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Abstract: This paper addresses a classical combinatorial optimization problem called the Minimum Linear Arrange-
ment (MinLA) Problem. The MinLA problem has numerous applications in different domains of science
and engineering. It is known to be NP-hard for general graphs. The objective of this paper is to introduce
a new mathematical model and associated theoretical results, including novel rank inequalities. Preliminary
computational experiments are reported on some benchmark instances.

1 INTRODUCTION

The Minimum Linear Arrangement (MinLA) is a
challenging problem in combinatorial optimization.
For a given graph, the MinLA consists in arranging
the nodes of the graph on a line in such a way to min-
imize the sum of the distance between the adjacent
nodes. In the literature, the MinLA is known under
different names such as the optimal linear ordering,
the edge sum problem, the minimum-1-sum (see e.g.,
(Amaral et al., 2008), (Horton, 1997), (Caprara and
Gonzalez, 2005), (Caprara et al., 2010), (Petit, 1999),
(Hungerlaender and Rendl, 2012), (Schwarz, 2010)).

In addition to theoretical interests, the MinLA has
many practical applications. A non-exhaustive list in-
cludes the design of VLSI layouts, the graph drawing,
the single machine job scheduling, etc. ((Petit, 1999),
(Hungerlaender and Rendl, 2012), (Schwarz, 2010)).
The MinLA can be solved efficiently for some par-
ticular kinds of graphs. For example, there are poly-
nomial time algorithms for the MinLA on trees, out-
erplanar graphs, and certain Halin graphs (Caprara
et al., 2010). But in general, the MinLA is NP-hard
(Garey et al., 1976). Because of the hardness of find-
ing optimal values, lower bounding and heuristic al-
gorithms are usually applied to get good approxima-
tions ((Caprara et al., 2010), (Petit, 1999), (Schwarz,
2010)).

In this paper, we present a new 0-1 linear pro-

gramming problem and investigate the associated new
polyhedra for which valid inequalities are provided
using lifting techniques or introducing some rank in-
equalities. The lower bound corresponding to the op-
timal value of the relaxed problem is tested on stan-
dard benchmarks. The results are modest and show
that many facets of the corresponding new polyhedra
has to be discovered.

The structure of the paper is as follows. In Sec-
tion 2, the Minimum Linear Arrangement (MinLA)
problem is reviewed and the new formulation of the
MinLA is given. Section 3 is devoted to theoretical
results on new rank inequalities. The computational
experiments are reported in section 4 and the last sec-
tion includes some conclusions.

2 THE MINIMUM LINEAR
ARRANGEMENT (MinLA)
PROBLEM

The present section includes the basic definitions and
models of the MinLA problem.

2.1 Definitions and Preliminaries

Let G = (V;E) be an undirected (connected) graph,
where V (with jV j = n) is the set of nodes and E de-
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notes the set of edges. A layout is defined as an one-
to-one function j :V �! [1::n]. The Minimum Linear
Arrangement problem (MinLA) is the combinatorial
optimization problem consisting in finding a layout j

minimizing the following sum

å
uv2E
jj(u)�j(v)j:

(see e.g., (Amaral et al., 2008), (Horton, 1997),
(Caprara and Gonzalez, 2005), (Caprara et al., 2010),
(Petit, 1999), (Hungerlaender and Rendl, 2012),
(Schwarz, 2010)).

There are various mathematical formulations for
the MinLA. An overview of the different models can
be found in (Petit, 1999) and (Schwarz, 2010). A ba-
sic formulation of MinLA is obtained by considering
the following variables. Let us define the variables xik
as:

xik =

�
1 if the label k is assigned to the node i;
0 otherwise:

(1)
With these variables, the MinLA can be formulated as
follows

MinLA-Quadratic:

min å
(i; j)2E

å
k

å
l
jk� ljxikx jl (2)

s.t:
n

å
i=1

xik = 1 : k 2 f1; � � � ;ng; (3)

n

å
k=1

xik = 1 : i 2 f1; � � � ;ng; (4)

xik 2 f0;1g : i;k 2 f1; � � � ;ng; (5)

This is a 0-1 quadratic programming problem for
which different reformulation has been proposed (see
(Schwarz, 2010) for an overview of different formu-
lations of MinLA).

We propose a non-standard linearization of
MinLA working as follows:
Let us define

fkl := å
(i; j)2E

xikx jl 2 f0;1g: (6)

If we apply this definition on (2)-(5), i.e., MinLA-
Quadratic, the formulation of the MinLA becomes:

A New Linearization for MinLA:

minå
k;l
jk� lj fkl (7)

s.t:
n

å
i=1

xik = 1 : k 2 f1; � � � ;ng; (8)

n

å
k=1

xik = 1 : i 2 f1; � � � ;ng; (9)

fkl � (xik + x jl�1) : 8(i; j) 2 E;8k; l 2 f1; � � � ;ng;
(10)

xik 2 f0;1g : i;k 2 f1; � � � ;ng; (11)
fkl 2 f0;1g : 8k; l 2 f1; � � � ;ng: (12)

Unfortunately, the formulation (7)-(12) has two
drawbacks. The first one is due to the large number of
constraints (10), that is O(n4), and the second one to
the fact that the resulting bound is very poor. Indeed,
one may observe that the solution

fkl = 0 (for k; l = 1; � � � ;n);

xik =
1
n

(for i;k = 1; � � � ;n);

is feasible, with 0 as the objective value. Hence, it is
necessary to strengthen the relaxation by introducing
valid inequalities (see (Amaral et al., 2008), (Amaral,
2009), (Amaral and Letchford, 2011), (Horton, 1997),
(Caprara et al., 2010), (Schwarz, 2010)). We show in
Section 3, how to deal with these two aspects.

Notice that fkl can be seen as a binary flow be-
tween the locations k and l. Indeed, fkl equal 1 if the
two entities located in k and l are linked by an edge
in G, and 0 otherwise. As a consequence, one may
see that the graph whose the adjacency matrix is rep-
resented by f = f fklg is isomorphic to G. Hence we
transform the initial problem in a new one consisting
in finding an optimal isomorphic graph for G.

3 VALID INEQUALITIES

In order to reduce the number of constraints (10), we
show in the following theorem how we can produce
O(n3) equivalent inequalities using lifting techniques
(Nemhauser and Wolsey, 1998).

Theorem 1: If we define A as the adjacency
matrix of the (connected) graph G = (V;E), the
following inequalities are valid for (7)-(12):

(i) For k; l; i0 2 f1;2; � � � ;ng:

fkl �
n

å
j=1

Ai0 jx jl +a(1� xi0;k); (13)

where
a := min(Ai0 j0 �Ai0 j0);

such that 1� i0 6= i0 � n and 1� j0 � n.
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(ii) For k; l; i0 2 f1;2; � � � ;ng:

fkl �
n

å
j=1

Ai0 jx jl +
n

å
k0=1;k0 6=k

ak0xi0;k0 ; (14)

where
ak0 := min(Ai0 j�Ai0 j);

such that i0 6= i0; j and j 6= i0 and k0 6= k.

Proof: (i) Remember the definition of fkl

fkl := å
(i; j)2E

xikx jl 2 f0;1g

For constant values of k and l, and setting i � i0, we
can do a lifting by the assumption of xi0;k := 1. Under
these assumptions, we have fkl � å

n
j=1 Ai0 jx jl . Our

objective consists in finding an a 2 R, such that the
above inequality remains true even for xi0;k 6= 1. Thus
we have to solve the following problem

a := min
1

(1� xi0;k)
( fkl�

n

å
j=1

Ai0 jx jl);

such that xi0;k 6= 1 and k; l; i0 2 f1;2; � � � ;ng. The cor-
responding optimal value is given by:

a := min(Ai0 j0 �Ai0 j0);

where, 1� i0 6= i0 � n and 1� j0 � n.
(ii) This part is similar to the part (i) with the dif-

ference of the assumption on xi0;k0 = 0 for all k0 6= k.
We know that

fkl �
n

å
i=1

n

å
j=1

Ai jxikx jl ;

where k < l. We are looking for the real values ak0

such that

fkl �
n

å
j=1

Ai0; jx jl +
n

å
k0 6=k;k0=1

ak0xi0k0 ;

particularly, we are looking for ak0 that minimizes
fkl � å

n
j=1 Ai0; jx jl under the constraint xi0;k0 = 1.

There are two cases:

Case (1) k0 = l and k0 6= k: in this case ak0 =
min j 6=i0 Ai0; j.

Case (2) k0 6= k; l: in this case ak0 =
min j 6=i0;i0 6=i0;i0 6= j(Ai0; j�Ai0; j).

By taking the minimum of these cases, we obtain the
result of the theorem. �

Now, we focus on the second drawback of the for-
mulation (7)-(12). In order to find better lower bounds
for the continuous relaxation of (7)-(12), we introduce
some sets of valid inequalities.

The first set of valid inequalities is related to the
connectivity of G. We note that å

l
fkl is equal to the

degree of any node having the label k, hence the fol-
lowing inequalities are valid for any connected graph
G:

n

å
l=1

fkl � (minimum vertex degree of the graph G);

(15)
n

å
l=1

fkl � (maximum vertex degree of the graph G);

(16)
å
k

å
l

fk;l = 2jEj; (17)

where, jEj is the total number of the edges.
A stronger version of these inequalities is given

through the following theorem:
Theorem 2: For any connected graph G the following
equalities are valid for (7)-(12):

å
k

fkl =
n

å
j=1

(degree of node j) x jl : l 2f1; � � � ;ng

(18)
Proof: for any value of l, we have

å
k

fkl = å
k

 
å

(i; j)2E
xikx jl

!
= å

(i; j)2E

 
å
k

xik

!
x jl

Since å
k

xik = 1, hence å
k

fkl = å
(i; j)2E

x jl . If we define

A as the adjacency matrix of the graph G, then

å
k

fkl =
n

å
i=1

n

å
j=1

Ai jx jl =
n

å
j=1

n

å
i=1

Ai jx jl =
n

å
j=1

x jl

 
n

å
i=1

Ai j

!

Since the degree of the node ( j) is equal to
n
å

i=1
Ai j,

consequently,

å
k

fkl =
n

å
j=1

(degree of node j) x jl

where l belongs to f1; � � � ;ng. �

A well known set of valid inequalities for different
formulations of the MinLA consists in using triangu-
lar inequalities. The following theorem is based on
this idea.
Theorem 3: The following inequalities are valid for
(7)-(12):
� If k; l;m 2 f1; � � � ;ng, then

jk� lj fkl � jk�mj+ jm� lj : 8k; l;m; (19)

jk� lj fkl � jk�mj+ jm� lj fml : 8k < l < m; (20)
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� For all k; l 2 f1; � � � ;ng and for all (i; j) 2 E, if de-
gree of the node i is equal to 1, then

xik� x jl + fkl � 1: (21)

Proof: All of these inequalities can be easily ob-
tained by using the fact that jk� lj � jk�mj+ jm� lj
(for all triple k; l;m) and xik; fkl 2 f0;1g (for all
i;k; l 2 f1; � � � ;ng). �

Definition: For a given graph G, the chromatic
number of G is denoted by c(G) and is equal to the
minimum number of colors that one needs to color
the nodes of G in such a way that all adjacent nodes
of G get different colors.
The following theorem introduces new valid inequal-
ities that involve the chromatic number of a given
graph G.

Theorem 4 (Chromatic Inequalities): For any
graph G having the chromatic number c(G) and for
all triple k; l;s, the following inequalities are valid for
(7)-(12):

fk;l + fl;s + fk;s � c(G): (22)

Proof: First of all, we note that the left hand side
of (22) is at most equal to 3. If c(G) � 3, we are
done; otherwise, if c(G) = 2, then there is (at least)
one node among the nodes having the labels k; l;s that
is not connected to one of the others. Without loss of
generality, let us suppose that the node having the la-
bel k is not connected to the node with the label s; this
means that there will be no flow between the nodes k
and s. Consequently, the nodes k and s can have the
same colors and hence fk;s = 0, which completes the
proof. �

The results of the theorem 4 can be useful when
c(G) = 2. This corresponds to some special graphs
such as trees and the graphs without any cycles of odd
lengths. This is rather restricting in using the inequal-
ities (22). Notice that finding the chromatic number
of a given graph is an NP-hard problem. Neverthe-
less, tight upper bound of c(G) may be found by us-
ing heuristic algorithms.

Definition: For a given graph G, matching is a
subset of edges in which, no two edges are adjacent
to a same node. A maximum matching of G is de-
fined as a matching with the maximum cardinality.
The matching number of G, noted by n(G), is the size
of a maximum matching.

As in the case of chromatic number, some valid
inequalities depending on the matching number may
be introduced.

Theorem 5 (Matching Inequalities): For any
graph G having the matching number n(G) and for

all k and “0 � i and k + 2i+ 1 � n”; the following
inequality is valid for (7)-(12):

i:k+2i+1�n

å
i=1

fk+2i;k+2i+1 � n(G): (23)

Proof: For an arbitrary (connected) path in G, the
left hand side of (23) is (at most) the number of the
edges in the path such that any couple of edges is
separated by at least one edge. By noting this fact,
one can conclude that the number of these edges
cannot exceed the matching number of G. �

4 COMPUTATIONAL
EXPERIMENTS AND
NUMERICAL RESULTS

In this section, we present the preliminary results that
we have obtained by applying the valid inequalities of
the previous section.

The model has been coded in C++ and has been
solved with IBM CPLEX 12.2 in an Intel Core 2 Duo
of 3 GHz and 3.25 GB of RAM. The experiments
have been carried out on some benchmark instances
already used in (Caprara et al., 2010), (Caprara et al.,
2011), and (Schwarz, 2010). Table 1 reports some
characteristics of the instances. In this table, for each
graph, the number of nodes (n), of edges (m), and of
triangles (t) are reported. The absence of triangles can
be useful for chromatic inequalities.

The results are reported in Tables 2 and 3. In Ta-
ble 2, we denote by “Optimal” the known optimal
values in the literature (see (Caprara et al., 2010),
(Caprara et al., 2011), and (Schwarz, 2010)). The
column “Optimal” corresponds to optimal values ob-
tained through exact algorithms, such as Branch-and-
Cut procedures. Concerning our experiments, “LP(2-
3)” is used to denote the optimal value of the relaxed
linear program under the valid inequalities of the the-
orems 2 and 3. Table 3 contains more results on
the smaller sized instances. More precisely, Table 3
presents the optimal value of the relaxed linear pro-
gram under the valid inequalities of the theorems 1-3
(denoted by LP(1-3)) that are compared to the results
of (LP(2-3)). The CPU time (in seconds) of each case
is shown in a side column (i.e., cpu). There is a time
limit of 1200 seconds on CPLEX.

The number of the constraints (10) is huge.
Hence, in our experiments, the constraints (10) have
not been used. We just considered the remaining con-
straints of the model (7)-(12) as well as some of the
rank inequalities. This concerns the valid inequali-
ties that have been introduced in the theorems 1, 2,
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Table 1: The characteristics of the benchmark instances.

Name n m t
bcspwr01 39 46 2
bcspwr02 49 59 3
bcspwr03 118 179 23
bcspwr04 274 669 582

can 24 24 68 60
can 61 61 248 396
can 62 62 78 2
can 73 73 152 32
can 96 96 336 320

can 144 144 576 912
can 161 161 608 592
can 187 187 652 620
can 229 229 774 690
curtis54 54 124 78
dwt 59 59 104 30
dwt 66 66 127 62
dwt 72 72 75 0
dwt 87 87 227 147

dwt 162 162 510 464
dwt 209 209 767 707
dwt 221 221 704 608
dwt 245 245 608 374

lshp�265 265 744 480
ibm32 32 90 28
will57 57 127 94

and 3. The valid inequalities of the theorems 4 and 5
have been also tested but we have observed that, un-
fortunately, they do not significantly help to improve
the bound. That is why, for the sake of conciseness,
we report only the results of the other theorems with
more impact.

According to the numerical results that are re-
ported in Tables 2 and 3, we get the following ob-
servations:

� the relaxed LP model under the rank inequalities
of the theorems 2 and 3 (i.e., LP(2-3)) gives (in
most of the cases) integer values for the variables
fkl .

� the rank inequalities of the theorem 2 are particu-
larly efficient in approximating the integral enve-
lope of the model (7)-(12).

� inclusion of the lifting inequalities (i.e., theorem
1) has a huge influence on the size (consequently,
on the computational time) of the problem but
contributes slightly in improvement of the lower
bounds. Due to this fact, in our experiments, we
included only 1500 lifting inequalities in the re-
laxed LP model.

Table 2: The results of the experiments under the valid in-
equalities of the theorems 2 and 3 (LP(2-3)).

Name Optimal cpu LP(2-3) cpu
bcspwr01 106 0.7 54 0.031
bcspwr02 161 1.8 70 0.047
bcspwr03 662 189.5 241 0.359
bcspwr04 3696 limit 1189 3.295

can 24 210 2.8 138 0.015
can 61 1137 538 650 0.094
can 62 210 4.2 95 0.093
can 73 1083 limit 241 0.109
can 96 2105 27786 780 0.188
can 144 2873 1710.6 1460 0.484
can 161 5657 limit 1478 0.577
can 187 3827 limit 1496 0.781
can 229 7461 limit 1732 1.515
curtis54 454 54.5 214 0.062
dwt 59 289 27.4 150 0.078
dwt 66 192 1.7 189 0.093
dwt 72 167 21.2 79 0.124
dwt 87 932 1901.4 424 0.172
dwt 162 2281 limit 1078 0.578
dwt 209 5905 limit 1824 1.421
dwt 221 3603 limit 1500 1.702
dwt 245 3422 limit 1093 2.233

lshp�265 5497 limit 1441 1.827
ibm32 485 250.5 178 0.031
will57 335 30.5 214 0.062

5 CONCLUSIONS

In this paper, we presented a new mathematical pro-
gram for solving the Minimum Linear Arrangement
(MinLA) problem. This formulation has been fol-
lowed by introduction of some new valid inequali-
ties. We presented some preliminary numerical re-
sults showing that, except for dwt 66, more inves-
tigations are necessary in order to have a better de-
scription of the associated polyhedra. In any case,
due to the fact that the formulation imply only O(n2)
additional variables, the computational time is very
small. As a perspective, additional polyhedral analy-
sis will be done to improve the bound and to develop
a branch-and-cut algorithm. The works in these direc-
tions are currently in progress.

ACKNOWLEDGEMENTS

This work was financially supported by the region of
Haute-Normandie (France) and the European Union.

A�New�Mathematical�Model�For�the�Minimum�Linear�Arrangement�Problem

61



Table 3: The results of the experiments by taking into account the lifting inequalities.

Name Optimal cpu LP(2-3) cpu LP(1-3) cpu
can 24 210 2.8 138 0.015 150 434.156

curtis54 454 54.5 214 0.062 253 1200.203
dwt 59 289 27.4 150 0.078 154 10.218
dwt 66 192 1.7 189 0.093 191 1.922
will57 335 30.5 214 0.062 263 1200.250
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