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Abstract: Distributed Constraint Optimization Problems (DCOPs) have been studied as fundamental problems in multi-
agent systems. The Max-Sum algorithm has been proposed as a solution method for DCOPs. The algorithm
is based on factor graphs that consist of two types of nodes for variables and functions. While the Max-Sum
is an exact method for acyclic factor-graphs, in the case that the factor graph contains cycles, it is an inexact
method that may not converge. In this study, we propose a method that decomposes the cycles based on cross-
edged pseudo-trees on factor-graphs. We also present a basic scheme of distributed search algorithms that
generalizes complete search algorithms on the constraint graphs and Max-Sum algorithm.

1 INTRODUCTION et al., 2005; Petcu and Faltings, 2005b). Therefore,
how to employ the techniques of standard complete
Distributed  Constraint Optimization Problems DCOP algorithms on the framework of factor graph
(DCOPs) (Farinelli et al., 2008; Mailler and Lesser, and Max-Sum is an important issue as a basic study.
2004; Modi et al., 2005; Petcu and Faltings, 2005b; However, in a case where the factor graph contains cy-
Zhang et al., 2005) have been studied as fundamentarles, the Max-Sum is an inexact method that may not
problems in multi-agent systems. The DCOP is converge, since computation on different paths can-
a constraint optimization problem that consists of notbe separated. For the cyclic factor-graphs, several
variables and constraint/objective functions that approaches have been proposed. In bounded Max-
are distributed among the agents. Multi-agent Sum (Rogers et al., 2011), a graph is approximated
cooperation problems including distributed resource to @ minimum (maximum) spanning tree using pre-
scheduling, sensor networks and smart grids areprocessing that eliminates the cycles. Then the Max-
represented as DCOPs (Maheswaran et al., 2004;Sum is applied to the spanning tree as an exact so-
Miller et al., 2012; Zhang et al., 2005). lution method. In Max-sunAD (Zivan and Peled,
The Max-Sum algorithm (Farinelli et al., 2008) is 2012), directed acyclic graphs (DAGs) are employed
a solution method for DCOPs. The algorithm is based to reduce incorrect computation. In this method, the
on factor graphs that consist of two types of nodes computation of the Max-Sum is limited in the same
for variables and functions, while traditional methods direction of the edges of the DAGs. The directions of
are based on constraint graphs. The computation ofthe edges are alternatively inverted after the computa-
the Max-Sum basically resembles DPOP (Petcu andtion of Max-Sum.
Faltings, 2005b), which is a dynamic programming We present a basic scheme of complete search al-
based on the pseudo-tree of the constraint graph. gorithms that resembles Max-Sum. Since complete
When Max-Sum is applied to acyclic factor solution methods (Modi et al., 2005; Petcu and Falt-
graphs, each agent performs as a root node of theings, 2005b) based on pseudo-trees have been devel-
tree, and hence the agent computes a global objectiveoped for constraint graphs, similar approaches can
function for its variable. Namely, each agentindivid- be applied into factor-graphs. In this study, we pro-
ually (but cooperatively) computes a global objective pose a method that decomposes the cycles based on
function for its variable. This nature is considerable a cross-edged pseudo-tree (Atlas and Decker, 2007)
in an autonomy of agents since every agents observeon factor-graphs. With the proposed method, a mod-
the whole system. It also enables agents to determineified acyclic graph that resembles the original factor-
the optimal assignments of their variables without ex- graph is generated. Moreover, we also present a ba-
plicit top-down controls of similar methods (Modi sic scheme of distributed search algorithms that gen-
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Complete Distributed Search Algorithm for Cyclic Factor Graphs

eralizes complete search algorithms on the constraintof-art of efficient search methods with a single root

graphs (Modi et al., 2005) and Max-Sum algorithm. node (Yeoh et al., 2008). From another point of view,

While the complete search method is generally ineffi- the proposed generalization will be a base of new ap-

cient in complex problems with many cycles, our cur- proximate algorithms where agents have their own

rent interest is the generalization of complete search controls as root nodes.

methods on pseudo-trees (Modi et al., 2005) and  The rest of the paper is organized as follows. In

Max-Sum algorithm. Section 2, we give background for the study. Then,
As shown above, we apply the method based onin Section 3, we propose the method to decompose

pseudo-trees to decompose cycles in factor-graphscycles in factor-graphs. Next, we introduce a scheme

In most studies, pseudo-trees including cross-edgedfor distributed search on the decomposed graphs in

pseudo-trees (Atlas and Decker, 2007) are applied Section 4. The proposed methods are experimentally

to constraint graphs. While the pseudo-trees on evaluated in Section 5. We conclude our study in Sec-

factor-graphs resemble the cases on traditional con-tion 6.

straint networks, there are several important differ-

ences. First, in the case of factor graphs, there is

the same separator in both directiqns on edges pf theo  PRELIMINARY

pseudo-tree. Here, the separator is a set of variables

which are shared by two different components of a

graph. Therefore, separators are simply computed by2-1 DCOPs

a single bottom-up computation on a pseudo-tree. In A | : .

contrast, in the case of constraint graphs, there are”A distributed — constraint ~ optimization problem

different separators in different directions on edges. (PCOP) is defined as follows. A DCOP is defined

Second, since functions are still separated as singleby (A;X;D,F), whereAis a set of agents( is a set

nodes in the decomposed tree, it inherently avoids Of variables,D is a set of domains of variables, and

double counting of a function in any path of aggre- F IS @ set of objective functions. A variabig € X

gation of evaluation values. Those properties easily {2kes values from its domain defined by the discrete

enable the decomposition of cycles. In addition, af- finite setDy € D. A function fm € F is an objective

ter the transformation, each agent node simply has itsfunction defining valuations of a constraint among

original variable/function. As a result, only neighbor- Several variables. Heréy, represents utility (or cost)

hood nodes and separators are modified. A different values that are maximized (or minimized).

type of method based on junction trees (Vinyals etal., ~ Xm C X defines a set of variables that are included

2011) has been proposed to transform the graphs ofin the scope offm. F, C F similarly defines a set of

problems. The main purpose of this method is the fun_ctlons that include, in its scope. fy is formally

manipulation to replace variables and functions into defined asfm(d;, -, d) : Di x -- - x Dx — No, where

different agents. X, X} = Xm. fm(di,--- ,dk) is also simply de-
Our current contribution is that we present a vari- N0te€d byfm(Xi, -, Xc) Or fm(Xm).

ation of Max-Sum algorithms that is a complete so- ~ 1he aggregation F(X) of all the ob-

lution method based on pseudo-trees on cyclic factorj€ctive  functions is  defined as follows:

graphs. Basic effects and overheads of this type of F(X) = Ims.t. fueF xncx fm(Xm).  The goal is

complete algorithms are almost clear since those re-t0 find a globally optimal assignment that maximizes

semble the cases of algorithms based on constrain{0" Minimizes) the value df (X). o

networks and pseudo-trees. While the algorithm is The varlgbles and functions are distributed among

complete, its computational cost, memory use and/or the agents irA. Each agent locally knows the set of

message size exponentially grow with the size of sep- van_abl_es and th(_e set c_>f funcuo_ns in the initial state.

arators, also known as the induced width. On the A distributed optimization algorithm is performed to

other hand, there are several issues on search algocompute the globally optimal solution.

rithms based on Max-Sum since all nodes perform

as root nodes and their computation is partially inte- 2.2 Factor Graph

grated. Therefore, as the first study, we evaluate the

possibilities of pruning instead of relatively obvious The factor graph is a representation of DCOPs. The

comparisons with other Max-Sum algorithms. Since factor graph consists of variable nodes, function

sophisticated pruning methods need more works for hodes and edges. An edge represents a relationship

the case of multiple root nodes, here the proposed between a variable and function. Figure 1 shows a tra-

method cannot be easily compared with the state- ditional constraint network and factor graphs. In the
constraint network (a), nodes represent variables and
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Here, K, denotes the set of neighborhood function
nodes of variable nodg,. An evaluation function

I tox, (Xn) that is sent from function nodf, to vari-
able nodex;, is represented as follows.

(a) constraint network  (b) factor graph  (c) factor graph of Mpoxy (Xn) = mMax | fm(Xm) + Oxy— fm (Xw)
ternary function Xm\{*n} M 8.t Xy EXm\{¥n}

Figure 1: Factor graph. 2)
Here, Xy, denotes the set of neighborhood variable
nodes of function nodefm. max \(x, denotes
the maximization for all assignments of variables in
Xm\ {Xn}. A variable nodex, computes a marginal
function that is an evaluation function of. The
marginal functionz,(x,) is represented a&(xn) =
Sms.t. fmeFn [ fmsx(Xn). Zn(Xn) cOrresponds to global
objective values for variablg,. The value ofx, that
maximizesz,(xn) is therefore the globally optimal as-

i . i signment. Each variable node chooses such assign-
Figure 2: Symmetric computation on factor graph. ment as the optimal solution.

(a) integrated representation (b) separated representation

edges represent binary functions. The factor graph ()2 4 | ssues on Max-Sum
represents the same problem. As shown in the case ofz'

a ternary function (c), the factor graph directly repre-
sents n-ary functions. Each agent has at least a func
tion node or a variable node. In the following, we
simply use a model in which a node corresponds to
an agent. The Max-Sum algorithm is based on the
factor graph.

If the factor-graphis acyclic, the computation of Max-
"Sum on the tree is considered a set of bottom-up com-
putations that are simultaneously performed for dif-
ferent root nodes. The root node of each compu-
tation is a variable node. In each computation, dy-
namic programming is performed from leaf nodes to
. the root node. The computation shown in Figure 2(a)
2.3 Max-Sum Algorithm can be decomposed into the computations shown in
Figure 2(b). There are three trees rooted at variable
The Max-Sum algorithm is a solution method for nodes. While all variable nodes individually com-
DCOPs. The computation of the method is performed pute the global optimal objective value, several nodes
on a factor graph. Each node of the factor graph corre- share common computation and communication.
spondsto an agentthatis also called a variable node or  This characteristic is interesting because each
function node. Each node communicates with neigh- variable node has authority to determine its optimal
borhood nodes using messages, and computes globassignment based on its knowledge of the global ob-
ally optimal solutions. jective value. However, there are multiple optimal
The information of a message is an evaluation solutions, and some tie-break methods are necessary
function for a variable. The function is represented to avoid inconsistent decisions among multiple root
as a table of evaluation values for the variable’s val- nodes. A simple method for the tie-break adds small
ues. A node computes a table for each variable thatweight values for each value of variables.
corresponds to each neighborhood node. The table In the case of cyclic factor-graphs, the computa-
is then sent to the corresponding neighborhood node.tion of Max-Sum is incorrect. As shown in the In-
Therefore, a node knows evaluation functions for all troduction, several studies address this issue (Rogers
neighborhood nodes. The evaluation function that is et al., 2011; Zivan and Peled, 2012). On the other

sent from variable nodg, to function nodefy, is de-  hand, there are opportunities to construct exact solu-
noted byqx, - f,(Xn). Similarly, rg,x,(%,) denotes  tion methods based on a tree that is equivalent to the
the evaluation function sent from function notigto original factor graph. In the next section, we present
variable node,. An evaluation functior, f, (%) a method to decompose the cycles into a tree.

that is sent from variable nodg to function nodef,
is represented as follows.

Ot (Xn) = 0+ > My (Xn) (1)
m St eFa\{f}
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3 DECOMPOSITION OF CYCLES

3.1 Representations for Decomposition

o 01 ArWNPE

In the Max-Sum algorithm, each variable/function
node corresponds to an agent. To represent a network 7
of the agents, we explicitly introduce another type of g
node, agent nodes. Here, we call the graph based on g
agent nodes the agent-graph. An initial agent-graph 10
directly corresponds to the original factor-graph. On 11
the agent-graph, cycles in the original factor-graph are 5
decomposed. We denote the components of the agenﬁ3
graph as followsa;: an agentnodeX;: setof variable 14

nodes that belong ta. %: set of function nodes that 15
belong tog;. Nbr;: set of neighborhood nodes af. 16
In agenta; of the variable node); contains one vari- 18
able while; is an empty set. Similarly, in ageat of 19
the function node/; contains one function an is 20

an empty setNbr; is defined as a set of agent nodes
that have variables or functions relating to variables or 21
functions ofa;. Formally,Nbr, = {aj|3x, € Xi,3fm € g%
In the transformation of the graph, we employ a 25
spanning tree on the agent-graph. Based on the span26

ning tree, agent nodes Mbr; are categorized as fol- 27
lows. aprmy: parent nodeChld: child nodes Ancst: 28
. 29

ancestor nodePscnd: descendant nodes. 30
31

3.2 Transformation of Graph g%

w
S

To eliminate cycles, graph decomposition methods 35
based on spanning trees (pseudo-trees) are applied. A
well-known pseudo-tree is based on depth-first search36
trees on graphs. With a depth-first search tree, edges3’
in the original graph are categorized into tree-edges,
which are edges of the spanning tree, and other back-39
edges. Such a pseudo-tree is preferable since it does
not contain cross-edges between any two nodes in dif-41
ferent subtrees. However, the depth of the tree is rela-42
tively large. Another problem is that the condition of
an exact pseudo-tree limits the types of spanning tree.
On the other hand, when there are edges between

generate an agent-graph and a spanning tree
in a pre-processing.
wait for processing of all child nodes in Chld.
if & corresponds variable noag in the factor graph

letNbr{" denote
{aj|Tm € Fj A fm € FnAQj ¢ (AncsfUDscnd)}.
if Nbr{" is not empty{
ay + the lowest node iAncstN (ﬁaierrpAncs'g).
addxp, to Xi. storeF, to ay.
store eaclifm,aj) s.t. fm € Fj A fm € Fnto ag.
store end poinx,, &) of equal constraint edge for
Xn
toay.
for each(fm,a;) s.t. fm € Fj A fm € Fn{
remove(Xn, a;) from a;. store(xn, a) to a;.
if aj ¢ (AncstfUDscnd) {
removeg; from Nbr;j. removea; from Nbr;. } }
removex, from X;. removekr, from g;.
erase eacfifm,a;) s.t. fm € Fj A fm € R/
—(3n',n" #n, fm ¢ Fy) from a;.
store end paintxn,ax) of equal constraint edge for

Xn
toa. } }
for eacha;j s.t.aj € Nbrj Aaj € Ancst\ {apmg } {
removea; from Nbr;. removes; from Nbr;. }

for each child node; in Chid {
Sepj < Sep,i. Seppr; < SeRprny USeER,i.
SepTrMpmg < SepTrMpm; USepTrm;.
for each(Xy,a;) in SepTrmprmy {
remove(Xy, a;) from SepTrmprmy .
removexy from Sep pm. }
if the copy ofxn have been stored g {
add(xn, ax) to SepTrMpmg. addx, to Sepprmy - }
for each(Xy,aj) S.t.Xy € Xj A fm € Xy A fme FjA
aj € AncstA zaj is the highest node for the samg)

add(xy,a;) to SepT rMprmy. addxy t0 Sep pry .- }
for each(xy,a;) s.t. fm € Fi AXy € FmAXy € XjA

aj € AncstA eaj is the highest node for the same)

add(xy,a;) to SepT rMprmy . addxy t0 Sep prny - }

prepareg; to manage eacBepj and
a variable/function in the original factor graph.

Figure 3: Procedure of transformation (agent nade

different subtrees, the edges are decomposed usingarts are related to a set of variables called separa-

the technique of cross-edged pseudo-tree (Atlas andtor. The separator is considered as an interface that is

Decker, 2007). In this case, a copy of variables relat- commonly used in those parts. Here,3&tp ; denote

ing to a cross-edge is added. With the copy of the the separators between agent-nbéaed .

variable, several edges including the edge between The procedure to transform a graph is shown be-

different subtrees are modified to meet the condition low. The pseudo code and an example of transforma-

of the pseudo-tree. In previous studies, decomposi-tion are shown in Figure 3 and 4, respectively.

tions of cycles were mainly discussed on constraint 1) generate an agent-graph based on the original

graphs. Here, we apply the cross-edged pseudo-tredactor-graph (lines 1-2). The graph in Figure 4(a) is

on factor-graphs. an agent graph that corresponds to the original factor
As a decomposition of the cycles, each edge of the graph. Here, nodes are arranged based on a spanning

spanning tree separates the graph into two parts. Bothtree rooted at noday that corresponds tey.
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(a) original network (b) decomposition of cross-edge (c) elimination of back edge in agent-network (d) result

Figure 4: Transformation.

2) in a bottom-up manner, execute computation of Namely,(x;,ax) € SepTrmpmy represents that agent
agent nodey as follows (lines 3-39). nodes higher thaax do not relate with variable;.

3) if & has a variable, € X that is an end point ~ Therefore, sucl; is removed from the separator at
of each cross-edge, compute b of agent nodes ~ agent nodey (lines 29-31). For child noda;, Sep;
that have another end point of each cross-edge (linesis the same aSep; (line 27). Additionally,Sep pry;
4-6). Then, generate a copyxfinto the lowest com- ~ andSepTrmpm; are aggregated for child nodes (line
mon ancestor node of nodesbr! (line 8). Elim- 27 and 28). For the parent, the separator is based
inate the cross-edges from both agent-graph and theon separators of child nodes (line 27) and nodes that
corresponding factor-graph (lines 14-19). Instead of have functions/variables neighboring the functions/-
the cross-edges, add edges between the copy of th&/ariables ing; (lines 32-39). This computation is per-
variable and related function nodes (lines 9, 10 and formed in a bottom up manner after the elimination
14). In addition, add a special edge that representsof cross-edges and back-edges in the agent-network.
equal constraint between the copy and original vari- Figure 4(c) shows the separators.
ablex, (lines 11 and 20). In Figure 4(a), since edge 6) prepare each agent node so that it manages
(xs, f2) connects the two nodes in different subtrees, its original function/variable and separators (lines 41-
this edge is decomposed. Hexdrf for agent node  42). After the generation of separators, each node
ag and variablexs containsas. In Figure 4(b), a copy  is modified to have the original variable or function.

of variablexs is placed ina; corresponding tof, Figure 4(d) shows the result of the transformation.
which is the lowest common ancestor node of orig- In the pseudo code, we assumed that each node
inal nodesxs and fo. Now, edge(xs, f2) and(f1,x3) can access variables of neighborhood agent nodes for

is connected to the copy & by storing information  the sake of simplicity. In actual computation, the
of corresponding variables/functions irag, a4 and communication is performed using messages. In ad-
as. In addition, a special edge that represents equaldition, a lock-and-commit protocol is necessary for
constraint between the copy and the original variable mutual execution between nodes in different sub-
x3 (i.e. betweera; andag) is inserted. trees. The resulting agent-graph resembles the orig-
4) eliminate back-edges in the agent-network by inal graph, except for cross-edges and separators. An
removing corresponding information of neighbor- important point is that a separator is common in both
hood nodes (lines 22 and 23). In Figure 4(c), a back- directions on an edge of spanning trees. Therefore,
edge between agen#s anday is eliminated. Note  €ach node can simultaneously perform as a root node
that this does not affect the computation of separa- Of this tree, similar to the Max-Sum in the case of
tors. Neighborhoods in the agent-network are referred trees.
in solution methods. o
5) compute separatoiSep; for each neighbor- 321 Generalization of Max-Sum
hood nodea; of &. Also, information of variables
Sepprmy andSepTrmpmy are computed for's par- With the separators, computation of Max-Sum is gen-
ent nodeprnt; (lines 25-). SepTrmpmy Stores infor- eralized to agent-nodes as follows. Hetgn denotes
mation of the highest agent node for each variable.
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assignments for variables in separ&b@fp, n.

Gan—am(Xnm) = Mmax

X"\Xn,m Z rarﬂﬁa”(xf‘!m()>

<
n S.t. a,yENbry\{am}
(3

where all X,y are compatible withXnm, X' =
Um S.t.a,yeNbm Xn,rd-

Fam—an (Xmn) = Xmgmx
LN

(fm(xm) + Z q%l*>@n(%,ﬂ’)>
n S.t.ayeNbrm\{an}
(4)

whereXm and allX;,, y are compatible witbm n, X" =
Un st. ayeNbrm Xnm-

Z7(Xn) = max

Jax, Fam—an (xn,m)> )

<m S.tl. ameNbr,

where all X,m are compatible withx, X" =
Um S.t.a,yeNbm Xn,rr‘(-

- .20
As a result of the decomposition of cycles, there is

a well-known issue of the induced width on the graph.

Namely, when there are many cycles in the graph, the
decomposition of the cycles needs a large size of sep-

arators. Such separators exponentially increase th
number of combinations of assignments. While there
are opportunities for efficient/approximate methods
for this issue, in this study, we focus on the base-line
scheme to decompose cycles in the factor graphs.

4 DISTRIBUTED SEARCH

4.1 Basicldea

other hand, in the search processing, evaluation val-
ues for assignments that have not been expanded are
necessary. Since such an unknown evaluation value
is represented with its lower and upper bound values,
those boundaries are introduced to the Max-Sum.

We propose a scheme that simultaneously per-
forms solution methods based on tree search and dy-
namic programming for trees rooted at each agent
node. This scheme generalizes complete search meth-
ods on pseudo-trees and the Max-Sum algorithm on
trees. While the original Max-Sum is defined for
maximizing problems, in the following, we prefer
minimizing problems since it is easy to employ prun-
ing based on the lower limit cost value 0. Namely,
maximization operators in equations (3), (4) and (5)
are replaced by minimization operators. While the
pruning can be applied to maximization problems, it
needs additional computation to estimate the upper
limit of objective values. Max-Sum for minimization
problems have been addressed in (Zivan and Peled,
12).

To resolve symmetric solutions, in agent-node of
variablex,, we add a weight valuen(x,) to evalua-
tion values.pn(xn) represents the preference of value
Xn. The values opn(xn) must be sufficiently smaller

&han the values of original functions. Moreover, sum-

mations of the weight values must be different values
for all assignments. Here, we use hierarchical values
that are implemented additional digits. The summa-
tions in equations (3) and (5) are modified to include

Pn(%n)-
4.2 Boundary of Cost Values

As shown above, in the processing of tree search,
boundaries of evaluation values are necessary to eval-
uate unknown assignments and to detect termination.

When factor-graphs are trees, the Max-Sumalgorithm e re '\ve introduce lower limit value 0 and upper limit

is exactly a dynamic programming method. For each

value of cost values. Since unknown assignments

message, evaluation values for all values of a variable 5.6 evaluated using a pair of lower and upper limit

are simultaneously computed and sent. In this com-
putation, only bottom up messages are employed as

values, cost values are generally represented by lower
and upper bound values. When both boundaries take

shown in Figure 2(b). The size of a message dependsihe same value . it is the true value.

on the size of the corresponding separator. When we
decompose cycles into separators, the size of a mes

sage is exponential in the size of the separator.

valuedy, 5 is defined as followsoy, 5 (Xmn)

For evaluation valuega,—a,, its lower bound

Oan—am (Xmn) if Oap—am(Xmn) has been received. Oth-

To reduce the size of each message, tree search. ™ . ’

can be introduced into the scheme of Max-Sum.

A i R T
In this computation, with top-down messages, each V&lU€ Oayan:

erwisedy, 5, (Xmn) = 0. In the case of upper bound
o is used as the default value. Sim-

agent node requests evaluation values for each asilarly, 1y, ., andrg ., are defined forrs, .a,.
signment of a separator between a neighboring agentz: (x,) andz! (x,) are also defined fa, (x,). Bound-

node. The neighboring node then returns the evalu-
ation value for the assignment. If appropriate search value in the end nodes of trees.

aries ofg,,a, andra,,—a, immediately take the same
In other nodes,

strategies and pruning methods are available, there ardboth boundary values are separately aggregated in
opportunities to reduce the search processing. On theeach direction. Therefore, the boundaries take dif-
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ferent values until the true cost value is aggregated. 1 Main{
The boundaries basically resemble those shown in 2 Initialize.

ADOPTSs (Modi et al., 2005). 3 until forever{
' until receive loop is brokef receive messages.

Maintenance} }
Initialize{
for all am € Nbry { sm+¢.
In the tree search processing, each agent node re- foia”se Mxcsenn Di {
quests evaluation values for each assignment of a sep- 9 Mr%?an(s) <—} 073, 58,(S) ¢~ . } }
H ; aintenance

arator for a nelghbormg agent nod_e. For ea_ch request, Receive(CONTEXTs) from am { sn+s. }
a message that contains the assignment is sent. O Recei L T

. eceive(COST, r5-_,5 (S), Fa,—a, () fromam {
the other hand, the neighborhood node then retums,, o (8) - Ik o (S TL (8 1T, (9).}
the evaluation value for the assignment using a mes-7, \ar & B8 1 B8 B8 1

_ ) Maintenancg
sage that contains the assignment and the related cost5 . for all s [ycsep,,aneNbr, Di {

value. _ 16  updatez: (s) andz] (s). }
In the agent node,, of variablex,, when lower 17 x5+ ds.t.(%,d) € argmin z] (s).
and upper bounds of,,.a,(S) take the same value, 18 for all an € Nbry {
no more search foa, ands is necessary. Namely, 19  ifsm#¢€{
if ri o (9) =ri .o (9), thena, searches for other 20 send (COSTsm, g, sz, (Sm), U3, a,(Sm)) 1O am.

assignments ofSep, m. 'Similarly, if qgn_,am(s) = 21 choosSSLIL o (8)% 1] 4a(S)
q; _an(S), thenan, terminates search fa, ands. 22 based on a search strategy.
Each agent node can simultaneously send different23  send (CONTEXT, s) tam. }
assignments for different neighborhood agent nodes.
That absorbs differences in multiple search process- Figure 5: Distributed search (agent nagheof variablexy).
ing. In the agent node, of variable x5, when

4.3 Distributed Search Algorithm

co~NO O

lower and upper bounds of marginal functioh(x) graphs. The proposed method is therefore complete
take the same value, ageat can decide the op- and sound.

timal_assignm(_ent ofkn. If Z7(¥1) = Z; (%), then Since the proposed method expands an assign-
argmin, z, (X») is the optimal assignment. ment for each separator at the same time, in

The pseudo code of the distributed search in agentthe worst case, its number of iterations depends
nodea, of variablex, is shown in Figures 5. After gn (ﬂSemmHXJeSemij) X (Msepn MxccSepnn Dk)-
initialization, each agent node requires cost values for HereSep, ,, andSepn, are separators (corresponding
assignments of separators sending CONTEXT mes-to Equations (3) and (4)) on the longest path of the
sages to neighborhood nodes. On the other hand, eaclyseudo-tree. While the size of messages is linear in
agent node sends cost values for the received assignthe number of variables in the corresponding separa-
ment using COST messages. Here, nedestores  tor, in the worst case, the space complexity for stores
the received assignments irgg. Those assignments  of received cost values is still exponential in the num-
are called current context. While most of the process- per of variables in the corresponding separator. There
ing in agent nodey, of function fr, is similar to that  are opportunities to reduce the size of the stores of
shown in Figure 5, only agent nodeg of variables  ¢ost values using additional methods that decompose

Xn compute the optimal assignmenfs the separator into iterative search.
In the processing of lines 21-22 in Figure 5, ap-

propriate search strategies are employed to choose as-
signments. In the case of the best-first strategyf

minimumr. .. (s)orqgs . (s)ispreferred. Forthe S EVALUATI ON

depth-first strategy, an assignment whose boundaries

are still open is selected based on an ordering. The proposed method was experimentally evaluated.
] There are a number of studies addressing solution

4.4 Correctness and Complexity methods based on search and dynamic programming

with efficient methods on constraint graphs. It is ob-
The proposed method transforms cyclic factor-graphs vious that the performances of the proposed method
into equivalent acyclic graphs. In addition, the search basically follow the results of previous works. We
method can be considered as a simplified version of therefore focused on the characteristics of distributed
ADOPT (Modi et al., 2005) that is a complete algo- search processes rooted at different nodes on the same
rithm on pseudo-trees while we applied it to factor- decomposed factor graphs.
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We employed factor graphs that consist of vari- Table 1: Cyclic graph.
ables and ternary functions. The size of domain of (21 variables, 13 3-ary functions, (max) CSP)
each variable is three. Cost values take 0 or 1 based |inconsisterlt  alg. iteration _|#operf#closed  rate of
on (maximum) constraint satisfaction problems. For pairs min| max| ave | asgn| asgn. |open asgj.

0 all 114 17| 14| 2089 166/ 92.649
2014/01/0: bst 10521881000 168 2084 7.47%
bst-gub (10521881000 491 1764 21.77%

all functions, a ratio of inconsistent pairs of values
was set. As spanning trees, we employed breadth-first

search trees. The results were averaged for twenty dpt  |1382165 98 18 22371  0.79%
instances. In the search processing, the following dpt-gub |11202111] 943 267 1987 11.86%
search strategies were applied. bst: best first. dpt: mix  |13825571150 25 2230 1.12%
depth first. mix: half of agent nodes are bst and oth- mix-gub 112025571071 337 1917 14.96%

ers are dpt. In addition, we applied a pruning based |2014/02/03  bst | 9522931007 16Q 2095  7.11%
- 0,
on global upper bound cost values (gub). For the pro- bstgub | 9522931007 47§ 1777 21.20

cessing, each agent propagate its best global upper dpt ~|1402157 995 6 2248 0.29%
g, g propag 9 pp dpt-gub |12202151 968 166 2089  7.35%

bound using CONTEXT messages. When the lower mix  |13d265d123d 20 2239  0.88%

bound cost value of an assignment exceeds the gub, mix-gub |1222609117d 213 2042  9.46%

the search for the assignment is pruned even if its 1| bst/bst-gub|16425261190 3| 2252  0.13%

boundaries are still open. dpt/dpt-gub|148{21751006 0.5 2254  0.02%
Table 1 shows the results in the case of cyclic mix/mix-gubj 17625821289 3| 2253  0.14%

graphs. The result shows that the iteration of bst

varies widely in comparison to that of dpt. While mix Table 2: Tree.

employs bst and dpt, it takes more iterations on the av- (31 variables, 15 3-ary functions, (max) CSP).

erage. It reveals that there were a mismatch between. |inconsistent  alg. jieiation open#closed e of

different strategies. We also evaluated the number of pairs minjmax|ave asgny asgn. |open asgi.

0 all 15| 17| 16 42 228 15.67%

assignment whose boundaries did not converge. The

. . . A . 2014/01/03 bst 33| 57| 45 3 267 0.94%
ratio of assignments with the open boundaries is rel-

bst-gub | 33| 57| 45| 13| 257 4.78%

atively large in the case of sparsely constrained prob- dpt 33 a9l 42| 6| 264  2.26u
lems. Namely, there were effects of pruning. Addi- dpt-gub | 33| 49| 42| 10| 260  3.54%
tionally, gub increased the ratio of open assignments. mix 39| 57| 46| 5| 265 1.81%
It can be considered that several agents help other mix-gub | 39 57) 46] 11| 259 4.04%

agents through the gub. Table 2 shows the case that |2014/02/03 b?Stb 2: :i j; Sé zgg lg-;";f
factor graphs are trees. Compared with these results, stou '

hat the eff f inais relatively | dpt 35 49/ 42 3| 268  0.93%
we can see that the effect of pruning is relatively large dpt-gub | 35 49| 42| 13| 257 4.65%

in the case of cyclic graphs. mix 39| 530471 2| 268 07294
mix-gub 39| 53| 46 20 250 7.46%

1| bstbst-gub| 44| 62 51] o] 270 0

dpt/dpt-gub| 39| 45| 42 0| 270 0

6 CONCL USI ONS mix/mix-gub| 43| 59| 51 0 270 0

We proposed a method that decomposes the cyclesng processes. Another approach simply employs in-
in factor-graphs based on a cross-edged pseudo-treeference methods instead of search. This approach will
The proposed method generates a modified acyclicbe technically easier than search methods. In the case,
graph that resembles the original factor-graph. In ad- several approximation (Rogers et al., 2011; Petcu and
dition, we presented a scheme of distributed searchFaltings, 2005a) and filtering methods reduce compu-
algorithm that generalizes complete search algorithmstation and the number of messages will be applied. In
on the constraint graphs and Max-Sum algorithm. addition, there are opportunities to partially integrate
Detailed analysis of the distributed search on the search and inference methods.
modified graphs, and a more sophisticated solution
method based on the proposed scheme will be in-

cluded in future works. To improve the proposed ACKNOWLEDGEMENTS

method, there are several directions of the research.
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