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Abstract: In this paper, an approach for pixel unmixing based on possibilistic similarity is proposed. This approach 
uses possibility distributions to express both the expert’s semantic knowledge (a priori knowledge) and the 
contextual information. Dubois-Prade’s probability-possibility transformation is used to construct these 
possibility distributions starting from statistical information (learning areas delimitated by an expert for each 
thematic class in the analyzed scene) which serve, first, for the estimation of the probability density 
functions using the kernel density estimation. The pixel unmixing is then performed based on the 
possibilistic similarity between a local possibility distribution estimated around the considered pixel and the 
obtained possibility distributions representing the predefined thematic classes. The obtained similarity 
values are used in order to obtain the abundances of different classes in the considered pixel. Accuracy 
analysis of pixels unmixing demonstrates that the proposed approach represents an efficient estimator of 
their abundances of the predefined thematic classes and, in turn, higher classification accuracy is achieved. 
Synthetic images are used in order to evaluate the performances of the proposed approach.  

1 INTRODUCTION 

An important difficulty related to image 
classification task stems from the existence of 
“mixed” pixels (Tso and Mather, 2009). These 
mixed pixels contain a mixture of more than one 
class of different thematic classes contained in the 
analyzed scene. They arise mainly due to spatial and 
spectral resolving power limitations of the used 
sensor. In the case of spatial resolving power 
limitation, the mixed pixels extents cover more than 
one class in the observed scene. The pixel response 
is then a mixture of the covered underlying thematic 
classes (e.g. remote sensing platforms flying at a 
high altitude) or thematic classes are combined into 
a homogeneous mixture (e.g. sand grains on a 
beach), which can occur regardless of the spatial 
resolution of the sensor. For the other case (spectral 
resolving power limitation), the spectrum of each 
mixed pixel is composed of a collection of 
constituent spectra or “endmembers” (Van der Meer, 
1997). It is important to notice that these two types 
of resolution have an inextricable relationship to one 
another (Tso and Mather, 2009). Indeed, high 

spectral variability of local areas of the analyzed 
scene becomes apparent as the spatial resolution 
becomes finer. Therefore, using advanced sensors 
with higher spatial resolving power may not 
necessarily enable improved classifications when the 
pixel-based images classification systems are used. 
Hence, a method of pixel unmixing by classes 
becomes very important in many applications of 
image analyses where subpixel detail is valuable and 
more accurate classification results are needed. 

In an unmixing approach, given a mixed pixel, 
the goal is to find the constituent thematic classes 
and the set of corresponding fractions or 
“abundances” that indicate the proportion of each 
thematic class present in the pixel. Several 
approaches to subpixel analysis have been 
employed. Among them, three are widely used. 
These are fuzzy maximum likelihood approaches 
(Wang, 1990), fuzzy c-means approaches (Foody 
and Cox, 1994), and linear mixture models, or 
spectral mixture analysis (Plaza et al., 2010). 
However, in all these approaches, the subpixel 
analysis is usually conducted using multispectral 
image or hyperspectral image. In this paper, the 
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subpixel analysis is conducted using one gray level 
image. This approach is proposed under the closed 
world assumption. For the analyzed image I, let 
Ω={C1, C2, ..., CM} an exclusive and exhaustive set 
of M predefined classes. Generally, Each pixel P 
from this image I, can be represented by a vector X 
= (x1, x2…, xN)T of “N” measurements. Each 
measurement xn, n=1,…,N, is the output of the given 
sensor resulting of one physical parameter related to 
the imaged scene. In the proposed approach, X is 
limited to one measurement N=1 (e.g. gray level or 
pixel brightness) i.e. only one output of the given 
sensor. Prior knowledge is also assumed to be given 
as an initial set of learning areas extracted from the 
considered image and characterizing the M 
considered classes from the expert point of view.  

The class representation is done by means of 
possibility distribution in order to deal with the 
ambiguity as well as the uncertainty in the expert 
description (Rabah, 2011). This possibilistic 
representation constitutes an efficient and a flexible 
tool corresponding to the way the experts express 
their own semantic knowledge. For this purpose, the 
probability-possibility transformations are adopted. 
The Kernel Density Estimation (KDE) approach 
(Epanechnikov, 1969) is first used to estimate the M 
probability density functions from the learning set. 
Then they are transformed into M possibility 
distributions using Dubois-Prade transformations 
(Dubois and Prade, 1983).  

Each pixel P0 from the image I can be considered 
as being of a “homogeneous sub-region”. In this 
case, a local possibility distribution P0(x) can be 
estimated which express the possibility degree to 
observe the pixel P0 in the considered sub-region. 
These possibility distributions (The M possibility 
distributions as well as the local ones) using the 
possibilistic similarity concept will lead to identify 
thematic class components present in the mixed 
pixels which, in his turn, would improve the 
classification results. 

This paper is organized as follows. In the next 
section, the basic concepts of possibility theory are 
introduced. The notion of similarity measures is the 
subject of the third section. In the fourth section, the 
proposed approach will be detailed. Section 5 
presents the experimental results obtained when the 
proposed approach is applied using synthetic 
images. 

2 POSSIBILITY THEORY 

Possibility theory is devoted to handle epistemic

 uncertainty, i.e. uncertainty in the context where the 
available knowledge is only expressed in an 
ambiguous form. This theory was first introduced by 
Zadeh in 1978 as an extension of fuzzy sets and 
fuzzy logic theory to express the intrinsic fuzziness 
of natural languages as well as uncertain information 
(Zadeh, 1978). It is well established that 
probabilistic reasoning, based on the use of a 
probability measure, constitutes the optimal 
approach dealing with uncertainty. In the case where 
the available knowledge is ambiguous and encoded 
as a membership function into a fuzzy set defined 
over the decision set, the possibility theory 
transforms each membership value into a 
possibilistic interval of possibility and necessity 
measures (Dubois and Prade, 1980). The use of 
these two dual measures in possibility theory makes 
the main difference from the probability theory. 
Besides, possibility theory is not additive in terms of 
beliefs combination and makes sense on ordinal 
structures (Dubois and Prade, 1992). The basic 
concepts of a possibility distribution, the dual 
possibilistic measures (i.e. possibility and necessity 
measures), and the probability-possibility 
transformation are briefly presented in the following 
subsections. 

2.1 Possibility Distribution 

Let us consider an exclusive and exhaustive universe 
of discourse Ω = {C1, C2,..., CM} formed by M 
elements Cm, m = 1, ..., M (e.g., thematic classes, 
hypothesis, elementary decisions, etc). 
Exclusiveness means that one and only one element 
may occur at time, whereas exhaustiveness refers to 
the fact that the occurring element certainly belongs 
to Ω. A key feature of possibility theory is the 
concept of possibility distribution, denoted by , 
assigning to each element Cm a value from a 
bounded set [0,1] (or a set of graded values). This 
value (Cm) encodes our state of knowledge or 
belief, about the real world and represents the 
possibility degree for Cm to be the unique occurring 
element.  

2.2 Possibility and Necessity Measures  

Based on the possibility distribution concept, two 
dual set measures, the possibility Π and the necessity 
Ν measures are derived. For every subset (or event) 
A, these two measures are defined as follows: 

 m
Cm

( ) max π(C )
A

A


   (1)

 

A�Method�of�Pixel�Unmixing�by�Classes�based�on�the�Possibilistic�Similarity

221



 m
Cm

N( ) 1 ( ) min 1 π(C )C

A
A A


      (2)

where, Ac denotes the complement of the event 
A.  

2.3 Possibility Distributions Estimation 
based on Pr- Transformation  

Many methods are proposed in the literature in order 
to estimate the possibility distributions from a 
limited prior knowledge in order to represent the 
existing thematic classes. These methods can by 
divided into two categories: the first category 
reproduces fuzzy set theory concepts by using the 
standard and predefined membership functions and 
then applying Zadeh’s postulate for which 
possibility values numerically duplicate the 
membership ones, but have a different semantic 
significance (Medasani et al., 1998). In fact, Zadeh’s 
postulate transforms membership degrees (to a fuzzy 
set describing an ambiguous concept) into 
possibility degrees (describing the uncertainty 
concept). This estimation category is well adapted to 
the case where the available expert’s knowledge is 
expressed using an ambiguous description over the 
set of thematic classes that can be modeled by the 
standard membership forms. The second category is 
based on the use of statistical data like methods of 
probability-possibility transformations, histogram 
based methods [4], and learning based methods 
(FCM, nearest neighbour techniques, neural 
networks, etc) (Medasani et al., 1998). 

As we consider that the available expert’s 
knowledge is expressed through the definition of 
learning areas representing different thematic 
classes, i.e. statistical data, we will focus on the 
second category. Several Pr- transformations are 
proposed in the literature. Dubois et al. (Dubois and 
Prade, 1983) suggested that any Pr- transformation 
of a probability distribution function Pr, into a 
possibility distribution , should be guided by the 
two following principles:  

 The probability-possibility consistency 
principle. This principle is expressed by 
Zadeh (Zadeh, 1978) as: “what is probable 
is possible”. Dubois and Prade formulated 
this principle by indicating that the induced 
possibility measure Π should encode upper 
probabilities: 

( ) Pr( ),     A A A      (3)

 The preference preservation principle 
ensuring that any Pr- transformation 
should satisfy the relation: 

Pr( ) Pr ( ) ( ) ( ),    ,  A B A B A B         (4)

Verifying these two principles, a Pr- 
transformation turning a probability distribution Pr 

(defined by probability values Pr({Cm}), Cm, m 
= 1, 2,..., M) into a possibility distribution  (defined 
by (Cm), Cm, m = 1, 2, ..., M) has been 
suggested by Dubois et al. (Dubois and Prade, 
1983). This transformation, called symmetric Pr- 
transformation, is defined by: 

     
M

m m j m
j=1

π(C )= ( C )= min Pr( C ),  Pr( C )     (5)

In our study, this transformation is considered in 
order to transform the probability distributions into 
possibility distributions.  

3 SIMILARITY MEASURES 

In order to quantify the similarity between two 
objects or two pieces of information (e.g. possibility 
distributions) a similarity function is used. This 
function has no single definition and depends on the 
way these pieces of information are represented (e.g. 
similarity function is proportional to the inverse of 
distance metrics between the examined pieces of 
information). 

Considering the expert’s predefined set of M 
thematic classes contained in the analyzed image, 
={C1, C2 ..., CM}, a set of M possibility 
distributions can be defined as follows: 

 Cm

Cm

π :   0,1

          (P) π ( (P))

D

x x




 

 

where D refers to the definition domain of the 
observed feature x(P) (e.g. gray level). For each 
class Cm, Cm

(x(P)) associates each pixel PI, 

observed through a feature x(P)D, with a 
possibility degree of belonging to the class Cm, m = 
1, ..., M.  

Considering two classes Cm and Cn from the set 
, different possibilistic similarity or distance 
functions “Sim” can be defined between their two 
possibility distributions πCm and πCn. The behaviour 
of these functions can be studied in order to obtain a 
better discrimination between classes Cm and Cn. To 
do this, calculating a similarity matrix Sim(πCm, πCn) 
informs us about such inter-classes behaviour and 
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will help in choosing the right measure in the given 
context:  

   
   

C C C Cm m m n

C C C Cn m n n

π ,π π ,π

π ,π π ,π

Sim Sim
Sim=

Sim Sim

 
 
 
 
 

 (6)

Evaluation of similarity between classes was studied 
in our previous work (Alsahwa et al, 2013). Many 
existing possibilistic similarity and distance 
functions, which are the most frequently 
encountered in the literature, are used for this 
purpose. 

The similarity measure Sim∞ derived from the 
L∞-norm called Maximum distance (equation 8), a 
particular case of the Minkowski Lp-norm (equation 
7), was the most suitable among the selected 
functions to describe the similarity between the two 
classes. 

     
p

p
i i

i=1
p C C C Cm n m n

L π ,π = π x -π x  
D

  (7)

 

     i iC C C Cm n m n
i=1

maxL π ,π = π x -π x  
D

  (8)

 

  p
C Cm np p

L
π ,π 1Sim

D
   (9)

4 THE PROPOSED PIXEL 
UNMIXING APPROACH 

As previously detailed, samples initial sets are used 
to estimate the probability density functions of every 
thematic class. These functions are transformed into 
possibility distributions through the application of 
the Pr- Dubois-Prade’s transformation. A local 
possibility distribution (P0) is constructed around 
each pixel of the analyzed image I. 

The similarity measure Sim∞ is used to quantify 
the similarity between this local possibility 
distribution and each of the M estimated possibility 
distributions. Figure 1 shows the estimated 
possibility distributions in the case of synthetic 
image composed of two classes generated by a 
Gaussian distribution. 
All the measured similarity values between 
possibility distributions of classes C1, C2 and the local 
possibility distribution for every pixel in the image I are 
transformed into percentages as the following: 

   
i 0 m 0

M

i C p C p
m 1

a Sim π ,π / Sim π ,π 


   (10)

 

Figure 1: Synthetic image, possibility distributions of 
classes C1, C2 and the local possibility distribution in a 
subzone around the pixel of interest P0. 

where ai(P0) is supposed to be the “abundance” of 
the ith predefined thematic class in the considered 
pixel P0. ∑Sim∞ serves as a normalizing factor.  

It is worthwhile to notice that high overlapping 
case (high discrimination complexity) between the 
predefined thematic classes is treated in the 
proposed approach. In the case of low overlapping 
(low discrimination complexity), the “abundance” of 
a predefined thematic class in the considered pixel 
P0 is roughly inversely proportional to the distance 
between the pixel vector and the mean of that class 
(Wang, 1990). 

The simplest and most widely used approach, the 
linear mixture model (Adams et al., 1986), is used in 
the proposed unmixing approach. This model is 
based on the assumption that a linear combination 
exists between the pixel brightness and the M 
predefined thematic class. The spectral reflectance 
of a pixel is the sum of the spectral reflectances from 
the predefined thematic classes weighted by their 
relative “abundances”: 

M

i i
i 1

B a B


   (11)

where B is brightness value of the considered pixel 
P0, Bi is brightness value of the ith predefined 
thematic class (i.e. mean of all brightness values of 
the pure pixels contained in the ith class), and ai is it’s 
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abundance in the considered pixel P0. There are two 
constraints on the abundances that should be 
satisfied: the abundances must all be non-negative to 
be meaningful in a physical sense (ai≥ 0) (Keshava, 
2003), and must sum to one (∑ai=1). 

A classification step is conducted at the end of 
the proposed approach. This step consist in the 
process of assigning a class to the considered pixel 
P0 by determining the nearest class via the similarity 
function Sim∞ used to measure the similarity 
between this pixel’s local possibility distribution and 
possibility distributions of each of the M classes. 

5 EXPERIMENTAL RESULTS  

In many applications, collecting mixed pixels and 
determining their exact abundances of the 
predefined thematic classes is very difficult. 
Therefore, a 550×250 pixel synthetic image, given in 
figure 3, is generated. This image is composed of 
eleven sectors. The first and second sector is 
assumed to contain two “pure” thematic classes 
generated by two Gaussian distributions G(m1=100, 
σ1=15) and G(m2=150, σ2=15). Pixels of sectors 
from three to eleven are generated as a linear 
mixture of the first and second sector pixels. The 
abundances of class C1 and class C2 in these mixed 
pixels is varying incrementally by 10%. For 
instance, the abundance of class C1 in the third 
sector is 10% (resp. abundance of class C2 is 90%) 
and in the forth sector 20% (resp. abundance of class 
C2 is 80%), etc. 7×7 pixel learning zones positioned 
by the expert (as being representative areas of the 
considered thematic classes) are also illustrated on 
the generated image. 

5.1 Estimation of Classes’ Abundances 
in the Mixed Pixels 

Using the learning zones, the initial estimation of the 
class probability density functions are established 
based on the KDE (Kernel Density Estimation) 
approach. The application of the Pr-� Dubois-
Prade’s transformation allows obtaining the 
possibility distributions for each class in the 
analyzed image.  
A 3x3 pixel window centered on each pixel is 
considered as the local spatial possibilistic context 
and then local probability density functions are 
established based on the KDE approach. The 
application of the Pr- Dubois-Prade’s 
transformation allows obtaining the local possibility 
distributions. 

 

Figure 2: Synthetic image composed of two classes and 
their learning zones. 

Abundances of the predefined thematic classes 
in each sector, from three to eleven, can be estimated 
from the possibilistic similarity values. In each of 
these sectors, the proposed approach, using the 
possibilistic similarity measure Sim∞, is applied on 
all its pixels and their possibilistic similarity values 
of each thematic class are calculated. The mean and 
standard deviation of these possibilistic similarity 
values for each class is given in the Table 1. 

A close analysis of the obtained results shows 
that the abundances of the predefined thematic 
classes in the mixed pixels can be estimated from the 
possibilistic similarity values. This estimation 
conforms well to the values used in synthetic image 
generation. For instance, it can be estimated that the 
fifth sector contains about 28% of class C1 and 72% 
of class C2 while the used values in synthetic image 
generation are 30% of class C1 and 70% of class C2. 
The small values of standard deviation are another 
indication that this estimation is quite consistent 
with the values used in synthetic image generation. 

5.2 Evaluation of the Improvement in 
Overall Classification Accuracy 

The above synthetic image (figure 2) is classified 
using the proposed approach and the conventional 
Bayesian approach, respectively. The classification 
recognition rate is then calculated in order to 
compare the classification results of the two 
approaches (Table 2). 

Analysis of the obtained results shows an overall 

Sector 1 (class C1)

Sectors 3-11 
(Linear mixture 
of C1 and C2) 

Sector 2 (class C2)

C1 Learning zone C2 Learning zone 
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Table 1: Abundances of the predefined thematic classes in each sector. 

 C1(10%) 
C2(90%) 

C1(20%) 
C2(80%) 

C1(30%) 
C2(70%) 

C1(40%) 
C2(60%) 

C1(50%) 
C2(50%) 

C1(60%) 
C2(40%) 

C1(70%) 
C2(30%) 

C1(80%) 
C2(20%) 

C1(90%) 
C2(10%) 

Mean (C1) 0.14 0.20 0.28 0.39 0,50 0.61 0.72 0.79 0.87 

Std (C1) 0.07 0.08 0.09 0.10 0,10 0.09 0.08 0.08 0.06 
Mean (C2) 0.86 0.80 0.72 0.61 0,50 0.39 0.28 0.21 0.13 

Std (C2) 0.06 0.07 0.09 0.10 0,10 0.10 0.09 0.07 0.06 

Table 2: Classification recognition rate of the predefined thematic classes in each sector calculating first by the proposed 
approach and second by the Bayesian approach 

 Recognition rate % 
 
C1(10%) 
C2(90%) 

C1(20%) 
C2(80%) 

C1(30%) 
C2(70%) 

C1(40%) 
C2(60%) 

C1(50%) 
C2(50%) 

C1(60%) 
C2(40%) 

C1(70%) 
C2(30%) 

C1(80%) 
C2(20%) 

C1(90%) 
C2(10%) 

Proposed approach (C1) 0 1 1 11 49 93 99 100 100 

Proposed approach (C2) 100 99 99 89 51 7 1 0 0 

Bayesian approach (C1) 2 4 12 27 51 28 88 95 99 

Bayesian approach (C2) 98 96 88 73 49 72 12 5 1 

 
improvement in classification accuracy using the 
proposed approach. This improvement has been 
achieved 17% in some cases (e.g. C1(40%) and 
C2(60%)). In addition to this improvement in 
classification accuracy, the estimation of the classes’ 
abundances in the mixed pixels (section 5.1) enable 
the assessing of the classification accuracy which, in 
his turn, may integrate in the interpretation of the 
analyzed scene. For instance, the classification of the 
third sector is 100% class C1 with a small deviation 
of the assignment to its pixels (about 14% of class 
C2) while the classification result of the forth sector 
is also about 100% class C1 but with a bigger 
deviation of the assignment to its pixels (about 20% 
of class C2). It is important to note that this 
assessment of accuracy cannot be done using the 
conventional pixel-based images classification 
systems 

6 CONCLUSIONS 

In this study, a pixel unmixing approach was 
developed based on the possibility theory. At the 
first time, the spatial context is exploited to construct 
a local possibility distribution around each 
considered pixel. Secondly, the notion of 
possibilistic similarity is used in order to assess the 
similarity between the locale possibility distribution 
and each of the class possibility distributions. The 
first results on a synthetic image (compared to the 
results obtained using a Bayesian approach) seem 
promising. Information about pixel’s content of the 
predefined thematic classes becomes available and 
more classification accuracy is achieved. Hence, this 

may lead to better interpretation of the analyzed 
scene. A future research work will be to validate 
these early results on various types of images with 
more than two classes. 
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