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Abstract: Assuming a task-based approach to model the demand for the nurses in the operating rooms, the paper 
proposes a bicriteria mixed-integer approach to build surgical teams with high affinities while minimizing 
the nurses’ waiting time. The suggested model builds nurse rosters considering their availabilities, legal 
constraints and affinities with the operating surgeons. The model is solved using an ߝ-constraint approach 
and is tested on instances of a Belgian hospital. From the experiments, it appeared that the 2 objectives 
considered are conflicting. Relaxing the criterion of the affinities has an impact on the waiting time. 

In the document, the terms used to designate persons 
are taken in a generic sense and refer to males and 
females without distinction. 

1 INTRODUCTION 

The operating rooms are one of the cornerstones of 
hospital activity. It represents one of the highest 
budget expenses. Managing the operating rooms is a 
complex task that deals with human and material 
management: on one side, there is the planning and 
scheduling of the surgical interventions while 
minimizing the operating costs of the operating 
rooms and managing the specific materials; on the 
other side, there is the planning and rostering of 
human resources considering legal and personal 
constraints and preferences of the various staff 
members (surgeons, anaesthesiologists, nurses) 
while satisfying the patients. Also, the managed 
resources are in limited supply.  

The objective of this research paper is to help the 
operating room manager to put together surgical 
teams to improve the planning and scheduling. 
Traditional approaches developed to plan and 
schedule the surgical interventions are made of 2 
steps. The time horizon considered is usually one 
week. First, the surgical interventions are planned 
taking into account the availabilities of rooms and 
surgeons. A surgical intervention is assigned to a 

day and a room. Then, the surgical interventions are 
scheduled daily under the constraints on the 
availabilities of personnel and materials.  

Numerous papers studied the complexity of 
planning and scheduling the operating rooms 
(Cardoen et al., 2010). The various problems studied 
differentiate on basis of the constraints, decision 
variables, objectives and solution methods. The 
composition of the surgical team has been of little 
interest so far in operations management.  

Yet, an increasing number of studies (Mazzocco 
et al., 2009); (Weaver et al., 2010); (Kurmann et al., 
2012) demonstrated that cooperation, coordination 
and communication between the members of a 
surgical team have a positive impact on the patient 
surgical outcome. To the best of our knowledge, 
only Meskens et al., (2012) took into account the 
affinities of the surgical team while scheduling the 
surgeries. While considering the affinities of the 
personnel, no author considered the nurses’ working 
conditions (maximum number of work per week, 
days-off, breaks,…). 

Those elements are usually considered in the 
literature of ‘nurse rostering’ or ‘nurse scheduling’. 
Burke et al., (2004) and, more recently, Van den 
Bergh et al., (2013) provided detailed reviews on the 
subject. It is worth noting that none of the papers 
mentioned considered the specific case of the 
operating rooms. 

Indeed, in most of the hospital departments, the 
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demand for nurses is modeled based on shift. The 
number of staff required is determined to meet a 
service measure such as for instance a ratio 
nurse/patient (Ernst et al., 2004). In the operating 
rooms, on the contrary, the demand for staff is based 
on a list of tasks. Each task is a surgical intervention 
characterized by a starting time and duration, to be 
scheduled and performed. 

The objectives considered when building the 
nursing roster are usually the minimization of the 
salary costs and the maximization of the nurses’ 
preferences. The nurses’ preferences are measured in 
terms of requests to work at specific time periods 
(shifts, day-offs, etc.) (Jaumard et al., 1998); (Bard 
and Purnomo, 2005). However, the models were not 
taking into account preferences in terms of co-
workers or affinities between the surgical team 
members.  

The objective of this paper is to form surgical 
teams (surgeon, nurses) with a high affinity degree 
while taking into account the availaibilities of nurses 
and the legal constraints on working conditions 
(days-off, breaks,…). We also want to minimize the 
waiting time of nurses in the operating rooms so that 
we minimize idle time and limit overtime payments. 

We face a multiobjective problem with two 
criteria : to minimize the waiting time of nurses and 
to maximize the affinities of the surgical teams. 

A lexicographic optimization was considered to 
solve this problem in Di Martinelly and Meskens 
(2013). It means that an order of importance was set 
between the objectives: the first objective is 
optimized; then the second one is optimized under 
the constraint that the first one stays optimal. There 
are 2 main limitations to this approach: the decision 
maker has to determine which objective is the most 
important to him and none of the solutions generated 
is a compromise between the objectives; the solution 
is optimal regarding one of the objectives. For 
instance, the operating room manager (the decision 
maker) will have to settle for a nurse schedule that is 
either optimum for the waiting time or optimum for 
the affinities of the surgical teams; he won’t be 
provided with a compromise schedule that would 
probably best suit him.  

The approach considered in this paper is 
different. There is no order of importance between 
the objectives and both objectives are optimized. We 
build the set of Pareto optimal solutions (or part of 
it). The main advantage of this method is the 
possibility to provide the operating room manager 
with the set of compromise solutions (meaning the 
non-dominated solutions in the Pareto sense). The 
manager can thus choose among them the solution 

he prefers and estimates the trade-offs between the 
possible solutions.  

The originality of the research is the integration 
of personnel affinities in the rostering while keeping 
the personnel costs under control. The problem is 
modeled as a multiobjective mixed-integer program. 
It is solved using an ε-constraint approach. The 
approach is then tested on real data of a Belgian 
hospital. The rest of the paper is organized as 
follows: in section 2, we present the context of the 
paper. In section 3, we propose a mixed-integer 
program to build the surgical teams and nurse 
rosters. The model is then tested on real data and the 
results are discussed in section 4. We finish with 
conclusion and future work. 

2 THE GENERAL FRAMEWORK 

The objective of the framework is to provide the 
decision maker with a tool to obtain a surgical 
schedule that both satisfy human and managerial 
constraints. It uses a holistic view of the problem.  

The first part consisted in a model developed by 
Di Martinelly et al., (2011). It considered the 
planning and scheduling of surgical interventions 
over 5 days. Each surgical intervention is done by a 
surgeon, which has availabilities over the week. It 
requires a number of resources (rooms, 
anesthesiologists, nurses) to be available. At every 
time period, the suggested planning must satisfy the 
constraints on the number of nurses available. The 
results of this model indicate the starting time of 
each surgical intervention in a specific room, on a 
specific day.  

The detailed surgical schedule over the week is 
the workload pattern used to build the nurse rosters 
and the surgical teams while taking into account the 
working rules. 

The remainder of this paper focuses on the 
second part of the framework: a multiobjective 
mixed-integer program that establishes surgical 
teams maximizing the affinities between the nurses 
and the surgeons while making the schedule efficient 
for nurses. We then suggest a solving multiobjective 
approach based on the ߝ-constraint method. 

3 METHODOLOGY 

3.1 Problem Description  

Each surgical intervention ݇ requires a number of 
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nurses (݊), which are present during the entire 
surgical time (݈). A surgical intervention is done by 
one specific surgeon. Each operating surgeon has a 
degree of preferences to work with each nurse.  

The affinity between surgeons and nurses is 
expressed through an affinity matrix. Based on the 
preferences expressed by a surgeon to work with a 
nurse, a score that varies between 0 and 9 is 
assigned; a score of 0 represents a total 
incompatibility while a 9 is a strong preference.  

A pretreatment is realized: based on the affinity 
matrix and knowing that a surgery is assigned to one 
surgeon, we can deduce the degree of affinity 
between the surgery k and the nurse i (ݏ). 

The availability of nurse i is defined in a matrix 
for each day and time period ሺ௧ௗሻ. If ሺ௧ௗሻ ൌ 1, it 
means that a nurse can be assigned to a surgical 
intervention; 0 otherwise. The nurses’ availabilities 
are checked for the whole surgical intervention time. 
Nurses can start working at different time periods 
ௗݎ with ,(ௗݎ) ൌ min௧ ,݅∀	ௗ௧ ∀݀. Each nurse i can 
work up to a certain number of periods per day d 
 The values are based on the .(ݖ) and per week (ௗݐ)
working contract and work regulations. This 
modeling technique enables us to take into account 
nurses’ requirement (half-day working, 35 hours or 
40 hours, etc.). 

We determine which nurse i is assigned to the 
surgical intervention k (ݕ). A nurse is assumed to 
attend the whole assigned surgery k.  

As aforementioned, the surgical planning is a 
data of our problem and is done for a 5-day period. 
It is obtained by solving the model proposed by Di 
Martinelly et al. (2011) as mentioned in point 2. The 
surgical planning is done assuming a number of 
nurses available and paid and it may require a 
certain amount of overtime work.  

The objective of the present model is, based on 
this demand for nurses, to obtain the best allocation 
of nurses to the surgeries.  

The quality of the nurse roster is evaluated either 
by the total waiting time of nurses or by the 
affinities of the surgical team (∑ ݕ ∗ ݏ ).  

3.2 Mathematical Model  

Sets 
 ݀ set of operating days , ݀ ൌ 1, . . ,  ܦ
 ݐ set of time periods per day , ݐ ൌ 1, . . , ܶ 
 ݇ set of surgical interventions over the period , 

݇ ൌ 1, . . ,  ܭ
 ݅ set of nurses , ݅ ൌ 1, . . ,  ܫ

Parameters 

 ݏ	 :	 degree of affinity between the surgeon 
(related to surgery ݇) and the nurse ݅	

 ௧ௗ	:	availability of nurse ݅ in period ݐ on day ݀ 
{0,1}	

 ݎௗ:	 time period at which nurse	݅ starts working 
on day ݀	

 ݊	 :	 number of nurses required to perform 
surgical intervention ݇ 

 ݔ௧ௗ	 :	starting time of surgical intervention ݇ in 
period ݐ on day ݀ {0,1} 

 ݈	 :	 duration of surgical intervention ݇ in time 
periods 

 ݐௗ	 :	 available working time in time periods for 
nurse ݅ on day ݀ 

 ݖ	 :	 available working time in time periods for 
nurse ݅ over the horizon 

Variables 

 ݕ	 :	 a	 binary variable that represents the 
assignment of nurse ݅ to surgical intervention ݇ 

 ݉ௗ:	the	time period at which nurse ݅ finishes her 
surgical interventions for day ݀ 

 ݓௗ:	 the waiting time in periods of nurse ݅ over 
day ݀ 

Model 

ܰܫܯ ଵ݂ ൌ൭݉ௗ െ ௗݎ
ௗ

െሺݕ ∗ ݈
௧

∗  ௧ௗሻ൱ݔ

(1)

ܺܣܯ ଶ݂ ൌ ݕ ∗


 (2)ݏ

s.t. 

ሺݕ


 ௧ௗሻݔ

௧

ఛୀ௧ିೖାଵ

 ,݅∀		௧ௗ ,ݐ∀ ∀݀ (3)

ݕ


ൌ ݊ 	∀݇ (4)

ሺݕ ∗


݈ሻ  ∀݅ (5)		ݖ

ሺݕ ∗ ݈ ∗ ௧ௗሻݔ
௧

 ,݅∀		ௗݐ ∀݀ (6)

ሺݕ ∗ ሺ݈  ሻݐ ∗ ௧ௗሻݔ
௧

 ݉ௗ∀݅, ∀݀, ∀݇ (7)

Building�Surgical�Team�with�High�Affinities�-�A�Bicriteria�Mixed-integer�Programming�Approach

419



 

݉ௗ,ݓௗ  0 , ∀݅, ∀݀ (8)

ݕ 	∈ ሼ0,1ሽ, ∀݅, ∀݇ (9)

Objective (1) is intended to give the nurses a 
schedule that minimizes the total waiting times. 
Objective (2) maximizes the affinities between the 
surgeons leading the intervention and the nurses. 

Equations (3) ensure that a nurse will be assigned 
to a surgical intervention only if he is available; it 
also ensures that a nurse can only attend a surgical 
intervention at a time. Equations (4) ensure that 
there is the required number of nurses to perform the 
surgery. Equations (5) ensure that a nurse doesn’t 
work more than the authorized time over the week. 
Equally, equations (6) ensure that the daily working 
time of a nurse is respected.  

Equations (7) determine when the last surgical 
intervention of a nurse finishes each day (Makespan 
of a nurse i activity on day d). Equations (8) define 
the variables as positive. Finally, equations (9) 
define the assignment of a nurse to a surgery as a 
binary variable.  

3.3 ε-Constraint based Approach 

The multiobjective mixed-integer linear program 
described in point 3.2 provides each week the nurse 
rosters. Our objective is not to provide the decision-
maker with all the non-dominated solutions but with 
a set of them. In a formal way x* is a non-dominated 
solution if and only if, in the case of a maximization 
of all objective functions, there is not any x  X 
(where X is the feasible set of variables that satisfies 
the constraints) such that fi(x

*)   fj(x) for all i, and 
fj(x

*) <  fj(x) for at least one j (Hwang et al., 1979). 
The most widely used technique to solve a 

multiobjective linear problem is the weighting 
method. However, this technique has some 
disadvantages, which make it difficult to apply in 
our problem: the scaling of the objective function, 
the choice of the weights, and the number of runs 
needed to generate several alternative solutions 
(Mavrotas, 2009). 

As a result, we used the second more popular 
approach, the ε-constraint method (Haimes et al., 
1971, Chankong and Haimes, 1983). This method 
has in addition the advantage of being independent 
of the decision space (Ehrgott and Ruzika, 2008). 

In case of 2 objective functions, the ideal and 
nadir points can easily be determined (Ehrgott, 
2005). Those points are used to build the payoff 
table without weakly efficient points. 

Algorithm to find the ideal and nadir points. 

1. Solve the single objective problems 

݉݅݊ ଵ݂ and ݉ܽݔ ଶ݂. Denote the 
optimal objective values by w୍and a୍ 

2. Solve ݉ܽݔ ଶ݂ with the additional 
constraint ଵ݂   ூݓ

3. Solve ݉݅݊ ଵ݂ with the additional 
constraint ଶ݂  ܽூ 

4. Denote the optimal objective values 
obtained in steps 2 and 3 by ܽே	and 
 ே, respectivelyݓ

5. The nadir point is ܰ ൌ ሺݓே, ܽேሻ and the 
ideal point is ܫ ൌ ሺݓூ, ܽூ) 
 

The payoff table, based on the nadir and ideal points, 
is expressed in table 1. The ideal point ܫ ൌ ሺݓூ, ܽூ) 
corresponds in our case to a non-existent point. 

Table 1: Payoff table. 

 ଵ݂ ଶ݂ 
݉݅݊ ଵ݂ ݓூ ݓே 

ݔܽ݉ ଶ݂ ܽே ܽூ 

 
Any value outside the ranges determined by the 

nadir and ideal points will be discarded. The ranges 
are then explored starting from the values obtained 
from the ideal point until we reach the nadir point. 

We run in parallel two ε-constraint methods and 
we start building the Pareto set at the extreme points. 
The first ε-constraint method maximizes the 
affinities with the additional constraint (the ε-
constraint) on the waiting time (ߝ௪). The first value 
obtained is one of the extreme points, (ݓூ,	݂ଶ|௪).  

The second ε-constraint method minimizes the 
total waiting time with the additional constraint on 
the affinities (ߝ). The other extreme point obtained 
is (݂ଵ|, ܽ

ூ	). The ε-constraints are relaxed at each 
iteration. We iterate as long as the values obtained 
are better than the nadir point. 

Algorithm for the ε-constraint method. 

1. Set ߝ௪ to ݓூ and the number of 
iterations ݊௪ to 1 

2. Set ߝ to ܽூ and the number of 
iterations ݊ to 1 

3. Set the Pareto optimal set to ࣪ ൌ ∅ 

4. While ( ଵ݂|ఌೌ  ) and (ܰݓ ଶ݂|ఌೢ  ܽܰ)do 
Solve ݉ܽݔ ଶ݂ with the additional 
constraint ଵ݂   the solution is ;ݓߝ
ଶ݂|ఌೢ 
Set ߝ௪ ൌ ூݓ	 ∗ 1.05ೢ and ݊௪ ൌ ݊௪  1 
Solve ݉݅݊ ଵ݂ with the additional 
constraint ଶ݂   ; the solution is	ߝ
ଵ݂|ఌೌ 
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Set ߝ ൌ 	ܽூ ∗ 0.95ೌ and ݊ ൌ ݊  1 
Add the points (ߝ௪,	 ଶ݂|ఌೢ)and 
( ଵ݂|ఌೌ,   ࣪	 )toߝ

End. 

4 RESULTS AND DISCUSSION 

4.1 Test Instances 

We tested our model on a data set obtained from a 
Belgian hospital. The surgical interventions take 
place between 8 AM and 6 PM at the latest. Each 
hour is divided in quarter (for a total of 40 quarters a 
day). There are 8 instances in the set (8 weeks). 
Each week, the number of surgeries varies between 
49 and 90, the number of operating surgeons 
between 22 and 38 and there are 7 operating rooms. 

The model described by Di Martinelly et al., 
(2011) was run on those data to get the detailed 
planning and scheduling of the surgical interventions 
(day and time of the surgical interventions). It was 
run with the restriction that there were 12 nurses 
available at every time period of every day. A pool 
of 14 nurses is available; some of them are working 
the entire day, others are working only in the 
mornings or only in the afternoons. 

The affinity matrix is built by asking each 
surgeon to assess his affinity with each nurse using a 
scale between 0 and 9 (9 being the highest affinity) 
and is built for the entire period. 

4.2 Results and Discussion  

The model was developed and solved using FICO 
Xpress-Optimizer. It was tested on a computer with 
2.2 GHz CPU and 8 GB of RAM. 

Table 2 displays the payoff table for each 
instance. 

From this table, we can note that both objectives 
are conflicting: minimizing the waiting time 
generates surgical teams with affinities lower by 
14% on average; while maximizing the affinities 
creates teams that have to wait up-to 50 times more!  

The points (47; 821) and (338; 1091) correspond 
to the maximization of the affinities under the 
constraint on the waiting time and the minimization 
of the waiting time under the constraint on the 
affinities, respectively.  

Each of those points represents the weekly roster 
for all nurses obtained by using as input the planning 
and scheduling of surgical interventions of week 5, 
taking into account the nurses’ availabilities (day-
offs), maximum working time per day and per week 

(full time/part time) and the operating surgeons’ 
affinities with the nurses.  

Table 2: Payoff table of the test instances. 

week wI wN aI aN 

1 0 263 653 592 

2 40 257 1152 1021 

3 4 208 1093 1007 

4 50 295 794 600 

5 47 338 1091 821 

6 71 378 899 840 

7 75 376 776 707 

8 64 357 976 745 

 
Figures 1 and 2 display illustrations of the rosters 

obtained for a particular day of week 5, either 
minimizing the waiting time with a constraint on the 
affinities (Figure 1) or maximizing the affinities with 
a constraint on the waiting time (Figure 2). The 
horizontal axis represents the hours (expressed in 
quarter; 1 is 8 AM while 40 is 6 PM); the vertical 
axis represents the nurse’s ID. The roster of a 
particular nurse is represented on several lines. Each 
line corresponds to a surgical intervention. For 
instance, on figure 1, nurse no. 1 is assigned to 3 
surgical interventions; nurse no. 14, which starts 
working in the afternoon (data of the problem), is 
assigned to 2 surgical interventions. 

We can note several differences between the two 
figures: the nurses are different (nurses 3, 8 and 13 
are working in the second schedule, not in the first 
one), they are not working at the same time periods 
(and thus the surgical teams are different), and the 
number of nurses who are working is different. On 
figure 1, it can be noted that only 10 nurses are 
required to do the surgical planning; on figure 2, 13 
of them are needed. It can be considered that the 
assignment of figure 1 gives additional flexibility. 
Indeed, if an emergency occurs or one of the nurses 
calls in sick, one of the 4 remaining nurses can be 
used. On figure 2, some nurses have rather long 
waiting times between the surgical interventions. For 
instance, nurse no. 10 has to wait 18 quarters 
between jobs. The objective pursued was to 
maximize affinities with a constraint on the total 
waiting time, which may results in differences for 
the nurses. 

Figures 1 and 2 are the extreme solutions of the 
Pareto set. The other compromise rosters are built by 
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degrading the optimal value obtained on each 
objective function and by using it as a constraint to 
optimize the other objective function.  

 

 

Figure 1: Tuesday roster for week 5 obtained by 
minimizing the waiting time under the constraint on the 
affinities. 

 

Figure 2: Tuesday roster for week 5 obtained by 
maximizing the affinities under the constraint on the 
waiting time. 

Figure 3 displays the Pareto frontier built for 
each instance by degrading the values by 5%. 
Starting from the extreme points of the Pareto 
curves, the waiting time criterion is degraded by 5%. 
The affinity level is increased by 8.5% on average. 
By degrading the affinity level by 5%, the waiting 
time of nurses is improved by an average of 380%. 
However, there are differences between the 
instances. It seems that the differences are more 
related to the characteristics of the planning rather 
than to the surgical loads (average number of nurses 
per surgery, total operating time for nurses or 
number of surgery over the week). 

The relation between the two objectives is not 
linear; degrading the affinities has a more impact on 
the waiting time than the impact of the degradation 
of the waiting time on the affinities.  

5 CONCLUSIONS 

The approach used in this paper considered a task-
based approach to model the demand for nurses in 
the operating room. The present paper focused on 
the building of surgical teams (surgeon, nurses) with 
a high affinity degree while taking into account 
availaibilities of nurses and the legal constraints on 
working conditions (days-off, maximum working 
time per week,…). The waiting time of nurses is also 
minimized in order to limit idle time and overtime 
payments. 

The problem was modeled as a multiobjective 
mixed-integer problem and solved using an ߝ-
constraint approach. This approach was chosen 
because it allows the generation of non-dominated 
nurse rosters. The decision maker can choose the 
one he prefers and estimates the trade-offs between  
alternative solutions. 

The model was tested on real data from a 
hospital. From those experiments, we could 
conclude that the objectives are conflicting and that 
degrading the affinities has a more impact on the 
waiting time than the impact of the degradation of 
the waiting time on the affinities.  

From the analysis of the results, it appears that 
there is an imbalance in the waiting time of the 
nurses. A third objective could be added to minimize 
the maximum waiting time of the nurses. 

Currently, the authors are working on an 
extension of the model that takes into account break 
time periods for nurses. 

Future work deals with assessing how those 
conclusions are robust to variations in the work 
availabilities of nurses and to the affinity matrix. 
Affinities between the nurses could easily be 
integrated. The affinity matrix could also be adapted 
to take into account the nurses specialty. 
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Figure 3: Efficiency frontier built for the different weeks tested. 
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