214782 496 389 257 26.25 9.41
Min 369 369 235853 235853 210 160 189 2172 4.91
600 Avg 374 374 243081 243081 324 267 225 24.38 9.08
Max 383 383 249203 249203 585 501 339 27.49 13.01
Min 427 427 271964 271964 236 201 115 22.95 12.77
700 Avg 436 436 282368 282368 450 320 1.83 25.65 13.95
Max 445 445 296739 296739 678 480 2.76 27.79 17.60
Min 489 489 314685 314685 267 213 1.43 22.49 13.31
800 Avg 501 501 326031 326031 476 402 1.73 2497 22.05
Max 516 516 332545 332545 787 737 213 2558 29.50
Min 552 552 358579 358579 312 244 09 2282 34.22
900 Avg 563 563 366009 366009 685 605 1.27 2459 36.93
Max 576 576 369977 369977 894 871 173 25.34 40.79
Min 615 615 400685 400685 340 266 0.48 24.06 47.62
1000 Avg 626 626 410631 410631 696 484 1.5 2478 54.02
Max 639 639 421587 421587 985 809 219 27.69 67.44

220

