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Abstract: Recent developments in sensor technology allows for capturing dynamic patterns in vehicle movements, tem-
perature changes, and sea-level fluctuations, just to name a few. A usual way for decision making on sensor
networks, such as detecting exceptional surface level changes across the Pacific ocean, involves collecting
measurement data from all sensors to build a predictor in a central processing station. However, data col-
lection becomes challenging when communication bandwidth is limited, due to communication distance or
low-energy requirements. Also, such settings will introduce unfavorable latency for making predictions on
unseen events. In this paper, we propose an alternative strategy for such scenarios, aiming to build a consensus
support vector machine (SVM) in each sensor station by exchanging a small amount of sampled information
from local kernel matrices amongst peers. Our method is based on decomposing a “global” kernel defined
with all features into “local” kernels defined only with attributes stored in each sensor station, sampling few
entries of the decomposed kernel matrices that belong to other stations, and filling in unsampled entries in
kernel matrices by matrix completion. Experiments on benchmark data sets illustrate that a consensus SVM
can be built in each station using limited communication, which is competent in prediction performance to an
SVM built with accessing all features.

1 INTRODUCTION SVM that could be constructed if we collect informa-
tion from all stations for central processing.
Sensors can monitor many different kinds of dynam- ~ Our work is closely related to learning SVMs in

ics in nature, generating numerous data, and therebydistributed environments, which can be split into two
embodying research challenges in machine learningcategories. Case I: examples are distributed (fea-
and data mining (Whittaker et al., 1997; Lippi et al., tures are not distributed). In such cases a global
2010; Morik et al., 2012). There is a wide spectrum of SVM can be trained using a distributed optimiza-
sensing devices available today, but they share a com-ion algorithm (Boyd et al., 2011), or separate SVMs
mon property: communication is costly and should can be trained locally for data partitions with extra
be avoided whenever possible, due to restrictions in constraints to produce similar models (Forero et al.,
bandwidth or in energy consumption. This is a clear 2010). Alternatively, local SVMs can be trained in
barrier for global decision making, for which itis typ- their primal form independently on data partitions
ically required to agglomerate all local sensor mea- and then combined to produce a model with a re-
surements into a central location for processing. duced variance (Lee and Bockermann, 2011; Cram-

On the other hand, many sensors are stationedmer et al., 2012). Case II: features are distributed (ex-
within devices equipped with surprisingly powerful amples are not distributed). In such cases a central
and energy-efficient computation units. This has mo- coordination of local SVM training has been consid-
tivated us to use computation to save communication. ered to improve global prediction performance (Lee
Specifically, we aim to build a support vector machine et al., 2012; Stolpe et al., 2013). Our work focuses on
(SVM) (Boser et al., 1992) in each of such devices, the second case where features are distributed, con-
called sensor stations, using local measurements andsidering communication-efficient approximations to a
a small amount of sampled information transmitted global kernel matrix (which could be built by access-
from other stations. The goal is to obtaic@nsensus ing all features) in each station, without any central
SVMin each station that behaves similarly to a global coordination.
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Our suggested method is based on decompositions2.2 Decomposition of Kernels
of a (global) kernel into separate parts, where each of
them is another kernel defined with attributes stored We consider two different decompositions of the
locally in each sensor station. Each decomposed ker-kernel matrixK, especially those obtainable from
nel matrix is stored in a sensor station where corre- the popular Gaussian kernel. We refer to them
sponding attributes are stored. Each station receivesas “MULTIPLICATIVE” and “ADDITIVE”, defined as
few sampled entries of the decomposed kernel matri- follows fori,j =1,2,...,m
ces stor_ed in remote _stations, and then applies matrix (MULTIPLICATIVE)
completion to approximate the values of unobserved
entries. Using these altogether, a consensus SVM is
created in each station, which can be applied for pre-
dicting future events using local and remote informa-
tion in a similar fashion.

We denote the Euclidean norm by|| and the car- 1 ¥ 2
dinality of a finite setA by |A| throughout the paper. Klij = N Z (=¥nllxi[n] =xj[n][|%) -

2)

The MULTIPLICATIVE kernel is indeed the same as

2 SUPPORT VECTOR MACHINES the standard Gaussian kernel (Scholkopf and Smola,

N
Klij = Ulexp(—vl\xi[n] —xj[n)|?) , and

(ADDITIVE)

2001), but our description above reveals that it can
WITH DECOMPOSED be constructed by multiplying “local” Gaussian ker-
KERNELS nels defined with attributes stored locally in sensor

stations. The construction of BDITIVE is similar,
Let us consider sensor stations represented as nodegxcept that local Gaussian kernels are averaged, not
n=12,...,Nin a network, where each node stores multiplied. ADDITIVE resembles how kernels are
measurements from its own sensors, in a feature vec-used in the multiple kernel learning (Lanckriet et al.,
tor xi[n] € OPn, of sensing targets=1,2,...,m. For ~ 2002): the connection is further discussed in Sec-
simplicity we assume that communication between tion 4.3. Note that MULTIPLICATIVE has a single pa-
any pair of nodes is allowed. A collection of all these rametely> 0, but ADDITIVE has a separate parameter
vectorsx; = (xi[1]7,xi[2]T,...,xi[N]T)T can be seen v, > 0 for each local kernel.
as an input vector of length= 51 pn.

2.3 Local and Remote Parts in

2.1 Support Vector Machines Decomposition

The dual formulation of SVMs is described as fol-

From the definitions in (2), we identify the parts that
lows (Shawe-Taylor and Sun, 2011), (2) pl e

can be computed with attributes stored locally in each

1 4 - node (local parts), and that need to be transferred from
Jnn, 54 Qa-1a, other nodes in a sensor network (remote parts).
. T 1) First, the expression of MLTIPLICATIVE can be
subjecttoy a =0, rewritten in the following way,
0<a<Cl. N
Herel:=(1,1,...,1)T andy := (y1,yo,...,ym)" are [Klij = exp<z =YlIxi[n] _Xi[n]”2>
column vectors of lengtlm, andC is a given con- .
stant. (Without loss of generality, we focus on the = exp(—yl[xi[n] —x;[n]]| )
case of classification — our method canmlxog general- l_l exp(—y|xi[n] — x;[]]|2)
ized for other types.) The matriQ € 0 is a w+n
scaled kernel matrix, that i := YKY for a positive . - -
[Gnlij [Gnlij 3)

semidefinite kernel matrik, whereY := diag(y) is

the diagonal matrix whose elements are given by the where the “local” Gaussian kern@l, for a noden and
vectory. SVMs have been successful in many appli- the productG_,, of all “remote” kernels are defined
cations, including multitask multiclass learning prob- entrywise respectively by

lems (Ji and Sun, 2013) for example. [Gnlij :=exp(—YlIxi[n] — xj[n]||?) (local)
[G_nlij := l_| [Grlij (remote) .
n'=#n
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Similarly, ADDITIVE can be written as in the rangeg(0, 1] by definition, the product of such
entries iné,n should be in the same range as well.
K = 1 ( Helij+ 3 H ) Next, H_, shares the same propertiesGas,, except
n'#n for that each diagonal elementldf_, is (N — 1), not
1 one, by construction.

= N[H"+ H nij (4) There is another possible way to decompose the

whereH,, is the local part andi _, is the remote part MULTIPLICATIVE kernel,

for noden, defined respectively by Klij = exp( —y|Ixi[n] = x;[n]||?
[Hnlij == exp(—yn||xi[n]—xj'[n]|\2) (local) —y Z i [n ]| )
[Honlij == 3 [Hulij (remote) . nZn
N = exp([Dn+D-ulij)

For a noden, the computation of the local pa®, (or with
Hp) is done exactly using local attributes, where the )
remote parG_p, (or H_p) is to be approximated. [Dnlij := =ylxi[n] =Xj{n}||*,  [D-nlij := ; [Drrli
n'=-=n
Then our task becomes making an estinfatg of a
3 KERNEL COMPLETION distance matri¥0_p, which has zero diagonal entries.
The estimate defines a valid distance matrix if and
Let us denote the kernel matrix to be estimated in the only if itis conditionally positive semidefinite, that is,

nth node byKn, whichis computed by Z"D_pz >0 for allze M with zT1= 0 (Schoenberg,
~ 1938). This implies thab_p, is positive semidefinite,
K olij = {[1Gn]ij [G-n]ij  (MULTIPLICATIVE) or it has a single negative eigenvalue. It turned out
§jMHn+Hnij (ADDITIVE) . that our kernel completion in forms of (3) performed
(5) better in our experiments, so we did not pursue this

Here(~3,n (or H_,,) is an estimate of the remote part direction further.

n(orH_p). Once we havd,(n, it can be plugged in . .
(1) replacingQ in the form ofQn 1= YK Y. 3.2 Low-rank Matrix Completion

In order to obtain the estimat_ n (or H_ n), we
make use oimatrix compIeuon(Candes and Recht,
2009), which is a method to reconstruct a matrix from
only a few sampled entries from it. The purpose of
using matrix completion is (i) to reduce the number
of entries required to be sampled from remote kernel
parts in bandwidth-limited situations. Matrix comple-
tion will not be required if all nodes provide complete
information. And it is (ii) to avoid the complexity of
defining an optimal sampling strategy. That is, a sim-
ple uniform random sampling strategy is enough for
matrix completion to guarantee the perfect recovery
of the original kernel matrix with high probability. _

We first discuss extra constraints we need to add ¢ Z (Xij
to matrix completion, so that the resulting matrix is to (e

For the description of matrix completion, we follow
the line of discussion in (Recht and Rg, 2011). Matrix
completion reconstructs a full matrix from only a few
entries sampled from the original matrix. In general,
matrix completion works with matrices in any shape,
but we focus on square matrices here.

Suppose thakK € 0™™M is a matrix we wish to
recover, and that the entries @tj) € Q of X are
revealed and stored in another mathNk Matrix
completion solves the following convex optimization
problem to recoveX,

m
= Mip) 2+ XX, X[l =Y ow(X)
k=1

be a valid kernel matrix. Here || X||. is the nuclear normof X, which is the
_ " summation of singular valuex(X) of X and penal-
3.1 ConstraintsonG_pandH_p izes the rank oK.

The nuclear norm simplifies when we assume that
First, G_n has to be a symmetric matrix where diago- the matrixX has the rank, and consider a factoriza-
’ . . . - T
nal entries are all ones. It becomes a valid kernel ma- fion of XintoLR * for scT>meL € Dnrr andR € O™,
trix if and only ifit is positive semidefinite (Scholkopf This leads toXjj = [LR"ij = Li.Rj., and
and Smola, 2001), thatig! G_nz>0forallzec O™ 1
Since each entry of a local Gaussian ker@gl is X1l =, min, SILIE+3IRIE
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{[Mn)is = (i,5) € Q} G1
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Figure 1: A schematic of kernel completion, withudriPLICATIVE kernel. Each node (i) collects and summarizes the
samples corresponding @ from remote kernel matriceSy as the known entries of the matifix,, and then (ii) fills up the

unknown entries oM, via matrix completion, producin(}‘a,n , (iii) forming an estimate of kernel matrices together witib

exact local kerneGz,,.

wherel| - || is the Frobenius norm. The equivalence

can be understood by taking a singular value decom-

positionX = UzVT and setting. = Us%2 andR =
V32 Then||X||. = tr(Z), |[L||2 = tr(LTL) = tr(Z),
and|R||Z = tr(), so the equality holds. For details,
we refer to (Recht et al., 2010; Recht and Ré, 2011).

Using the property of the nuclear norm on rank-
matrices, we can reformulate the matrix completion
optimization as

: A A
min > (LiRjT.—Mij)erEHLH%+§||R||% - (6)
(i,]))eQ

To obtain solutions, we use th&LLYFISH algo-
rithm (Recht and Ré, 2011), which is a highly par-
allel incremental gradient descent procedure to find
the minimizers, making use of the fact that the gra-
dient of the above objective depends on onjyand
R;., and therefore the computation of each iteration
can be easily distributed for the paiiisj) € Q.

3.2.1 Constrained Matrix Completion

To incorporate the constraints discussed in Sec-

tion 3.1, we need to find a matriX* that is close
to L*(R*)T whereL* andR* are the solutions of (6)
(both arem by r, r € (0,m]), belonging to a convex
set X of symmetric positive semidefinite ramkma-
trices,

K:={X:X=0,(X)T =X, rankX) =r} .

The following lemma shows that the description of
this set can be simplified.

Lemma 3.1. The elementX in K must have the form
X =27", wherez e O™ .
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Proof. Suppose thaX is in X. SinceX is symmet-
ric and positive semidefinite, from the eigen decom-
position of X there exists a factod € I™™ such
thatX = USUT whereZ > 0 is the diagonal matrix
of eigenvalues. Removing the columnsldfand the
part of = corresponding to the zero eigenvalues, we

obtainU € 0™ and= € 0"™*". ThenZ = 051/2 can
be constructed so that=ZZT. B
Conversely, any in the form ofX = zZT sat-
isfiesXT = X (symmetric) andt" Xz = ||z7Z[|3 > 0
for all z€ O™ (positive semidefinite). Therefore =
ZZT is an element ofX.. O

This lemma indicates that the s&t can be rewritten
as simple as,

K={z2z":zeO™"} .

The next step is to find a matr&such thaZz T is
close toL*(R*)T. An /, projection ofL*(R*)T onto
X requires an iterative procedure which is as costly
as findingL* andR*. Therefore we consider an al-
ternative projection for which we have a closed-form
solution,

Z* = argmin
Zenmxr

1 . 1 *
SIZ=L7E+31Z-RE
2 2

From the KKT conditions, the solution is obtained by

LR

Z*
2

Then a projectionX* is obtained byX* = Z*(z*)T,
which has a guarantee on its quality as stated in the
next lemma:
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Lemma 3.2. The trace-norm distance betwekh =
Z*(Z*)7, whereZ* = (L* +R*)/2, andL*(R*)T is
bounded, that is,

Y * * * 1 * *
r(& LR < SRR

Proof. UsingX* = Z*(Z*)T, the result can be derived
as follows,

tr(X* —L*(R")T)

ZEL R R 4L (R)T)

= (LR —RYT)
1 * *
SR

Here we have used the properties of the trace that
tr(X+Y) =tr(X) +tr(Y) = tr(X) +tr(YT) = tr(X +
YT and ti(XXT) = ||X||2.

The above lemma tells that the distance betwiéén
andL*(R*) becomes smallwhenevif ~ R*, which
is likely to happen in our case since we defiveand
Q in such a way that ifi, j) € Q then(j,i) € Q, and
Mij =M i -

3.2.2 Sample Index Pair Subse®

In our method, we assume that a single sample index

pair setQ c {(i,]) : 1 <i,j < m} is fixed across all
nodes. It is more efficient than using multiple sample
sets, since otherwise we have to store and complet
each remote matriG,y, n’ € {1,...,N} \ {n}, sepa-
rately. Using a pre-defined across nodes can be im-
plemented as using a fixed random seed for a pseud
random number generator, so tliatdoes not have to
be transferred at all.

Given Q, each noden receives information from
other nodesY and stores it infM, as follows for all
(i,i) € Q,

M [Gylij (MULTIPLICATIVE)
[M n]" _ ne{1,...,N}\{n}
N [:“’]f (ADDITIVE) .

> -
ne{l,...,N}\{n}

That is, the communication cost for each nodes
O((N —1)|Q]). The use of matrix completion makes
it possible to choose af of relatively small size
(O(m*?rlogm) whenM, is a rankr matrix, see The-
orem 4.1 for details) in a simple way, that is, via ran-
dom uniform sampling.

Once the matriM , is obtained, the nodesolves
the matrix completion (6) witliM ] to obtainZ;, =
(L% +R2)/2, and then comput& ,, = Z;(Z:)T or

rt Vector Machines in Bandwidth-limited Sensor Networks

H n=(N—1)Z5(Z:)T, based on Lemmas 3.1 and
3.2. An estimate of the kern&l, obtained by (5), is
then used for training an SVM.

After training SVMs, we apply the same tech-
nique for new test examples to build the test kernel
matrix. This usually involves smaller matrix com-
pletion problems corresponding to the support vectors
and test examples.

3.3 Extra Saving with ADDITIVE

The description of the matrix completion optimiza-
tion (6) involves all training examples. However, if a
(super-)set of theupport vectorgSVs), which fully
determines a prediction function, is known a priori,
then we can solve the completion problem only for
the set, reducing the cost of matrix completion.

Let us consider the SVs of the “global” SVM
problem (1) equipped with the exacDAITIVE ker-
nel (2), which is constructed by accessing all features
in a central location. We denote this set of SVsas
Note thatSt is never obtained, since we do not solve
such a global problem.

We try to estimateS* from the sets of “local’
SVs. These local SVs are obtained from solving an
individual SVM (1) in each nod@, using only the
local features, that is, setting the scaled kernel ma-
trix asQ = YH Y for the local kernel matribH,, =
exp(—Ynl|Xi[n] —x;[n]||?). We denote the set of SVs
in the noden by S, obtained in this way.

In the next theorem, we show that the union of the
local SV setsS, encompasses the global SV &t

To shorten the length of our proof, here we show the

case for the SVMs without any intercept, that is, the
constrainty T o = 0 is removed (the same result holds

Yor the case with intercepts).

Theorem 3.3. Consider the global SVM problem with
the ADDITIVE kernel and its set of SVS S
o* ;= argmin

10(TY 1%H Ya—1Ta
o<a<Ci 2 N & " '

S :i={i:[a"]i>0},
and the corresponding local SVM problem and its SVs
foreachnoden,a-1,2,...,N,

1
af:=argmin Za'Y (Hp)Ya—1Ta ,
0<a<C1

Sy :i={i:[ay)i >0} .
Then we have
S CULS, -

Proof. Let us consider an indexe S* of an SV of
the global SVM problem, such th&*); > 0. Sup-
pose that thé&th component of the gradient of all local
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SVM problems ati* is strictly positive, that is,

[YHpYa*—1]; >0, Vvne{1,2,...,N} . (7)

Let us look into the optimality condition of the global
SVM, regarding thath component of the optimizer
o*. From the KKT conditions, we have

1 N

N

1[\(H nYa* — 1] — [p*)i+ [0"];

Pl = 0,

wherep* € 07 andq* € O7 are the Lagrange mul-
tipliers for the constrainta > 0 anda < C1, respec-
tively. Then[a*]; > 0 implies[p*]; = 0, and therefore

0,

[@°]i[Cl—a"]i =0,

1 N
5 Y [YHaYa -1+ [a7) =0,
n=1

If (7) is true, then we have a contradiction here since
the first term above becomes strictly positive, where
the second term satisfieg*]; > 0, and therefore the
equality cannot hold. This implies that there exists at
least one noda for which the condition in (7) is not
satisfied, that igYH,Ya* — 1]; < 0. This means that

if we search for the local SVM solution at the node
n starting froma*, we must increase the value of the
ith component fronfa*); to reach the minimizeja));

of this local SVM problem, since otherwise we will
increase the objective function value. That is,

[on]i > [a*]i > 0.

This implies that the indexalso becomes an SV of at
least one local SVM problem. Therefores UN_; S,
which implies the claim. O

Theorem 3.3 enables us to restrict our attention to
the union SV set without losing any information for
the case of ADITIVE, where the size of the union
SV set is typically much smaller than that of the en-
tire training examples index set. In effect, this leads
to more efficiency in solving the matrix completion
problem (6), by reducing the number of variables
from O(m?) to O(| Un Si|?).

3.4 Algorithm

Our kernel completion method for training SVMs is
summarized in Algorithm 1. There, we have used the
symbolo to represent elementwise multiplications be-
tween matrices.

We have implemented our algorithm as open-
source in C++, based on theLLYFISH codé (Recht

LAvailable for download at http://hazy.cs.wisc.edu/
hazy/victor/jellyfish/
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and Ré, 2011) for matrix completion, argvm-
LIGHT? (Joachims, 1999) for solving SVMs. Our im-
plementation makes use of the union SVs set theorem
(Theorem 3.3) for the ADITIVE approach to reduce
kernel completion time, but not for MLTIPLICATIVE
since the theorem does not apply for this case.

4 RELATED WORK

Here we present existing methods that are closely re-
lated to our development.

4.1 Separable Approximate
Optimization of SVMs

Lee, Stolpe, and Morik (Lee et al., 2012) have inves-
tigated the primal formulation of SVMs in a setting
close to ours. In their work, the distributed nature
of input features is considered via making an individ-
ual approximate feature mappipg for each noda,
such that for a given local kernel functidgq, it ap-
proximates kernel evaluations,

<¢n(xi),¢n(xj)>%kn(xhxj)a v'v] .

Using this mapping, each node solves its own local
SVMinthe primal, producing a decision vectet|n].
Based upon the local solutions, a “global” SVM is ex-
plicitly constructed in a central node, which is defined
with the collection of local decision vectors and local
feature mappings (weighted Ipy > 0), that is,

w(1] M (x[1])

Hnon (X[N])

An interesting characteristic of this central SVM is
that if we have optimized the local SVMs using the
specific forms of loss function&, whose weighted
summation forms an upper bound of the original loss
function/, that is,

N
LWTo(x),y) < l;llnén (WinJTon(x[n)).y) .

then it can be shown that this central SVM minimizes
an upper bound of the standard SVM objective with
the original loss function. The nonnegative weights
Ma, Mo, - - -, Uy are optimized in the central node, which
requires transferring(m) numbers from each local
noden=1,2,...,N.

2Available at http://svmlight.joachims.org/
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Algorithm 1: Kernel Completion for SVMs.

input : A data set{(x;,yi)};, a sample se®, and parametens {yn}N_;.
(parallel: in each noden=1,2,...,N)

input : local measurements/labgléxi[n],y;i) H" ;.

Compute local kernel matrig,, for MULTIPLICATIVE (or Hp for ADDITIVE);

if ADDITIVE then
/1 NMake the union of SV index sets (ADDI TI VE only)
Solve the SVM (1) withQ < YG,Y, to obtain the SV index s&;;

ReceiveS, for all other nodes'’;

Trim Q to fit UY_; S;;
end

/1 Collect sanples fromrenote kernel matrices
Initialize:
11" (MULTIPLICATIVE)
[M n]Q <— {

0 (ADDITIVE)
forn" e {1,2,...,N}\ {n} do
ReceivelGy]o (MULTIPLICATIVE), or [Hy]o (ADDITIVE).
[Mploo[Gyla (MULTIPLICATIVE)
[Mnla +- {[Mn]g+[an]Q (ADDITIVE)
end
For ADDITIVE, scalegMp]q < [Mp]a/(N —1);

/1 Kernel conpletion for }Zn
Solve matrix completion (6) with observed entrieshiy]q, to obtainL ;; andRy;

Compute projections, to obtaft}, « (L} +R})/2;
Compute the estimated kernel matiix by (5):

G n Z5(ZH)T (MULTIPLICATIVE) K GnoG_p (MULTIPLICATIVE)
H n (N=1)Z5(Z;)"T (ADDITIVE) » +(Hn+H_n) (ADDITIVE)
/1 Obtain an estimted consensus SVM

Solve the SVM problem (1) replacir@ with én “— YKqY;
(end)

The kernel function of this central SVM is in- communication. Second, in our method estimation

deed a weighted approximation of oubAITIVE ker- happens only in kernel completion, whereas both ker-
nel (4), when each local feature mapping approxi- nels and loss functions are approximated in the central
mates a Gaussian kernel (parametrizegyvith lo- SVM approach. Lastly, we can use botlDBITIVE
cal features, and the weights are fixeqo= 1/+/N. and MULTIPLICATIVE kernels, but only ADITIVE

However, our work is quite different from this ap- kernels are allowed in the central SVM approach.
proach in several ways. First, we do not require a spe-
cial node to build a central SVM, therefore avoiding 4.2 Consensus-based Distributed SVMs
a communication complexity o®(mN). Moreover,
to classify a test point in the central SVM approach, Another closely related study is done by Forero,
O(N) elements have to be transferred to a central nodeCano, and Giannakis (Forero et al., 2010). The mo-
for each test point. However in our case testing can tivation of this work is very similar to ours, in the
be done in any node, although it also requires somesense that it tries to construct a consensus SVM in a
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distributed fashion, without having a central process-
ing location. They have developed a fully distributed
SVM training algorithm based on the alternating di-
rection method of multipliers (Bertsekas and Tsitsik-
lis, 1997).

However, the consensus-based distributed SVM
considers situations whemxamplesare distributed
over connected nodes, niegaturesare distributed as

in our work. Moreover, the consensus requirements
are expressed as extra constraints in a distributed

SVM optimization problem therein: in our case, con-

sensus SVMs are obtained by making approximations

in each node to a “global” kernel matrix that would

whereX € 0" is a diagonal matrix with singular
values. The columns df) € O™ andV € O™
compose orthonormal bases ®f(M) and R (MT),
respectively, wher& (X) denotes the range (column
space) of a matrix. Based on these, we define a
measure called theoherenceof ® (M) (Candes and
Recht, 2009):

Definition ForM = UZVT, the coherence aR (M)
is defined by

CO(R(M)) : ri=12,..,

whereg is theith standard unit vector.

3

have constructed if we have collected all features to a HereUT defines the projection matrix ontg(M).

central location.
4.3 Multiple Kernel Learning

Our ADDITIVE kernel is closely related to the mul-
tiple kernel learning (MKL) approach. In MKL, we
consider a convex combination Nfkernel matrices:

N N
k(Xi,Xj)z Zankn(xi,xj), Bn >0, Zan::L ;

MKL searches for the optimal mixing coefficients
B1,B2,...,Bn, as well as the optimal values of the
SVM dual variables. This requires to solve a semi-
definite program (Lanckriet et al., 2002), a quadrati-
cally constrained quadratic program (Lanckriet et al.,
2004) when we normalize kernels so tRatxi,x;) =

1, or a quadratic program (Rakotomamonjy et al.,
2007) with further modifications.

In our ADDITIVE approach (4), we use fixed mix-
ing coefficients t@3, = 1/N, in order to avoid storing
and completing individual local kernel matrices. We
could replace our SVM training with an MKL prob-
lem, and it might have a benefit to identify unimpor-
tant nodes that could be excluded from future commu-
nication, but MKL will impose overhead in computa-
tion and communication which may not be affordable.

4.4 Theory of Matrix Completion
Matrix completion provides guarantees under certain

conditions to recover the original full matrix using
only a few entries from it. Here we introduce the

Coherence d®.(M)) measures the alignment be-
tween the range space bf and any of the standard
unit vectors. That is, the maximal coheremogr is
achieved wheneveR (M) contains any of the stan-
dard basis vecta, i =1,2,....,m. Onthe other hand,
coherence decreases as the basis vectakg bf) be-
comes more like random vectors. For example, sup-
pose thatU contains uniform random column vec-
tors, i.e. the value of each entry@1/m) in magni-
tude satisfyindJUT = I. Then we havgUUTg||° =
|UTe&l|?2 = O(r/m) for anyi which gives the mini-
mum coherence value, using the fact thad" = |
andU'g € O". Repeating the same argument Yor
we see thaM = Uz VT is likely to be a dense matrix
if both ca R (M)) and cd®(MT)) are small. That
is, it becomes harder that many entried/obecomes
zero, which is a necessary property for matrix com-
pletion so that recovery would be possible from only
a few sampled entries (otherwise they will contain
many zero entries which are non-informative).

The next theorem states the required conditions of
M and the estimated size of the sample@geso that
matrix completion will succeed with high probability.

Theorem 4.1(Candés and Recht, 2009or a ma-
trix M = UZVT € 0™M of rank r, suppose that there
exists constant§y > 0 andd; > 0 such that

(i) max{co(R(M)),co(R(MT))} <& ,
(i) max[[UVTi| < &1v/F/m .

If we sampléQ| elements oM uniformly at random,

idea following Candés and Recht (Candés and Recht,@S Many as

2009; Candes and Recht, 2012).

Going back to the matrix completion problem (6),
we have defined a matrM € O™ ™ with rankr, and
a sample se€ such that for(i, j) € Q, the compo-
nentsMj; are known to us. The goal is to recover
the rest of the matri. Let us consider the reduced
singular value decomposition bf,

M=UsVvT, UTu=1, VTV =1,
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1Q| > wmax(82, 8381, Som’2°)mr(Blogm)

for some constanty andp > 2, then the minimizer
of the matrix completion probletf6) is unique and
equal to the originaM with probability at leastl —
zm P for some constant z. If rank is small, thakr
mP?2 /8y, then the requirement reduces to

Q] > Wdom*2r (Blogm) .
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A natural conjecture from this theorem is that the five UCI data sets (the ML.TIPLICATIVE kernels

Gaussian kernels would fit well for matrix comple- were equivalent to the usual Gaussian kernels).

tion, as they typically produces dense and numerically ~ The important characteristics of the kernel matri-

low-rank matrices (note that they are always full-rank ces with respect to matrix completion are its rank (

in theory), whose entries are bounded above by 1. We coherenced € [1,m/r]), and the maximal value of

use this theoremin the following section to check how |[UVT];;| (whereU andV are the left and right factors

well kernel matrices constructed from various data from singular value decomposition), as discussed in

sets satisfy the required conditions for matrix comple- Theorem 4.1. Whegy is closer to its smallest value

tion, and how they affect the prediction performance of one, and|[UVT];j| is bounded above by a small

of the resulting SVMs. value, then matrix completion becomes well-posed.
Further, if the rank is small as well, then the theorem
indicates that we can recover the original matrix from

5 EXPERIMENTS even smaller samples.

Table 2 summarizes these characteristics. Clearly,
For experiments, we used five benchmark data setsthe rank (numerically effective rank, with eigenvalues
from the UCI machine learning repository (Bache and '2rg€r than a threshold of.@1) and coherence val-
Lichman, 2013), summarized in Table 1, and also UeS Were much smaller in case obAITIVE, indicat-
their subset composed of 5000 training and 5000 testNd Potential benefits of using this approach compared

T1..
examples (denoted by 5k/5k) to study characteristics {0 MULTIPLICATIVE. - All numbers of|[UVT]j| ap-
of algorithms under various circumstances. peared to be small, especially for th@ATIVE ker-
nels of ADULT, | JCNN, andCOVTYPE. Kernel matrices

Table 1; Data sets and their training parameters. Different Of these three sets also had much lower ranks than the
values ofC were used for the full data sets (colu@hand rest. ForMNI ST and CCAT, the numbers hinted that
smaller %/5k sets (columr€(5k/5k)). matrix completion would suffer from difficulties, un-
less the sample s&®| was large.

Name [ m (train) test pC C(5k/5k) vy
ADULT 40701 8141 124 10 10 0.001
WNI ST 58100 11900 784 0.1 1162 0.01
CCAT 89702 11574 47237 100 156 1p
D
D

5.2 The Effect of Sampling Size

JONN | 113352 28339 22 1 2200 1. Next, we have used the 5k/5k data sets to investigate
COMTYPE| 464809 116203 54 10 10 L how the prediction performance of SVMs changed
For all experiments, we split the original inputfea- over several difference sizes of the sampletzeWe

ture vectors into subvectors of almost equal lengths, define the sampling ratio as

one for each node dil = 3 nodes (for 5k/5k sets) , .

and N = 10 (for full data sets) nodes. The tuning Sampling Ratio== |Q|/(mz) ’
parameter<C andy were determined by cross val- where the value ofn is 5000 in this section. We
idation for the full sets, an.d th€ V.alues for the Compared the prediction performance of USingIJ.\A
5k/5k subsets were determined by independent val-ip|caTIVE and ADDITIVE to that ofSVMLIGHT.
idation subsets, both witBVMLIGHT. The results Figure 2 illustrates the test accuracy values for
of SVMLIGHT were included for a comparison to @  five sampling ratios in up to 10%. The statistics are
non-distributed SVM training. Following (Lee etal., gyerN = 3 nodes and over random selectionsof
2012), the local Gaussian kernel parameters foF A The performance oADULT, | JCNN, andCOVTYPE was

DITIVE were adjusted tgn = > ~ Ny for a giveny, close to that 06VMLIGHT, and it kept increasing with
so thatyy||xi[n] — x;[n]|| will have the same order of the growth of|Q|. This behavior was expected in
magnitudeO(yp) asy||x; — Xj]|. the previous section as their kernel matrices had good
Throughput the experiments, we imposed that if conditions for matrix completion. On the other hand,
(i,]) € Qthen(j,i) € Q as well, andVlj; = Mj;. the performance ohNl ST andCCAT was far inferior
to that ofSVMLIGHT, as also expected.
5.1 Characteristics of Kernel Matrices The bottom-right corner of Figure 2 shows the

concentration of eigenvalue spectrum in the five ker-
The first set of experiments is to verify that how well nel matrices. The height of each box represents the
kernel matrices fit for matrix completion. For this, magnitude of the corresponding normalized eigen-
we computed the two types of exact kernel matri- value, so that the height a stack of boxes represents the
ces defined in (2), MLTIPLICATIVE and ADDITIVE, proportion of entire spectrum concentrated in the top
accessing all features of the small 5k/5k subsets of 10 eigenvalues. The plot shows that 90% of the spec-
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Table 2: The density, rank, coherendg)( and maximal values q(uvT}ij| of kernel matrices. Effective numbers of ranks
are shown, which correspond to eigenvalues larger thareatibtd (001). Coherence values are bounded by & < m/r.
Smaller values ody, r, and maX[UVT]ij | are indicative of better conditions for matrix completion.

MULTIPLICATIVE ADDITIVE
density| r % m/r [ max|[UV']ij| || density| r o m/r | max[UV']j]
ADULT 1.0 789 | 5,54 6.34 0.87 1.0 222 | 8.32 22.52 0.37
WNI ST 1.0 4782 | 1.03 1.05 0.99 1.0 4568 | 1.07 1.10 0.98
CCAT 1.0 4984 | 1.00 1.00 1.00 1.0 49821 1.00 1.00 1.00
| JCNN 1.0 1516 | 3.19 3.30 0.97 1.0 698 | 1.75 7.16 0.25
COVTYPE 1.0 1423 | 3.32 3.51 0.95 1.0 424 | 1.56 11.79 0.13
ADULT MNIST
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Figure 2: Prediction accuracy on test sets for 5k/5k sulixfdtse five UCI data sets, over different sampling ratios imké
completion. The average and standard deviation over nritiijals with randon2 andN = 3 nodes are shown. The bottom-
right plot illustrates the proportion of the entire eiggrestrum concentrated in the top ten eigenvalues.
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Table 3: Test prediction performance on full data sets (n@&hstandard deviation). Two sampling ratios (2% and 10%)
are tried for our method. ThevMLIGHT results are from using the classical Gaussian kernels wiéttthing parameters.
|Un S| /mis the fraction of the union support vector sets to theiregponding training sets.

‘UnSﬂ m ADEZ)L}:VE 0% ASSET SVMLIGHT
ADULT 0.61 81.4:1.00 84.2:0.18 80.0:0.02 84.9
MNI ST 0.99 78.9:1.69 87.0:0.20 88.9:0.39 98.9
CCAT 0.84 87.2:1.00 92.0:0.35 73.7:1.00 95.8
I JCNN 0.56 96.0:0.35 96.5:0.23 90.9:0.88 99.3

trum in ADULT is concentrated in the top 10 eigenval-
ues, indicating that its kernel matrix has a very small
numerically effective rank. This would be the reason
why our method performed as goodsagvLIGHT for
ADULT.

Comparing MULTIPLICATIVE to ADDITIVE, both
showed similar prediction performance. However,
higher concentration of the eigen spectrum @A-
TIVE indicated that it would make a good alternative
to MULTIPLICATIVE, also considering the extra sav-
ing with ADDITIVE discussed in Section 3.3.

5.3 Performance on Full Data Sets

In the last experiment, we used the full data sets for similar performance guarantees.

6 CONCLUSIONS

We have proposed a simple algorithm for learning
consensus -SVMs in sensor stations connected with
band-limited communication channels. Our method
makes use of decompositions of kernels, together
with kernel completion to approximate unobserved
entries of remote kernel matrices. The resulting
SVMs performed well with relatively small numbers
of sampled entries, when kernel matrices satisfied re-
quired conditions. A property of support vectors also
helped us further reduce computational cost.

Using matrix completion, there is no need to iden-
tify and execute an optimal sampling strategy to have
Although sample

comparing our method to one of the closely related complexity could be reduced by a small factor by

approachesasseT (Lee et al., 2012), introduced in
Section 4. SincasseTadmits only AODITIVE ker-
nels, we have omitted MLTIPLICATIVE in compar-
ison. Among the several versions ®8§SETin (Lee

et al.,, 2012), we used the “Separate” version with
central optimization.COVTYPE was excluded due to
extra-long runtimes avVMLIGHT and ours.

identifying specific sample sefd for a given situa-
tion, such sets will depend on network topology and
cost/noise models, perhaps with the need for central
coordination.

Several aspects of our method remain to be inves-
tigated further. First, different types of kernels may
involve different types of decomposition, having dis-

The results are in Table 3. The second column similar characteristics in terms of matrix completion.

shows the ratio between a union SV set and an en-Second, although parameters of SVMs can be tuned
tire training set. The square of these numbers in- using small aggregated data, it would be desirable to
dicates the saving we have achieved by the uniontune parameters locally, or to consider parameter-free
SVs trick, for example the size of matrix is reduced methods instead of SVMs. Also, despite the bene-

to 37% of the original size foADULT. The saving
was substantial foADULT and | JCNN. In terms of

fits of the ADDITIVE kernel, it requires more kernel
parameters to be specified compared to theLM-

prediction performance, we have achieved test accu-PLICATIVE kernel. Therefore when the budget for pa-

racy approaching to that afvMLIGHT (within 1%
point (ADULT), 3.8% points CCAT), and 28% points

(I JCNN) on average) with 10% sampling ratio, except
for the case ofNl ST where the gap was significantly
larger (119%): this result was consistent to the dis-
cussion in Sections 5.1 and 5.2. Our method (with
10% sampling) also outperformedseT (by 4.2%,
18.3%, and %% on average foADULT, CCAT, and

| JCN\N respectively) except for the caseMd ST with

a small but not negligible margin @%). We con-
jecture that the approximation of kernel mapping in
ASSET have fitted particularly well foMNI ST, but it
remains to be investigated further.

rameter tuning is limited, MLTIPLICATIVE would be
preferred to ADITIVE. Finally, it would be worth-
while to analyze the characteristics of the suggested
algorithm in real communication systems to make it
more practical, considering non-uniform communica-
tion cost, for instance.

Considering kernel completion in the context of
privacy preserving learning would be an interesting
branch, if the number of entries required for kernel
completion to build a good classifier is less than the
number required to recover private information, or if
we can make kernel completion to fail unless it has
right credentials by possibly tweaking the coherence
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of kernel matrices. Lee, S. and Bockermann, C. (2011). Scalable stochastic
gradient descent with improved confidence. Biy
Learning — Algorithms, Systems, and Tools for Learn-
ing at Scale NIPS Workshop.
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