
A Multicommodity Formulation for Routing in Healthcare Wireless
Body Area Networks

Pablo Adasme1, Abdel Lisser2 and Chuan Xu2
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Abstract: In this paper, we propose a minmax multicommodity netflow model for routing in healthcare wireless body
area networks (WBAN). The model is aimed at minimizing the worst power consumption of each bio-sensor
node placed in the body of a patient plus the total heating costs subject to flow conservation and maximum
capacity energy constraints. The model is formulated as a mixed integer linear program (MILP). Thus, we
propose a variable neighborhood search (VNS) metaheuristic procedure to come up with tight near optimal
solutions. Our preliminary numerical results indicate the VNS approach obtains near optimal solutions with
integrality gaps no larger than 3.5 %. Finally, since the proposed model has two conflicting objectives, i.e,
heating costs and worst power consumption, we adopt a weighted sum criteria for each objective in order to
analyze the behavior of the model.

1 INTRODUCTION

Wireless sensor networks (WSN) have become one
of the most promising technologies to enhance qual-
ity of life around the globe. So far, there are appli-
cations for entertainment, testing weather conditions,
traveling location, retail industries, military logistics,
healthcare systems, and so on. Regarding healthcare
systems, a major concern is to address the problem of
pervasive preventive monitoring systems. Specially
for elderly population whose growth is directly pro-
portional to the development of countries (Kinsella
and Phillips, 2005). Moreover, this technology would
allow not only the elderly and chronically ill peo-
ple to be monitored, but also to provide high qual-
ity care services for little children in situations where
both parents have to work. It would also help peo-
ple living in rural areas where reaching hospitals and
medical centers is more difficult. A major research
challenge in healthcare monitoring systems so far is
the development of new applications by integrating
efficient wireless body area networks (WBAN) with
electronic devices such as mobile phones, laptop com-
puters, desk computers or tablets (Schmidt and Laer-
hoven, 2001). For example, being at home, a wire-
less personal area network (WPAN) may provide res-
idents and caregivers with continuous medical mon-

itoring, control of home appliances, and emergency
communication (Stanford, 2002; McFadden and In-
dulska, 2004). A WBAN is composed of tiny bio-
logical sensors (bio-sensors) which are placed in the
body of a person in order to remotely monitor health-
care status conditions such as fever, blood pressure,
body temperature, heart rate, blood glucose concen-
tration, among many others. Unlike typical WSN,
WBAN suffer from very limited energy resources and
hence preserving the energy of the nodes is of great
importance. Additionally, an extremely low transmit
power per node is required in order to minimize in-
terference and to cope with health concerns such as
avoiding tissue heating of skin on patients. One possi-
ble approach to minimize power consumption as well
as tissue heating of skin problems is by improving
the performance of routing protocols. So far, there
have been proposed some algorithmic approaches to
control bio-effects for WBAN. The authors in (Tang
et al., 2005) propose a Thermal Aware Routing Algo-
rithm (TARA) that balances the communication over
the sensor nodes in order to route data away from high
temperatures. The algorithm achieves better energy
efficiency levels and low temperatures, however it re-
quires that all nodes have complete knowledge about
the temperatures of all remaining nodes in the net-
work. Another attempt is a protocol known as Any-
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body (Watteyne et al., 2007). The underlying idea
of Anybody is to form clusters and a backbone net-
work with selected cluster heads in order to reduce the
number of direct transmissions to the sink node. This
algorithm also achieves energy savings, but it does
not consider other aspects such as reliability of mes-
sages for example. In (Fang and Dutkiewicz, 2009),
the authors propose an energy efficient medium ac-
cess control (MAC) protocol referred to as BodyMAC
which uses flexible bandwidth allocation to improve
node energy efficiency. Besides, it includes a new ef-
ficient sleep mode so as to reduce the idle listening
duration. In (Kwak et al., 2009), the authors com-
pare and analyze different protocols from WBAN re-
quirements to energy efficiency whereas in (Huang
et al., 2010) the authors propose a weighted random
value protocol for multiuser WBANs (WRAP). Other
efforts consider explicit mathematical programming
formulations in order to efficiently design optimal
routing protocols in WBANs (Abouzar et al., 2011;
Ababneh et al., 2012a; Ababneh et al., 2012b; Elias
and Mehaoua, 2012; Yan et al., 2012; Awad et al.,
2013). In a WBAN routing protocols must have self-
configuration features and must be capable of finding
the best route for communication in order to increase
delivery insurance and decrease energy consumption
between nodes that comprise the network.

WBAN is an emerging research field where new
routing protocols are mandatorily needed to minimize
power consumption at each node while simultane-
ously maximizing the lifetime of each node in the
network. In this paper, we present a minmax mul-
ticommodity netflow formulation to optimally route
sensed information by nodes in a WBAN. The model
minimizes the worst power consumption of each
bio-sensor plus the total heating costs produced by
the nodes subject to flow conservation and maxi-
mum power available constraints for each node. The
model is formulated as a mixed integer linear program
(MILP) and thus, we propose a variable neighbor-
hood search (VNS) metaheuristic procedure to com-
pute tight near optimal solutions.

The paper is organized as follows. Section 2
presents the multicommodity netflow formulation un-
der study. In section 3, we present the VNS proce-
dure to compute near optimal solutions. In section 4,
we provide preliminary numerical results for the VNS
approach when compared to the optimal solution of
the problem. Since the proposed model has two con-
flicting objectives, i.e, heating costs and worst power
consumption, here we also consider a weighted sum
criteria for each objective and numerically compare
the model behavior. Finally, in section 5, we conclude
the paper.

2 PROBLEM FORMULATION

We model a fixed WBAN by the means of a graph
G = (N,A), where N denotes the set of sensor (bio-
sensor) nodes and A is a set of directed arcs. The as-
sumption of directed arcs is valid for WBANs since
before any message is transmitted, the route between
the source and the destination can be established
using Ad-hoc On-demand Distance-Vector routing
(AODV) protocols (Perkins and Royer, 1999). With-
out loss of generality, we assume that every node has a
fixed initial power capacity E ∈R+. The set of nodes
N is composed of a subset of source nodes Ns which
sense and collect the data to be transmitted, a set of
intermediate transmitters NI and a set of sink nodes
Nt where all data is received. For each node j ∈ N
we define the sets δ−( j) = {i ∈ N : (i, j) ∈ A} and
δ+( j) = {i ∈ N : ( j, i) ∈ A}. We denote by C the set
of commodities to be transmitted where each com-
modity c ∈ C consists of routing Dc packets from a
source node i ∈ Ns to a destination node j ∈ Nt . Let
ei, j denote the unitary energy needed for transmission
of packets on arc (i, j) ∈ A and define the total energy
consumption of node j ∈ N as ∑c∈C ∑i∈δ−( j) ei, jDc f c

i, j
where Dc f c

i, j is the number of packets of commodity c
transmitted on arc (i, j). Note that this amount of en-
ergy is computed under the assumption that the trans-
mission energy requirement is negligible compared
to the energy required for receiving packets at each
node. This is valid assumption since an extremely
low transmit power per node is required in short range
ultra-wide band in WBANs and thus the effort is con-
siderably higher when the nodes are receiving pack-
ets (Shi et al., 2011). Moreover, this allows signifi-
cant energy savings when using network coding tech-
niques with the objective of providing reliability un-
der low-energy constraints (Arrobo and Gitlin, 2011;
Shi et al., 2011). We consider the following multi-
commodity netflow formulation denoted hereafter by
P0 as

min
f ,x

{
∑
i∈N

aixi +max
j∈N

∑
c∈C

∑
i∈δ−( j)

ei, jDc f c
i, j

}
(1)

s.t. ∑
j∈δ+(i)

f c
i, j− ∑

j∈δ−(i)
f c

j,i = bc
i ,

∀i ∈ N;c ∈C (2)

∑
c∈C

∑
i∈δ−( j)

ei, jDc f c
i, j ≤ Ex j,∀ j ∈ N (3)

−xi ≤ bc
i ≤ xi, ∀i ∈ N;c ∈C (4)

f c
i, j ∈ [0,1],∀(i, j) ∈ A;c ∈C (5)

xi ∈ {0,1},∀i ∈ N (6)
where the flow variables f c

i, j represent the portion of
commodity c∈C to be transmitted on an arc (i, j)∈A.
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The binary variables {xi, i ∈ N} are used to decide
whether node i ∈ N will be active or not when trans-
mitting packets through the network. The objective
function in (1) is to minimize the total heating costs
{ai, i ∈ N} produced by bio-sensors which are placed
in the body of a patient plus the worst case power con-
sumption of each active node in the network. The lat-
ter is a crucial aspect in a WSN since by definition, its
lifetime is equal to the minimum lifetime of all nodes
in the network (Deb, 2002; Jourdan and de Weck,
2004). In other words, the network lifetime ends as
soon as any node runs out of its battery. Let bc

i be
equal to 1 if node i ∈ Ns, or be equal to -1 if node
i ∈ Nt , and zero otherwise. Constraint (2) are flow
conservation constraints for each node i ∈ N and for
each commodity c ∈ C while constraint (3) imposes
the condition that each node has a maximum avail-
able power to receive packets in the network. Note
that this constraint is forced to be equal to zero when
its respective node is set to an inactive state condition.
Constraint (4) imposes the condition that all source
and sink nodes should always be active, otherwise the
network can not sense or relay the data collected at
the sink node. Finally, constraints (5)-(6) are the do-
main constraints. Note that model P0 can be easily
converted into a mixed integer linear programming
(MILP) problem by introducing an upper bounding
variable z instead of using the max term in its objec-
tive function as follows.

P1 min
f ,x

z+ ∑
i∈N

aixi

s.t. z≥ ∑
c∈C

∑
i∈δ−( j)

ei, jDc f c
i, j, ∀ j ∈ N

∑
j∈δ+(i)

f c
i, j− ∑

j∈δ−(i)
f c

j,i = bc
i , ∀i ∈ N;c ∈C

∑
c∈C

∑
i∈δ−( j)

ei, jDc f c
i, j ≤ Ex j, ∀ j ∈ N

−xi ≤ bc
i ≤ xi, ∀i ∈ N;c ∈C

f c
i, j ∈ [0,1],∀(i, j) ∈ A;c ∈C

xi ∈ {0,1},∀i ∈ N
We remark that model P1 could be considered as part
of any existing WBAN MAC protocol (See references
in section 1) as it provides an optimal routing strat-
egy. However, it does not consider other technical as-
pects such as broadcasting control flows and organi-
zation of the network. The routing strategy is manda-
tory in WBANs as it allows significant power savings
when transmitting sensed data through the network
(Ababneh et al., 2012b; Elias and Mehaoua, 2012;
Yan et al., 2012; Awad et al., 2013). For a more gen-
eral, comprehensive and technological perspective re-
garding WBANs protocols, we refer the reader to the
works in (Ullah et al., 2010; Ullah et al., 2012).

In the next section, we propose a variable neigh-
borhood search metaheuristic approach to compute
near optimal solutions for P1.

3 THE VNS APPROACH

Metaheuristics are simple algorithmic procedures
commonly used to find near optimal (suboptimal) so-
lutions for combinatorial optimization problems. In
practice, they have proven to be highly effective when
solving many of these hard problems (Glover and
Kochenberger, 2003). Especially when the dimen-
sions of the problem increase rapidly which is of-
ten the case in real world applications and where no
solver is available to solve these problems to opti-
mality. Perhaps, the most frequently utilized meta-
heuristics approaches are genetic algorithms, tabu
search, ant colony system, particle swarm optimiza-
tion, variable neighborhood search, simulated anneal-
ing, among others. For a more detailed explanation on
how these metaheuristics approaches work, we refer
the reader to the book in (Glover and Kochenberger,
2003). In principle, a genetic algorithm or a tabu
search approach would also serve to compute feasi-
ble solutions for our proposed multicommodity flow
formulation in a straightforwardly manner. In this pa-
per, we choose VNS mainly due to its simplicity and
low memory requirements. In particular, we adopt a
reduced VNS strategy which drops the local search
phase of the basic VNS algorithm as it is the most
time consuming step (Hansen and Mladenovic, 2001;
Hansen et al., 2001). In order to compute feasible so-
lutions for problem P1 using a VNS approach, we ob-
serve that for any fixed assignment of vector x = x̄ in
P1, the problem reduces to solve the following linear
programming problem

P̄1 min
f

z

s.t. z≥ ∑
c∈C

∑
i∈δ−( j)

ei, jDc f c
i, j, ∀ j ∈ N

∑
j∈δ+(i)

f c
i, j− ∑

j∈δ−(i)
f c

j,i = bc
i , ∀i ∈ N;c ∈C

∑
c∈C

∑
i∈δ−( j)

ei, jDc f c
i, j ≤ Ex̄ j, ∀ j ∈ N

f c
i, j ∈ [0,1],∀(i, j) ∈ A;c ∈C

There are 2|N|−|Ns|−|NI | feasible assignments for vector
x. It is obvious that some of them are not feasible as
they might turn problem P̄1 infeasible. We propose
a VNS approach to compute feasible solutions for P1
by randomly generating these binary vectors.

VNS is a recently proposed metaheuristic ap-
proach (Hansen and Mladenovic, 2001) that uses the
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Input: A problem instance of P1
Output: A feasible solution (x̃, f̃ , ṽ) for P1
Step 0:
Time← 0; H ← 1;
count← 0; xi← 0,∀i ∈ N \Ns∪Nt
xi← 1,∀i ∈ Ns∪Nt
Step 1:
For st = 2 to St

r← min(ai, i ∈ Nst)
xr← 1

end
Solve the linear problem P̄1.
Let (x̄, f̄ , v̄) be the optimal solution of P̄1 with
objective function value v̄
v̄← v̄+∑i∈N aix̄i
(x̃, f̃ , ṽ)← (x̄, f̄ , v̄)
Step 2:
while (Time≤ maxTime)

For j = 1 to H
choose randomly i′ ∈ NI
if (xi′ = 0) xi′ ← 1
else xi′ ← 0
end if

end for
Solve the linear problem P̄1.
Let (x̄, f̄ , v̄) be the optimal solution of P̄1 with
objective function value v̄
v̄← v̄+∑i∈N aix̄i
Let (x̄, f̄ , v̄) be the new solution found for P1
with objective value function v̄
if (v̄ < ṽ)

H ← 1; (x̃, f̃ , ṽ)← (x̄, f̄ , v̄)
Time← 0; count← 0

else
Keep previous solution
count← count +1
if (H ≤ |NI |) and (count > η)

H ←H +1; count← 0
end if

end if
end while

Figure 1: VNS Algorithm.

idea of neighborhood change during the descent to-
ward local optima and to avoid the valleys that contain
them. We define the neighborhood structure Ng(x) for
P1 as the set of neighbor solutions x′ in P1 at a distance
“h” from x

where the distance “h” corresponds to the Ham-
ming distance between the binary vectors x and x′,
respectively. In our numerical tests, without loss of
generality, we adopt a grid layout configuration as de-
picted in Figure 2 where a directed graph shows that
bio-sensor nodes are placed in each stage. In partic-
ular, in stage 1 we have the source nodes, from stage
2 to the final stage we have the intermediate nodes.
Finally, we have only one node acting as a sink node
to receive all sensed and collected information sent by
the source nodes through the network. We denote by

Nst the number of nodes placed at stage st ∈ {1, ..,St}
where St refers to the final stage in Figure 2.

Sink node

Source

nodes

Final Stage

Number of 

nodes per 
stage

Stage 2Stage 1

Intermediate nodes

Figure 2: WBAN with grid layout configuration.

We further assume that all nodes at each stage are
consecutively connected with those of the next stage
(Arrobo and Gitlin, 2011). We also assume that the
number of nodes at each stage is the same, i.e., N1 =
· · · = NSt . The grid layout configuration is a valid
assumption in WBANs as it provides more reliable
communications when using cooperative network and
diversity coding transmission schemes with enhanced
throughput (Arrobo and Gitlin, 2011). There are other
network configurations such as star, tree, mesh (Ullah
et al., 2012) and grid topologies in the literature (Ar-
robo and Gitlin, 2011). The most common topology is
a star one where the nodes are connected to a central
coordinator in star manner (Ullah et al., 2012). How-
ever, the star configuration follows a single hop strat-
egy which is not always the best choice. In (Reusens
et al., 2009), the authors discuss about energy effi-
cient topology designs for WBANs. They consider a
tree network topology and discuss on the energy sav-
ings when using single hop and multi hop strategies.
They conclude that the distance between nodes plays
an important role and that both single hop or multi
hop strategies achieve energy savings under different
conditions (Reusens et al., 2009).

The VNS approach we propose is presented in
Figure 1. It receives an instance of problem P1 as in-
put and provides a tight feasible solution for it. We
denote by (x̄, f̄ , v̄) the final solution obtained with the
algorithm where v̄ represents the objective function
value. The algorithm is simple and works as follows.
In Step 0, we initialize all the required variables.
Then, in Step 1 we obtain an initial feasible assign-
ment for vector x = x̄ by simply setting x̄r = 1 such
that r = min(ai, i ∈ Nst) is the minimum value for that
particular stage. This allows solving P̄1 and obtaining
an initial feasible or infeasible solution (x̃, f̃ , ṽ) for P1
that we keep. During the execution of the while loop
in the VNS algorithm, if for any x = x̄ model P̄1 is in-
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feasible, then the solution is discarded and not consid-
ered as a valid solution. Next, the algorithm performs
a variable neighborhood search by randomly assign-
ing binary values in H ≤ |NI | positions of vector x
where these positions belong to the set NI . Initially,
H ← 1 while it is increased in one unit when there
is no improvement after new “η” solutions have been
evaluated. On the other hand, if a new current solution
is better than the best found so far, then H ← 1, the
new solution is recorded and the process goes on. The
whole process is repeated until the cpu time variable
“Time” is less than or equal to the maximum available
“maxTime”. Note we reset “Time← 0” when a new
better solution is found. This gives the possibility to
search other “maxTime” units of time with the hope
of finding better solutions.

4 NUMERICAL RESULTS

In this section, we first present preliminary numeri-
cal results for the proposed VNS approach using only
one sample for the input data of the instances. Sub-
sequently, we provide preliminary numerical compar-
isons for P1 while adopting a weighted sum criteria
for the objective function of P1 in order to analyze the
behavior of the model. Finally, we compute average
numerical results.

4.1 Numerical Results for the VNS
Approach

In order to present preliminary numerical results for
problem P1 using the proposed VNS algorithm, the in-
put data is randomly generated as follows. The entries
in matrix (ei, j) are uniformly drawn from [0,1] while
the heating costs {ai, i ∈ N} and packets {Dc,c ∈C}
are uniformly distributed in [0,10]. The maximum
available energy for each node is set equal to E =

0.4 ∗∑i∈N ei,1 ∗ ∑c∈C Dc
|C| . The value of η in the VNS

algorithm is calibrated to η = 20. We set the maxi-
mum number of commodities be equal to |C| = |Ns|,
i.e. we assume that each source node can only sense
one type of commodity. This is a valid assumption as
bio-sensors are usually designed for sensing special-
ized information in a WBAN. Finally, we set the pa-
rameter maxTime = 100. A Matlab program is imple-
mented using CPLEX 12 to solve problem P1, its lin-
ear programming (LP) relaxation, and each LP relax-
ation P̄1 within each iteration of the VNS algorithm.
The numerical experiments have been carried out on
a Pentium IV, 1 GHz with 2 GoBytes of RAM under
windows XP. In Table 1, column 1 shows the number

of nodes considered in each instance. Commonly, the
maximum number of nodes in WBANs can be up to
256 nodes (Fang and Dutkiewicz, 2009). Columns 2
and 3 show the number of stages and number of nodes
per stage for each of the instances. Columns 4 and 5
provide the optimal solution of P1 and the cpu time in
seconds CPLEX needs to get that solution. Columns
6 and 7 provide the optimal solutions for the LP re-
laxation of P1 and the CPLEX cpu time in seconds as
well. Similarly, columns 8 and 9 show the best solu-
tion found with the VNS approach and its cpu time
in seconds. Finally, columns 10, 11 and 12 give the
gaps for the LP relaxation, the gaps obtained using
the initial solution of the VNS approach and the gaps
for the best solution found with the VNS approach,
respectively.

The gaps are computed as GapLP=
(

P1−LP1
P1

)
∗100

for the LP case, GapIni
V NS=

(
V NSini−P1

P1

)
∗ 100 for the

initial solution obtained with the VNS algorithm and
GapV NS=

(
V NS−P1

P1

)
∗ 100 for the best solution found

with VNS, respectively. The numerical results pre-
sented in Table 1 are computed using only one sam-
ple for the input data of each instance. From Table
1, we mainly observe that the gaps obtained with the
VNS algorithm are near optimal for all the instances
we test, e.g. not larger than 3 % from the optimal so-
lution of the problem. Regarding the cpu times, we
observe that the VNS approach requires more time
when the number of stages is less than the number
of nodes per stage. Furthermore, this cpu time is even
larger than the time required by CPLEX. This is easy
to check for instances with 61 nodes in Table 1, for
example. From our preliminary numerical results, we
observe that this is mainly caused by the fact that the
VNS approach needs to solve many linear programs
in this case. Ultimately, we observe that the gaps
obtained when using the initial solutions found with
VNS are not very tight which shows somehow the ef-
fectiveness of the VNS approach. On the other hand,
when the number of stages is larger than the number
of nodes per stage, we observe that the VNS approach
is significantly faster than CPLEX. Moreover, in this
case we see that the initial solution found with the
proposed algorithm is very tight and in some cases
optimal, e.g. this is the case for instances with 49 and
61 nodes. In particular, we see that the cpu time re-
quired by CPLEX becomes prohibitive for some of
these instances. Finally, we observe that the gaps ob-
tained with the LP relaxation of P1 are far from the
optimal solution of the problem.
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Table 1: Numerical results for the VNS approach.

N # stages nodes/stage P1 cpu(s) LP1 cpu(s) VNS cpu(s) GapLP % GapIni
V NS% GapV NS%

13 3 4 31.5214 1.8120 24.6043 0.7340 31.5214 0.3910 21.9442 13.9145 0
46 3 15 89.0458 2.5000 81.0329 1.9060 89.0458 67.4370 8.9986 26.4712 0
61 3 20 141.9789 5.7810 125.7967 4.3280 142.3221 1044.1710 11.3976 17.6738 0.2418
17 4 4 53.2150 0.8910 32.0876 0.7500 53.2150 0.0320 39.7019 2.1233 0
61 4 15 99.6237 10.9060 91.0988 3.2190 99.6858 222.8290 8.5571 22.8606 0.0623
21 5 4 51.7760 0.7660 46.6627 0.7340 51.7760 0.0010 9.8757 0 0
41 5 8 73.5483 16.3120 50.3013 1.2030 73.5483 135.1730 31.6078 17.6137 0
51 5 10 63.5951 12.7030 50.8429 1.7970 65.2285 208.0150 20.0522 38.6343 2.5685
33 8 4 56.3391 3.7350 27.9300 0.8280 56.7766 2.1240 50.4251 1.4147 0.7767
49 8 6 60.9010 24.8910 38.4090 1.3440 62.5080 0.1570 36.9320 2.6387 2.6387
41 10 4 55.9875 12.3280 26.8474 0.9220 55.9875 416.3600 52.0474 9.8009 0
61 10 6 83.3481 792.2180 44.5579 1.7500 84.4382 25.8290 46.5400 9.8488 1.3078
49 12 4 76.0640 18.1090 31.3246 1.6250 76.0640 0.2354 58.8180 0 0
73 12 6 83.1798 17204.7970 40.4708 2.2970 84.9211 0.6880 51.3455 4.4978 2.0934
61 15 4 70.8630 31.1720 33.4660 1.0630 70.8630 13.9380 52.7736 0 0
91 15 6 75.5382 2096.2040 42.1599 2.5940 77.6941 0.3265 44.1873 4.6672 2.8540

4.2 Weighted Objective Function

In order to explore the behavior of model P1 when
the two conflicting objectives have different degree of
importance, we adopt a weighted objective function
criteria and write the objective function in P1 as

min
{ f ,x}

αz+(1−α) ∑
i∈N

aixi (7)

where α ∈ [0,1]. From a practical point view, the
weighted objective function in (7) provides an alterna-
tive way to handle the trade-off between the total heat
generated on patients with more delicate skin versus
power energy savings in order to maximize the net-
work lifetime. This would allow to avoid possible
hazardous damages on patients.

Table 2: Numerical results for weighted objectives.

α P1 cpu(s) LP1 cpu(s) GapLP %
Inst.1: N = 13, #stages = 3 and nodes/stage = 4

0 30.8022 0.5780 24.6294 0.4220 20.0400
0.25 24.0651 0.3900 20.1701 0.3600 16.1853
0.5 18.1543 0.4530 14.7102 0.3440 18.9714

0.75 10.5910 0.3900 9.1875 0.3600 13.2519
1 3.5855 0.3750 3.5855 0.5470 0

Inst.2: N = 41, #stages = 5 and nodes/stage = 8
0 37.9941 1.1410 35.4446 0.8910 6.7103

0.25 34.7115 2.3280 27.6292 0.9530 20.4034
0.5 28.3399 10.2190 18.9793 0.9530 33.0298

0.75 17.7986 21.2970 10.2668 0.9370 42.3172
1 1.5070 1.1570 1.5070 0.8900 0

Inst.3: N = 49, #stages = 8 and nodes/stage = 6
0 49.8155 1.5630 37.1658 0.9370 25.3931

0.25 41.4989 3.8130 29.4254 0.9690 29.0936
0.5 32.2754 17.5310 21.2694 0.9690 34.1004

0.75 20.4248 15.7180 13.1134 0.9540 35.7968
1 4.9574 1.1560 4.9574 1.1400 0

In Table 2, we present preliminary numerical re-
sults for different values of parameter α and for three
instances having different number of nodes, stages
and nodes per stage. More precisely, in column 1 we

give the value of α. In columns 2, 3, and 4, 5 we
present the optimal function value of P1 (resp. LP1)
and their cpu time in seconds that CPLEX requires
to obtain that solution, respectively. Finally, column
6 shows the gaps for the LP relaxation we compute
exactly as in Table 1. Without loss of generality, the
input data is randomly generated exactly as for Table1
as well.

From Table 2, we mainly observe that the gaps
of the LP relaxation tends to zero when the value of
α→ 1. This means that solving the LP relaxation of
P1, in this case, suffices to obtain the optimal solution
of the problem. On the opposite, when 0 ≤ α < 1,
the gaps of its LP relaxation deteriorates considerably
which turns the problem more difficult to solve.

In order to provide more insight regarding our
VNS approach, we further present average numerical
results for the instances presented in Table 1. These
results are presented in Table 3 and the column infor-
mation is exactly the same as for Table 1. We generate
50 samples for the input data of the instances in rows
1-13 while for the instances in rows 14-16 we use only
10 samples to compute the averages as their cpu times
become highly prohibitive. In particular, we arbitrar-
ily set the maximum time for CPLEX to solve these
instances be at most 3600 seconds.

From Table 3, we observe similar trends as in Ta-
ble 1 concerning the gaps obtained with VNS. They
are not larger than 3.5 % for all the instances we test
when compared to the optimal solution of the prob-
lem. We also see that the cpu times required by
the VNS approach are larger than those required by
CPLEX for instances in rows 1-9 while for instances
in rows 10-16, CPLEX requires more cpu time. In
particular, the instances in rows 14-16 require a huge
amount of cpu time using CPLEX while the VNS ap-
proach finds very tight near optimal solutions with
gaps no larger than 2% in less than 25 seconds ap-
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Table 3: Average numerical results for the VNS approach.

N # stages nodes/stage P1 cpu(s) LP1 cpu(s) VNS cpu(s) GapLP % GapIni
V NS% GapV NS%

13 3 4 39.8464 0.4312 32.0752 0.4062 39.8464 0.9370 19.6396 - 0
46 3 15 95.0189 3.4718 80.4871 1.7472 95.7131 110.3312 15.2916 - 0.5546
61 3 20 152.7756 7.9654 129.0012 3.8741 153.9987 477.3697 16.2044 - 1.1142
17 4 4 42.2965 0.4716 32.9802 0.3938 42.2965 9.4488 22.1685 - 0
61 4 15 96.7648 17.4686 80.2268 2.8404 98.8593 252.7788 17.0192 - 2.2219
21 5 4 45.2427 0.6064 32.5676 0.4186 45.2427 26.4560 26.9386 - 0
41 5 8 72.1552 10.3562 52.7956 0.9094 74.8638 36.1282 27.0548 - 3.1426
51 5 10 85.3136 38.3716 65.2315 1.5314 87.1930 42.5282 23.5664 - 2.9688
33 8 4 58.1523 2.5686 31.7155 0.5250 58.7456 10.6092 46.3102 4.0809 1.3087
49 8 6 69.7592 82.4720 46.7561 1.0534 71.0608 17.0594 33.0253 9.5012 1.8658
41 10 4 63.9525 10.1404 37.6166 0.6188 65.2207 7.5086 40.8058 3.7043 2.0128
61 10 6 68.0209 100.3878 40.9167 1.3532 70.3692 47.8566 40.1894 8.8179 3.2827
49 12 4 66.3268 30.0688 29.9523 0.7094 67.0870 0.1336 54.8053 4.1534 1.7767
73 12 6 75.0030 3456.5126 44.3070 1.8002 76.2619 16.2030 40.9237 5.2012 1.9912
61 15 4 72.5088 1441.3000 35.3752 0.9186 72.7524 12.2218 50.7315 1.0480 0.2773
91 15 6 80.5427 2740.1874 44.6374 2.6750 81.0830 20.6280 44.8002 3.2151 0.8021
-: No feasible initial solution found.

proximately. Another observation is that the initial
solutions obtained with VNS approach are not feasi-
ble for instances in rows 1-8. Which means at least in
one of the samples, the initial solution was infeasible.
Conversely, finding initials solutions for instances in
rows 9-16 is easier. In general, the gaps of the initial
solutions are not larger than 10%. Finally, the gaps
obtained with the LP relaxation of P1 are not tight
when compared to the optimal solution of the prob-
lem. In general, we note that the LP gaps deteriorate
significantly when the number of stages is larger than
the number of nodes per stage which is the case for
instances in rows 9-16.

5 CONCLUSIONS

In this paper, we proposed a minmax multicommod-
ity netflow formulation to optimally route data pack-
ets in a healthcare wireless body area network. The
aim of the model is to minimize the worst power con-
sumption of each bio-sensor node over the body of a
patient plus the total heating costs subject to flow con-
servation and maximum capacity energy constraints.
The model is formulated as a mixed integer linear pro-
gram. Thus, we proposed a variable neighborhood
search metaheuristic procedure to obtain near optimal
solutions. Preliminary numerical results indicate that
the VNS approach obtains near optimal solutions with
integrality gaps no larger than 3.5%. As future work,
we plan to consider other layout configurations while
using more realistic data, and new algorithmic pro-
cedures to solve efficiently the LP relaxations within
each iteration of the VNS approach.
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