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Abstract: We consider a workforce management problem arising in call centers, namely a staffing and shift-scheduling
problem. It consists in determining the minimum-cost number of agents to be assigned to each shift of the
scheduling horizon so as to reach the required customer quality of service. We assume that the mean call
arrival rate in each period of the horizon is a random variable following a continuous distribution. We model
the resulting optimization problem as a stochastic program involving joint probabilistic constraints. This
allows to manage the risk of not reaching the required quality of service at the horizon level rather than on a
period by period basis. We propose a solution approach based on linear approximations to provide approximate
solutions of the problem. We finally give numerical results carried out on a real-life instance. These results
show that the proposed approach compares well with previously published approaches both in terms of risk
management and cost minimization.

1 INTRODUCTION

Staffing and shift-scheduling in call centers is a very
challenging problem in Operations Research. Call
centers are expensive infrastructures for companies,
in which the staff agents represent 60% to 80% of the
total operating budget (Aksin et al., 2007).Thus an ef-
ficient workforce management is of primary impor-
tance to achieve profitability of a call center. One of
the most important problem is the short-term staffing
and scheduling problem: it consists in deciding how
many staff members handling the phone calls, i.e.
”agents”, should work during the forthcoming days
or weeks in order to minimize manpower costs while
ensuring that the required customer quality of service
is reached. The Quality of Service (QoS) can be for
instance a maximum expected abandonment rate, ie
number of clients hanging up without being served,
or a maximum expected waiting time before entering
service in the queue.

The problem here is to decide how many people
answering the phone, that is to say agents, we need to
assign each day. This problem comprises two steps.

The first step is the staffing problem, which in-
volves computing the number of required agents.
These values come from a calculation based on an ob-
jective service level and estimations of arrival rates.

The objective service level considered here is the
maximum expected time of waiting before being
served. The estimations of arrival rates come from
forecasts using historical data, in which usually the
main (and often only) information available is the
number of calls per period. As arrival rates strongly
vary in time, estimations are given for short periods
of time (usually 30-minute periods).

In order to use all this information and compute
the values of required agents at each period, we model
the call center at each period as an Erlang C queuing
system in stationary state and we use the Erlang C
results, as commonly done practice.

The second step is the scheduling problem. This
optimization problem involves scheduling enough
agents with respect to a given Quality of Service
(QoS) while respecting the inherent constraints of
manpower work, like hiring a whole number of
agents, or following some working hours. The goal
here is to assign established shifts to the working
agents through a fiven period.

There are several criteria in the establishment of the
problem:
� Uncertainty Management: how uncertainty is

dealt with in the model?
� Risk Management: how to modelize the penalty
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of not reaching the expected QoS?
� Recourse: what possibility do we have to correct

the solution in a second-stage after observation?

Several approaches for staffing call centers con-
sidering uncertainty of arrival rates forecasts exist
in the literature. (Jongbloed and Koole, 2001) fo-
cus on giving a prediction interval for possible ar-
rival rates, and then give an interval for the associate
required numbers of agents. (Gurvich et al., 2010)
present and compare two different approaches for
dealing with uncertainty: the average-performance
constraints problem considers the average of the un-
certain variables and the chance constraints problem
deals with uncertainty and risk both together.

(Robbins and Harrison, 2010) choose to model
the mixed integer linear program with several scenar-
ios each defining a probability of reaching the QoS.
Moreover, they use piecewise linear approximations
of their QoS function. The idea of using scenarios
through discretization of the probability distributions
is used in several papers, such as (Liao et al., 2012)
and (Gans et al., 2012) for example, or (Luedtke et al.,
2007) who consider a finite distribution from the be-
ginning.

The risk management can be modeled by a penalty
cost in the objective function, as in (Robbins and Har-
rison, 2010), or with joint chance constraints pro-
grams, as in (Gurvich et al., 2010).

(Liao et al., 2013) introduce a distributionally
robust approach for the scheduling problem and use
discrete distributions for uncertainty.
While (Robbins and Harrison, 2010), (Liao et al.,
2012) and (Gurvich et al., 2010) use a one-stage
approach, (Mehrotra et al., 2009), (Gans et al., 2012)
and (Erdoğan and Iyengar, 2007) allow a recourse on
the solution, with a two-stage approach.

The contributions of the present paper are thus
threefold. First, we model the call arrival rate
in each period as a random variable following a
continuous normal distribution. This is in contrast
with most previously published approaches which
rely on a discrete representation of the uncertainty
through a finite set of scenarios. Since we consider
every possible variation of the arrival rate instead
of a limited number, our approach leads to a better
accuracy of the final solution. Moreover, we keep this
idea of continuity during all the process until the final
solving of the linear programs. Second, we propose a
solution in order to solve the staffing problem and the
shift-scheduling problem as a one-stage stochastic
program involving joint probabilistic constraints. It
allows to manage the risk of not reaching the required
quality of service at the scheduling horizon level

rather than on a period by period basis. Moreover,
our approach relies on a dynamic sharing out of
the risk among all the periods and thus provides
flexibility in the risk management. Third we present
a linear-approximation based solution approach
leading to approximate solutions for the problem.

The rest of this paper is organized as follows. In
Section 2 we describe the call center queuing model.
In Sections 3 and 4 we present our approach to model
and solve the stochastic staffing and shift-scheduling
problem. First we define the joint chance constraints
program and then we linearize the inverse of the cu-
mulative distribution function in the constraints. Then
we give in Section 5 computational results on several
instances and we compare them to results given by
simpler models. Finally we conclude and highlight
future research in Section 6.

2 STAFFING PROBLEM
MODELING

The problem here is to decide how many people an-
swering the phone, that is to say agents, we need to
assign each day. In order to do that, we are given a
number of required agents. These values of require-
ments come in fact from a calculation based on an
objective service level and estimations of arrival rates.
The objective service level is the customer Quality of
Service. The estimations of arrival rates come from
forecasts using historical data. As arrival rates vary in
time, estimations are given for short periods of time,
eg. 30 minute-periods.

In order to compute the values of required agents
at each period, we model the call center as a queueing
system in stationary state and we use the Erlang C
model.

Call centers are typically modeled as queuing sys-
tems as we can see for example in (Gross et al., 2008).

The day is divided into T periods. During each pe-
riod, we assume that the stationary regime is reached.
Customer arrival process during each period is Pois-
son and service times are assumed to be independent
and exponentially distributed with rate µ. This is a
non-stationary queue Mt=M=Nt where Nt represents
the number of servers, i.e. the number of agents in
our problem.

Customers are served in the order of their arrivals,
i.e. under the First Come-First Served (FCFS) disci-
pline of service. The queue capacity is assumed to be
infinite. Finally, customers abandonment and retrials
are ignored.
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Since we consider uncertainty on arrival rates, we
have to deal with stochastic programs. We assume
that the arrival rates are random variables, denoted
by Lt for the period t, following normal distributions
where the expected values are the forecast values.

3 PROBLEM FORMULATION

We propose here to describe and solve a mixed integer
linear stochastic program able to solve a joint staffing
and scheduling problem.
As explained, we consider that the values we use are
forecasts obtained from historical data and may differ
from the reality. We still want to guarantee a Qual-
ity of Service, expressed with a risk of how much can
be the forecasts and reality different. In order to deal
with a global problem, this risk will be set for the en-
tire horizon (for example one week or one month).

In Section 2 we explained that we computed the
number of required agents for each 30-minute-period
(or 1-hour). We create several possible shifts, accord-
ing to real work days, which cover the schedule of
the call center. As it is inconvenient to ask an agent
to come for only short periods of time, they have
to follow typical shifts (like full-time or part-time).
This may lead to over-staffing on some periods. In
this model we consider shifts with breaks, like lunch
breaks.

We want to define a risk level for the whole hori-
zon. In order to deal with this condition, we model
our problem with joint chance constraints (Prékopa,
2003):

min ctx (1)
s.t. PfAx> Bg> 1� e

xi 2 Z+;e 2]0;1]

where x is the agents vector, and xi is the number of
agents assigned to the shift i ; c is the cost vector and
A = (ai; j) is the matrix of shifts for i 2 [[1;T ]] and
j 2 [[1;S]]. The vector B is the vector of the staffed
agents random variables Bt .

This program optimizes the cost of hired agents
under the constraint that the probability of reaching
the requirement for the whole schedule is higher than
the quality interval 1� e.

We denote by A the matrix of possible shifts. The
term ai; j is equal to 1 if agents working during period i
according to shift j and 0 if not. Thus Ax is the vector
defining the number of agents working at each period.

The variables Bt are computed with an Erlang C
model. The arrival rates values are independent ran-

Figure 1: Example of a simple shifts matrix.

dom variables following continuous normal distribu-
tions for which the means are the forecast values.
Since the Bt are function of Lt , they are random vari-
ables.

Thus we now consider B a vector of random
variables ; for each period t, Bt is function of the
arrival rate Lt , and so we have to deal with the
unknown continuous distribution of Bt .

Since we consider independent random variables,
we split the product of probabilities and obtain the
following Mixed Integer Program:

min ctx (2)

s.t.
T

Õ
t=1

FBt (At � x)> (1� e)

xi 2 Z+;e 2]0;1]

where At is the t-th row of A matrix and
FBt (At � x) = P(Bt 6 At � x).

In order to solve this program, we need to sepa-
rate the chance constraint into several constraints for
each period. This means dividing up the risk along
the horizon.

The simplest way is equally dividing the risk
through the T periods, according to Bonferroni
method:

min ctx (3)

s.t. 8t 2 [[1;T ]]; (Atx)> F�1
Bt

�
(1� e)

1
T

�
T

å
t=1

yt = 1

xi 2 Z+;e 2]0;1];8t 2 [[1;T ]]; yt 2]0;1]

We divide the quality interval and then apply
the inverse of the normal cumulative distribution
function. The drawback of this idea is that we have
to decide how to distribute the risk in advance, before
the optimization process.
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In order to be able to optimize the risk through the
periods, we decide to include the sharing out of the
risk in the optimization and put the risk levels as prob-
lem variables. Instead of considering 1

T as the propor-
tion of the risk for one period, we introduce propor-
tion variables denoted as yt . They are now variables
and the sum of yt still should be 1 in order to reach
the global risk level.

The new problem, with a flexible sharing out of
the risk is now:

min ctx (4)

s.t. 8t 2 [[1;T ]]; (Atx)> F�1
Bt

((1� e)yt )

T

å
t=1

yt = 1

xi 2 Z+;e 2]0;1];8t 2 [[1;T ]]; yt 2]0;1]

In order to solve this problem, we propose two lin-
earizations which give an upper bound and a lower
bound. These linearizations are based on piecewise
approximations of y 7! F�1

Bt
(py). We cannot compute

exact values of this function, thus we focus on linear
approximations. This function is continuous and dif-
ferentiable (except on a countable number of points).
We need to deal with a convex function in order to
apply the approximations.

4 SOLUTION APPROXIMATIONS

4.1 Definition of y Function

We first introduce the function y which gives a re-
lation between b and l. We consider the following
continuous function y:

y :R !R+ (5)
l 7!y(l) = b(l;ASA�;µ)

The function y gives the minimum number of
agents b required to ensure that the targeted QoS ASA�

is reached when the call arrival rate is l and the ex-
pected service rate is µ. The chosen QoS is the Aver-
age Speed of Answer (ASA). The computed value of
b is a real number and not an integer, which is nec-
essary to allow the linear approximations in the next
parts: we need the inverse of the cumulative distribu-
tion function to be continuous.

To the best of our knowledge, an analytical ex-
pression computing y is not known. However, for a
given value of l, we propose to compute y(l) with
the following algorithm.

First we consider this well-known Erlang C
model’s function:

ASA(N;l;µ) = E[Wait] (6)

=
1

N �µ� (1� l

N�µ )

�
1+(1� l

N�µ )
N�1
å

m=0

N!
m! (

µ
l
)N�m

�

This formula gives the expectation of waiting time
(ASA: Average Speed of Answer) given the arrival
rate l, the service rate µ and the number of servers N
which is an integer. In order to consider y as func-
tion of a positive real value of b, we use the algorithm
below:

� We compute ASA(N;l;µ) and ASA(N + 1;l;µ)
such that

ASA(N;l;µ)>ASA� and ASA(N+1;l;µ)<ASA�

We denote ASA(N;l;µ) as ASAN;l.

� The real value of N is computed by a linearization
in the [ASAN;l;ASAN+1;l] segment. The affine
function is:

ASA� =(ASAN+1;l�ASAN;l)�b
+(N +1)�ASAN;l�N �ASAN+1;l

and b is the real value y(l) we are looking for. �

Using this algorithm for the value of l we are consid-
ering in the y function, finally we obtain b.

y(l) = b (7)

=
ASA�+N �ASAN+1;l� (N +1)�ASAN;l

ASAN+1;l�ASAN;l

The y function allows us to determine the values
of b as a function of l, µ and an objective QoS ASA�.
In a nutshell, we determine the number of agents re-
quired to deal with the arrival rates of clients l with
respecting a Quality of Service previously defined.
This function is strictly increasing.

We can denote then

FB(b) = FL(y
�1(b))

4.2 Convexity of y 7! F�1
Bt

(py)

We have previously defined FB(b) = FL(y
�1(b)).

Thus we have

FB(b) = FL(y
�1(b)) = 1� e (8)

and so
F�1

B (1� e) = y(F�1
L

(1� e)) (9)
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In our problem, we split the risk 1�e. Since 1�e

represents a probability, let’s call it p in this part. In
our problem we want a high quality interval and thus
a small value of e. We can consider from here that
p > 0:5, which is necessary for the following proof of
convexity.

We need to consider py;y 2]0;1] in our optimiza-
tion problem. So we consider the equality

F�1
B (py) = y(F�1

L
(py))

with y 2]0;1].

Lemma Since f : y 7! py is convex and
g : p 7! F�1

L
(p) is convex for p > 0:5 and in-

creasing, thus y 7! F�1
L

(py) is convex.

Proof

8p 2 [0;1];8(x;y) 2 [0;1]; 8t 2 [0;1];
f (tx+(1� t)y)6 t � f (x)+(1� t)� f (y)

g( f (tx+(1� t)y))6 g(t � f (x)+(1� t)� f (y))
6 t �g( f (x))+(1� t)�g( f (y))

(10)

F�1
L

(ptx+(1�t)y)6 tF�1
L

(px)+(1� t)F�1
L

(py)

�

This previous result and the strictly increasing
function l 7!y(l) helped us to note that y 7!F�1

B (py)
is a generally convex function. We then consider an
approximated function of y 7! F�1

B (py) which is con-
vex.

With this result we are able to linearize the ap-
proximated convex function as in (Cheng and Lisser,
2012).

4.3 Piecewise Linear Approximation

Here we give an upper approximation of
y 7! F�1

Bt
(py).

Let y j 2]0;1]; j 2 [[1;n]] be n points such that y1 <
y2 < ::: < yn.

Let’s denote F̂�1
B j (py) the linearized approxima-

tion of F�1
B (py) between y j and y j+1.

8 j 2 [[1;n�1]]; (11)

F̂�1
B j (py) =F�1

B (py j)

+
y� y j

y j+1� y j
(F�1

B (py j+1)�F�1
B (py j))

= d j � y+a j

Since FB(b) = FL(y
�1(b)), we have

8p 2]0;1[; F�1
B j (p) = y(F�1

L j (p))
Thus the coefficients are:

d j =
y(F�1

L j (py j+1)�y(F�1
L j (py j))

y j+1� y j
(12)

a j =y(F�1
L

(py j))� y j �d j (13)

Because of the convexity of the approximation, the
condition in our program would be:

8y 2]0;1]; F̂B
�1
(py) = max

j2[[1;n�1]]
fF̂�1

B j (py)g (14)

So our approximated program is now:

min ctx (15)
s.t. 8t 2 [[1;T ]];8 j 2 [[1;n�1]]; Atx> a j +d j � yt

T

å
t=1

yt = 1

8i 2 [[1;S]];xi 2 Z+;8t 2 [[1;T ]];yt 2]a1;1]

with n points for linear approximation with
(a j;d j) coordinates. S is the number of shifts and T
the total number of periods.

4.4 Piecewise Tangent Approximation

Let’s now express a lower approximation of y 7!
F�1

Bt
(py).

Let y j 2]0;1]; j 2 [[1;n]] be n points such that y1 <
y2 < ::: < yn.

We apply a first-order Taylor series expansion
around these n tangents points. Let’s denote F̂�1

B j (py)

the linearized approximation of F�1
B j (py) around y j.

Then

8 j 2 [[1;n]]; (16)

F�1
B j (py) = F�1

B (py
j)

+(y� y j)(F�1
B )0(py j)� ln(p)� py j

= d j � y+a j

with

(F�1
B )0(py

j) =
1

F 0B(F
�1
B )(py

j)
=

1
fB(F�1

B (py
j))

And since fb(b) =
fL(y�1(b))
y0(y�1(b)) as a definition of

composition of random variables:
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fB(F�1
B )(py

j) =
fL(y

�1(F�1
B (py

j)))

y0(y�1(F�1
B (py

j)))

=
fL(y

�1(y(F�1
L

(py
j))))

y0(y�1(y(F�1
L

(py
j))))

=
fL(F�1

L
(py

j))

y0(F�1
L

(py
j))

The coefficients are:

d j =ln(p)� py j �
y0(F�1

L
(py

j))

fL(F�1
L

(py
j))

(17)

a j =y(F�1
L

(py j))� y j �d j (18)

Again, the condition in our approximated program is:

F̂B
�1
(py) = max

j2[[1;n]]
fF�1

B j (py)g (19)

Finally the piecewise tangent approximated pro-
gram is:

min ctx (20)
s.t. 8t 2 [[1;T ]];8 j 2 [[1;n]]; Atx> a j +d j � yt

T

å
t=1

yt = 1

8i 2 [[1;S]];xi 2 Z+;8t 2 [[1;T ]];yt 2]0;1]

with n points for tangent approximation with
(a j;d j) coordinates.

5 NUMERICAL EXPERIMENTS

5.1 Instance

We apply our model to an instance from a health in-
surance call center. We use 19 different shifts, both
full-time and part-time and consider the scheduling
for one week (5.5 days, from Monday to Saturday
midday).

We split the time horizon into 30-minute periods,
considering 10 hours a day from Monday to Friday
and 3.5 hours for Saturday morning, which gives 107
periods.

We consider that the agents are paid according to
the number of worked hours. The cost of one agent is
proportional to the number of periods worked. Thus
it depends on the shift the agent works on. Here we
set the cost to 1 for the fullest shifts (with the high-
est number of periods) and the costs of other shifts

are a strict proportionality of the number of worked
periods.

The data used to staff and shift-schedule are
arrival rates varying between 3 calls/min and 43
calls/min, following a typical daily seasonality, as
described in (Gans et al., 2003). We denote 8t 2
[[1;T ]];lt the mean of the T random variables, which
are the given data. The variances s2

t are random val-
ues generated between [lt

4 ; lt
2 ].

We apply the same instance to the programs (15)
and (20) and, as a comparison, to the program (3) in
which we divided the risk through the periods in a
pre-treatment.

5.2 Comparison with Other Programs

We also add the results from simple programs:

� In this approach we want to reach the risk level at
each period, not through the whole horizon:

min ctx (21)
s.t. 8t 2 [[1;T ]]; PfAtx> btg> 1� e

xi 2 Z+;e 2]0;1]

Thus we got this final program:

min ctx (22)

s.t. 8t 2 [[1;T ]]; (Atx)> F�1
Bt

((1� e))

T

å
t=1

yt = 1

xi 2 Z+;e 2]0;1]

� Finally we can compare with the results of the de-
terministic program:

min ctx (23)
s.t. 8t 2 [[1;T ]]; (Atx)> bt

xi 2 Z+

The values of bt here are computed with the Er-
lang C formula using the mean forecasted values, con-
sidered as certains.

5.3 Results

We apply our models with the following parameters:

� µ = 1

� ASA� = 1

� e = 0:10
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Table 1: Result for staffing and shift-scheduling.

Shi f t Deter Dis joint Fixed LowerB U pperB
1 0 0 0 0 0
2 0 0 0 0 0
3 0 0 0 0 0
4 0 0 0 0 0
5 0 0 0 0 0
6 2 2 1 1 1
7 0 0 0 0 0
8 0 0 0 0 0
9 0 0 0 0 0

10 0 0 0 0 0
11 13 14 18 18 19
12 9 10 9 9 12
13 5 6 8 9 11
14 0 1 3 2 4
15 5 6 7 6 3
16 6 7 8 7 7
17 0 0 0 0 0
18 4 5 6 4 3
19 4 4 5 4 3

Total 48 55 65 60 63
Cost f unction 47:44 54:44 64:72 59:72 62:72

In table 1 we show the solutions for staffing and
shift-scheduling of this instance for 5 programs: col-
umn 1 gives the shift, column 2 (Deter) presents the
x vector obtained with the deterministic model (23),
column 3 (Disjoint) gives the results with the disjoint
chance constraints model (22) and column 4 (Fixed)
with the the fixed-risked model (3). Finally, columns
5 (LowerB) and 6 (UpperB) present the results ob-
tained with the lower bound (20) and the upper bound
(15) approximations.

We used 5 points for computing both lower and
upper bounds. The gap between the two bounds is
D = 5%.

In order to check the efficiency of these solutions,
we randomly generated 100 scenarios according to
the historical data we previously used and checked the
feasibility of the 5 solutions. If the number of agents
required in at least one period of a scenario is insuffi-
cient, the latter is considered as violated.

In table 2 are the results for a batch of 100 scenar-
ios. JCC stands for ”Joint Chance Constraints”.

In the figure 2 we plotted for each model and each
scenario the difference between the number of agents
in the previous solutions and the number of agents ac-
tually needed bpresent � bneeded . When this value is
negative for at least one period, the model is invali-
dated for the scenario.

Table 2: Percentage of violated scenarios.

Model % of violation
Deterministic model 100%

Disjoint chance constraints model 49%
JCC model with fixed risk level 0%

JCC lower bound and flexible risk 3%
JCC upper bound and flexible risk 1%

Targeted maximal risk 5%

First we compare the schedules obtained by using
the various models discussed in the paper based on
the total staffing cost.

We note that the deterministic (23) and disjoint
(22) models provide less expensive schedules than the
joint chance constraint models (15), (20) and (3).

However our approximated programs where the
risk is dynamically divided through the periods pro-
vide less expensive schedules than the joint chance
constraint model where the risk is a priori divided
equally between the scheduling periods (3). This
shows the interest of allowing some flexibility in the
way the risk is allocated between the scheduling peri-
ods.

In small instances we could have chosen another
sharing out a priori of the risk (by analysing wisely
the risky periods) but it remains too complex on in-
stances like ours.

Second, we note that all the cheaper solutions than
the two bounds of our new model of joint chance con-
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Figure 2: Violated scenarios for each model.

traints with a flexible sharing out of the risk does not
validate the condition of the targeted QoS. Thus they
cannot be considered as possible alternatives. The ro-
bustness, i.e. the capability of providing the required
QoS over the whole scheduling horizon within the
maximum allowable risk level, is an essential crite-
rion and its validation is mandatory to approve the
model.

The last 3 programs which are joint chance con-
straints models are the only models respecting the ob-
jective service level. Our approximated programs are
cheaper than the joint chance constraints model with
a fixed sharing out of the risk. Our approach allows us
to save between 3.2% (upper bound) and 8.4% (lower
bound) compared to this program.

This shows the practical interest of the proposed
modelling and solution approach as we provide ro-
bust schedules at a lesser cost than previously joint

constraint models.
In table 3, we present results for different values

of l, µ, ASA� and e (illustrated in the table by the risk
interval).

Table 3: Results for different parameters.

Parameters Results
l range µ ASA� Risk e Gap Violations
3�43 1 1 10% 0:05 1�3
3�43 1 1 05% 0:04 1�2
3�43 2 1 30% 0:0 5�13
3�43 1 2 30% 0:03 12�18
6�86 1 2 10% 0:004 5�6
6�86 1 1 10% 0:005 5�6
6�86 1 1 01% 0:003 0�0

The ”Gap” column gives the gap between the
lower bound and the upper bound solutions. The ”vi-
olation” column gives the numbers of violated scenar-
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ios for the lower and the upper bounds. We note that
for higher values of l, the bounds are really close and
give good results.

6 CONCLUSIONS

In this paper we proposed a new procedure for solving
the staffing and shift-scheduling problem in one step
with uncertain arrival rates. We introduced the mod-
elization of arrival rates as continuous normal distri-
butions and we were able to propose linear approxi-
mations and upper and lower bounds for our staffing
and shift-scheduling problem in call centers. The con-
struction of the y function made possible these piece-
wise approximations. Computational results show
that the two bounds give quite close results and both
propose cheaper solutions than the other chance con-
straints program, while respecting our targeted Qual-
ity of Service. However we used a general convex
shape for approximating the inverse of the cumulative
function, even though the real shape of this function
can be difficult to analyze.

As an improvement of our work in the future, we
wish to theoritically analyse and give a precise model
of the shape of y 7! F�1

B (py) in order to improve the
precision of our approximated model. As we can see
in our results, the two bounds we proposed give a
better QoS than expected and thus, probably an over-
staffing.

Moreover, we have several possibilities for im-
proving the queuing system model for the call center,
for instance:

� Skills-based Call Centers: we can assume the
agents are specialized in specific fields and will
answer the appropriate calls according to these
skills. This implies the creation of multiple
queues which can be connected (see (Cezik and
L’Ecuyer, 2008) for example).

� Abandonments and Retrials: some people may
hung up before being served ; if on purpose, we
consider this as abandonments (when people have
reach their patience limit) or if by accident, they
may want to call again and we consider this as re-
trials.
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