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Abstract:  The importance of Quality of Service management in service oriented environments has brought the need of 
QoS aware solutions. Proactive adaptation approaches enable composite services to detect in advance, 
according to their QoS values, the need for a change in order to prevent upcoming problems, and maintain 
the functional and quality levels of the composition. This paper presents a proactive adaptation mechanism 
that implements self-optimization based on fuzzy logic. The optimization model uses two fuzzy inference 
systems that evaluate the QoS values of composite services, based on historical and freshly collected data, 
and decide if adaptation is needed or not. Experimental results show significant improvements in the global 
QoS of the use case scenarios, providing reductions of up to 8.9% in response time and 14.7% in energy 
consumption, and an improvement of 41% in availability; this is achieved with an average increment in cost 
of 11.75 %. 

1 INTRODUCTION 

A composite service is a software solution with 
specific functionalities that can be seen as an atomic 
component in other service compositions, or as a 
final solution to be used by a consumer. The process 
of developing a composite service is called service 
composition, which consists in combining, in a 
structured way, the features provided by different 
services (Dustdar and Schreiner, 2005). 

The nature of service composition, dynamicity 
offered by the environments where services are 
executed and growing amount of available services 
(that may provide the same functionality), have 
brought the need of mechanisms focused in ensuring 
that the consumer will obtain the expected results 
when invoking a composite service. To achieve this 
goal, it is important to consider the QoS aspects of 
the services involved in the composition, as their 
drawbacks will be inherited by the composite 
service. However, knowing the QoS of the 
components is not enough to warranty the behaviour 
of the composition, as unexpected events may occur 
at runtime, for example, services becoming 
unavailable or showing discrepancies in their QoS 
(Châtel et al., 2010). As a result, various adaptive 
mechanisms have been proposed in order to restore 

and maintain the functional and quality aspects of 
the composition. The aim of adaptive mechanisms is 
to provide composite services with capabilities that 
enable them to morph and function in spite of 
internal and external changes, searching to maximize 
the composition potential and reducing as much as 
possible human involvement (Zeginis and 
Plexousakis, 2010). Based on the moment when 
adjustments take place, adaptation approaches are 
classified as either reactive or proactive. The former 
corresponds to adaptation actions performed in 
response to an incident, while the later is related to 
actions taken in advance, before an incident impacts 
the system (Metzger, 2011).  

This paper introduces a proactive adaptation 
approach for service composition that implements a 
self-optimization solution based on fuzzy logic. 
Fuzzy logic is an approximate reasoning technique 
suitable to deal with uncertainty (Zadeh, 1994), 
which can be used to support decision making in 
software systems. Current work in proactive 
adaptation for service composition is mainly focused 
on dealing with the decrease of the QoS values and 
service failures (Aschoff and Zisman, 2012, 
Yuelong et al., 2012, Leitner et al., 2010). On the 
other hand, approaches related to self-optimization 
are focused on the selection of services that provide 
the most appropriate QoS levels for the composition 
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(Ardagna et al., 2011, Calinescu et al., 2011, 
Cardellini et al., 2012). 

The proposed optimization model combines the 
analysis of historical QoS data and fresh data 
(collected at runtime from the different stages of the 
composite service execution) in order to identify the 
need of adaptation, which can be related to prevent a 
decrease in the global QoS of the composition, but 
also, the possibility of improving the global QoS 
levels. Composite services are considered to be 
workflows formed by tasks, and tasks to be Web 
service invocations. The use of the fuzzy support 
systems enables the evaluation of the QoS 
parameters and helps deciding whether adaptation is 
needed or not. If adaptation is needed, the fuzzy 
systems provide the parameters to be used during the 
service selection process.  

The approach has been implemented in a service 
composition framework and evaluated through the 
execution of two test cases. Results were compared 
with a non-adaptive approach. The major 
contributions for this paper are: 

 The optimization approach for service 
composition that evaluates the benefit of 
adaptation. 

 The use of fuzzy logic as a decision making tool 
to determine the need of adaptation in the context 
of proactive adaptation in service composition. 

The remainder of the paper is structured as follows: 
background is briefly described in Section 2. The 
proposed framework, service selection and 
optimization models are described in Section 3. 
Section 4 presents the experimental description and 
results. Section 5 discusses some related work. 
Conclusion and future work are given in Section 6. 

2 BACKGROUND 

2.1 Adaptation in Service Composition 

Adaptive mechanisms provide software systems 
with capabilities to: self-heal, self-configure, self-
optimize, self-protect, etc., which are implemented 
considering the objectives the system should 
achieve, the causes of adaptation, the system 
reaction towards change and the impact of 
adaptation upon the system (Cheng et al., 2009). 
Adaptation in service composition aims to mitigate 
the impact of unexpected events that take place 
during the execution of composite services, 
maintaining functional and quality of service levels. 
Important aspects that can be considered as part of 

adaptation solutions in service composition are listed 
as follows (Cardellini et al., 2012): 
 Adaptation goal is the purpose of adaptation, 

functional and/or non-functional (QoS). 
 Adaptation level defines those elements that will 

change in order to achieve the adaptation goal. 
 Adaptation actions are those used to solve the 

adaptation problem.  
 Adaptive mechanisms correspond to the 

approaches applied to implement the adaptation 
actions (e.g. agent-based, policy-based, rule-
based, etc.). 
 Stage of adaptation is the time when adaptation is 

performed (development time, compile/link time, 
load time and runtime).  
 Awareness levels describe the scope of 

information that will be available in order to 
adapt (Dustdar et al., 2010). 

2.2 Reactive vs Proactive Adaptation 

In service-based applications, reactive adaptation is 
triggered after problems have occurred, when 
situations like the use of faulty services or services 
that present undesirable QoS have already affected 
the application (Hielscher et al., 2008). The use of 
reactive mechanisms may cause increases in the 
execution time and financial loss, which can lead to 
user and business dissatisfaction (Aschoff and 
Zisman, 2012). Proactive approaches aim to deal 
with some of these drawbacks by detecting the need 
for a change, before reaching a point where a 
problem may occur.  

Situations that can be predicted in proactive 
adaptation approaches for service composition 
include: the impact of a new requirement, 
misbehaviour of a service and the existence of new 
services (Aschoff and Zisman, 2012). Techniques 
such as data mining, online testing, statistical 
analysis, runtime verification and simulation are 
applied during the prediction stage of the process 
with the aim of accurately predict the future 
behaviour of the system (Metzger, 2011).  

2.3 Fuzzy Logic  

Fuzzy logic is a method based on multi-valued logic 
which aims to formalize approximate reasoning 
(Zadeh, 1994). It is used to deal with different types 
of uncertainty in knowledge-based systems. Some of 
the relevant characteristics of fuzzy logic are fuzzy 
sets, linguistic variables and fuzzy rules. A fuzzy set 
is a collection of objects characterized by a 
membership function with a continuous grade of 
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membership which can be ranged between zero and 
one (Zadeh, 1965). A linguistic variable is a type of 
variable that uses words instead of numbers to 
represent its values (e.g. slow, medium, fast) (Zadeh, 
1994). The values used to define linguistic variables 
are called terms and the collection of terms is called 
the term set. A fuzzy rule is used to represent human 
knowledge using the form of IF-THEN within a 
fuzzy system (Li-Xin Wang, 1997). 

During the execution of a fuzzy system, crisp 
inputs are converted to linguistic variables, this 
process is known as fuzzification. The variables’ 
values are then evaluated using fuzzy rules, 
generating the linguistic values for the outputs. 
Finally, the defuzzification method uses these values 
to obtain crisp outputs values.  

3 SYSTEM MODEL 

An overview of the system model considered in this 
work is illustrated in Figure 1, which shows its core 
components: composition engine, adaptation 
manager, service binder, service selector, predictor 
and the sensors; and their interactions. This model 
was implemented with the aim of evaluating the 
proposed approach, enabling the execution of QoS 
aware service composition in an environment with 
proactive capabilities. 

The composition engine is the software platform 
responsible for executing the composite services 
(processes’ definitions) and hosting the components 
in charge of the adaptation process. Composite 
services are considered to consist of a series of 
abstract tasks that will be linked to executable 
services at runtime. 

The adaptation manager works semi-independent 
of the rest of the components and is constantly 
monitoring and analyzing not only information 
collected by the sensors, but also the historical data. 
The use of historical data helps understanding the 
service behaviour and enables the detection of any 
possible deviation in the values of the QoS 
parameters. During the execution of a composite 
service, sensors collect fresh data, looking at activity 
and service levels, and send this information to the 
monitor. The monitor queries the historical database 
to obtain information about previous executions and 
states of the current service, then, sends this 
information to the analyzer, which evaluates both, 
fresh and historical data, in order to determine the 
need of adaptation. If adaptation is needed, the 
analyzer sends a request of adaptation to the planner, 
which obtains the adaptation values that will be sent  

 
 
 
 
 
 
 
 
 
 
 
 

 

Figure 1: System model. 

to the adapter. This information is forwarded to the 
service binder, in order to maintain/improve the QoS 
of the composition. 

For each task in the composite service, the service 
binder invokes the service selector with the desired 
characteristics that the component service should 
provide. The service selector performs a search in the 
service registry based on the provided functional 
requirements. For each of the pre-selected services 
(candidates), the service selector invokes the 
predictor to obtain its estimated QoS. This 
information is sent to the service binder, which 
compares the candidates and selects the service that 
suits the request. If the need of a change was 
identified by the adaptation manager, the binder uses 
the adaptation values to perform the ranking and 
selection tasks. 

It is considered that at the time of invoking a 
composite service, the system has available data from 
previous executions of the different possible 
components, in order to obtain accurate predictions 
about these components’ quality characteristics. 
Also, for each task of the composite service, there 
exist at least two concrete services to invoke. 

3.1 QoS Model  

Services that offer the same functionality may be 
associated with several QoS attributes (Cardoso et 
al., 2004, Zeng et al., 2004), providing different QoS 
levels. By evaluating these attributes within a set of 
services that share the same goals, consumers can 
search/select components to be used in their 
applications. 

The QoS attributes of a service can be evaluated 
during design and execution time. At design time, 
these attributes help in order to build a composite 
service based on the QoS requirements of the user. 
While at execution time, they can be monitored to 
maintain the desired QoS level. Information about 
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these attributes can be obtained from the service’s 
profile (Hwang et al., 2007), nevertheless, when this 
information is not available, it can be obtained by 
analyzing data collected from past invocations 
(Cardoso et al., 2004). 

In this work, the quality attributes that will be 
considered for each service are response time, cost, 
energy consumption and availability.  
 Response time: time consumed between the 

invocation and completion of the service 
operation (Dai et al., 2009); 

 Cost: fee charged to the consumer when 
invoking a service (Cardellini et al., 2012); 

 Energy consumption: amount of power 
consumed by a server over a period of time 
(Buyya et al., 2010); 

 Availability: probability that the service is up 
and ready for immediate consumption (W3C 
Working Group, 2003). 

Considering response time and cost enables the 
selection of faster and cheaper services, providing a 
competitive advantage (Cardoso et al., 2004). Both 
parameters have been used in other approaches, like 
those presented in (Dai et al., 2009, Ying et al., 
2009, Ardagna and Mirandola, 2010, Cardellini et 
al., 2012). 

 The amount of energy used by data centres has 
not only economical but also environmental impacts. 
Energy efficiency is becoming a key topic due to 
high energy costs and governments’ pressure to 
reduce carbon footprints (Kaplan et al., 2009). 
Energy consumption has been selected as the third 
parameter because of the importance of energy 
efficiency when managing computing infrastructure 
and services.  

The last parameter that has been selected is 
availability. By knowing the availability values of 
the different services, it is possible to select a subset 
of components that will provide a composition with 
higher probabilities to be fulfilled. Work that 
considers availability has been presented in (Huang 
et al., 2009, Canfora et al., 2008, Zeng et al., 2004). 

To compute the values of these parameters at 
execution time, three situations have been 
considered within the composite service structure: 
single, sequential and concurrent service 
invocations. When computing the QoS parameters of 
a single service invocation, the QoS values of the 
activity that performs the invocation corresponds to 
the QoS values of the invoked service. For activities 
in a sequential structure, the values of response time, 
cost and energy consumption are summed for the 
different activities with service invocations, while 
availability is obtained by multiplying them. 

ሺܲሻݐܴ  ൌ 	∑ ሻݏሺݐܴ

ୀଵ        (1) 

ሺܲሻܥ  ൌ 	∑ ሻݏሺܥ

ୀଵ           (2) 

ሺܲሻܿܧ  ൌ 	∑ ሻݏሺܿܧ

ୀଵ        (3) 

ሺܲሻݒܣ  ൌ ∏ ሻݏሺݒܣ

ୀଵ 	          (4) 

For activities in a concurrent/parallel structure, 
the value of response time is considered as the 
maximum response time of the completed activities; 
values of cost and energy consumption are summed; 
and availability is the minimum availability value 
among the service invocations within the structure. 

ሺܲሻݐܴ  ൌ  ሻ      (5)ݏሺݐܴ	ୀଵ,..,ݔܽ݉	

ሺܲሻܥ  ൌ 	∑ ሻݏሺܥ

ୀଵ        (6) 

ሺܲሻܿܧ  ൌ 	∑ ሻݏሺܿܧ

ୀଵ        (7) 

ሺܲሻݒܣ  ൌ 	݉݅݊ୀଵ,..,	ݒܣሺݏሻ	      (8) 

For equations (1) to (8), ݏ corresponds to an 
activity with a service invocation within the 
composite service ܲ. 

3.2 Service Selection Model 

Estimation of QoS values is a key step during service 
selection process. Estimated values are calculated 
using historical QoS data recorded from previous 
executions. This data is filtered, discarding values 
considered as outliers and the average of the last	ܰ 
executions of the remaining subset is obtained. 

Concrete services are searched in the registry by 
name, assuming that this parameter 
includes/describes the service’s functionality. The 
resulting set of candidate services is sorted according 
to the relationship between their estimated QoS 
values. Due to these attributes having different units 
of measure, their raw values are normalized before 
being processed and ranked. The following formula 
is used to normalize response time, cost and energy 
consumption, which are negative parameters (lower 
the value, higher the quality). 

ܸ ൌ
௫	ି		

௫	ି	
                             (9) 

A different formula is used for availability, as it is 
a positive parameter (higher the value, higher the 
quality).  

ܸ ൌ
		ି		

௫	ି	
                           (10) 

In both equations, ݉ܽݔ and ݉݅݊ correspond to 
the maximum and minimum values of the evaluated 
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QoS parameter, respectively; and ݍ  correspond to 
the estimated value for the next execution. When 
  = ݉݅݊, then ܸ = 1. After normalizing theݔܽ݉
corresponding values, results are computed using the 
Simple Additive Weighting formula: 

ܹ ൌ 		 ଵሻݓሺݐݎ 	ܿሺݓଶሻ  ݁ܿሺݓଷሻ 	ܽݒሺݓସሻ	     (11) 

Where ݐݎ is the service estimated response time; 
ܿ is the service estimated cost; ݁ܿ  is the service 
estimated energy consumption; ܽݒ is the service 
estimated availability; and ݓଵ, ݓଶ, ݓଷ and ݓସ 

correspond to assigned weights where ݓଵ, ݓଶ, ݓଷ, ݓସ 

≤ 1 and ݓଵ+ ݓଶ+ ݓଷ+ ݓସ= 1. 

3.3 Optimization Model 

The proposed optimization model works as part of a 
proactive adaptation mechanism. It combines the 
analysis of historical and fresh data. QoS information 
of the different services and states of the composition 
is collected from service, task and process 
perspectives, where service corresponds to concrete 
Web services; task to elements within the composite 
service that invoke services; and process to the entire 
composition (service workflow). Based on this 
information, it is possible to take decisions about 
future actions. 

The QoS parameters are obtained when the 
service invocation is performed. Response time is 
measured during the service’s execution; the values 
of cost and energy consumption are retrieved from 
the service’s WSDL file; while the value of 
availability is obtained based on historical data. 
According to the structures of the composite service, 
the QoS values of each task are computed using 
equations (1) to (8) and stored in the historical QoS 
data base, considering both individual values and 
accumulated. These values are used in order to obtain 
the global QoS of the composite service. 

The service selection model previously described 
uses as weights for equation (11) the results of the 
optimization model evaluation. This model is based 
on two fuzzy support systems, which assess the QoS 
of the composition, determine the need of adaptation 
and, when adaptation is needed, obtain the weight 
values to be used during service selection. The 
optimization mechanism identifies when the QoS of 
the composition is decreasing. It also considers 
situations where a number of the accumulated QoS 
values of the previous activity in the process are 
better than expected, which provides the possibility 
of improving other QoS parameters.  

The idea of using fuzzy logic is to understand the 
relationship between the QoS values of the 
composite service and the need of adaptation. In this 
context, QoS parameters can be expressed using 
linguistic variables. Two inference engines have been 
defined to 1) obtain the benefit of adaptation, 2) 
obtain the weights to be used during service 
selection. Each of these systems uses its own 
linguistic variables and rules. 

The first fuzzy support system evaluates the QoS 
of the composite service every ܰ milliseconds, in 
order to identify as soon as possible the need of 
adaptation. It uses as inputs the measured QoS values 
collected from the composite service execution. The 
defined input variables are response time, cost, 
energy consumption and availability, which are 
expressed with three terms low, medium and high. 
To establish these terms for each of the linguistic 
variables, an interval is defined at runtime using data 
collected from previous executions. Historical data is 
analyzed, obtaining maximum/minimum values and 
standard deviations from each of the QoS parameters. 
Sigmoidal functions (open to the left and right) are 
used to define the low and high terms, while Gauss 
function is used to define the medium term. The 
system takes the inputs and based on the 
corresponding fuzzy rules, provides the estimated 
benefit of adaptation. Four different levels of benefit 
of adaptation (low, medium, high and very high) 
were established, falling in the interval [0, 1], and 
defined with Gauss functions. 

The second fuzzy support system uses the value 
of the benefit of adaptation (output of the first 
system) and the errors between the estimated and the 
measured QoS as inputs. The error value is computed 
per each parameter using the following formula: 

݁	ሺሻ ൌ
௫	ሺሻି௫బ	ሺሻ

௫బሺሻ
                        (12) 

Where ݔሺሻ is the estimated data; and ݔሺሻ is 
the real measured data.  

Input variables corresponding to the QoS errors 
are expressed with three terms, low, medium and 
high, falling in the interval [-1, +1]. Benefit of 
adaptation is expressed with four terms, as defined in 
the first fuzzy system.  

By evaluating the different errors and the benefit 
of adaptation, the system provides the values to be 
used as weights during the service selection process. 
Output variables (response time weight, cost weight, 
energy consumption weight and availability weight) 
are expressed with five terms,  very low, low, 
medium, high and very high, falling in the interval  
[0,1] and are defined using Gauss functions. 
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The algorithm presented in Table 1 describes the 
QoS evaluation method applied during the 
optimization process, which involves the use of the 
fuzzy systems previously described. Once the 
execution of a composite service starts, the 
adaptation manager constantly evaluates its QoS and 
obtains the errors between estimated and measured 
values (steps 1 to 12). The measured QoS values are 
used as inputs for the first fuzzy system. The benefit 
of adaptation is obtained (step 13) and evaluated 
(step 14); if it is medium or higher then there is a 
need of adaptation. When adaptation is needed, the 
system determines the adaptation weights. This 
action is performed by the second fuzzy system 
(steps 15 to 18). Weights are then adjusted, to fulfil 
the restriction ߙ +	ߚ+ ߛ+	߶= 1 (step 19). Finally, 

the algorithm returns the weight values 
 ߶ (step 20). These values are sent to	andߛ	,ߚ	ߙ
the service binder to be used at the moment of 
selecting the next service. When adaptation is not 
needed, the service binder ranks the services using 
fixed weight values. 

4 EVALUATION 

To evaluate the proposed optimization approach, an 
experimental environment was setup and two 
composite services were developed as test cases. 
Experiments were carried out to address the 
following question: 

 Does the use of a proactive adaptation 
approach based on self-optimization helps 
improving the global QoS of a composition? 

4.1 Experimental Environment 

The experimental environment consists of 4 nodes 
configured on a WAN, distributed between United 
Kingdom and Germany, with estimated values for 
bandwidth and latency around 32Mbit/s and 29ms, 
respectively. Node 1 is a computer with Windows 
Vista, 4GB RAM and one Intel core2 duo 2.1GHz 
processor (located in United Kingdom). This node 
hosts the BPEL engine (Apache ODE 1.3.4), service 
registry (jUDDI 3.0.4) and historical data base 
(MySQL 5.1.51). It is in charge of coordinate the 
execution of the compositions and record all the 
gathered information. Nodes 2 to 4 are virtual 
machines setup on remote servers (located in 
Germany), each of the VM’s uses Debian Squeeze 
x86 and 1GB RAM. These nodes host one 
application server (Tomcat 6.0.35.0) each, which 
contains 3 sets of Web services. In total there are 9 
Web services deployed per composition’s activity.  

The initial values of the QoS parameters were 
established based on the node where the service is 
running and the corresponding set. Delays are 
inserted on some of the service sets, to obtain 
different response times, not only based on the 
network latency, but the Web services performance. 
This information is shown in Table 2. 

Values of the cost and energy consumption 
change over time, or between services’ executions. 
This adds dynamicity to the test environment and 
helps obtaining sensible results; also avoiding the 
invocation  of   only  one   service  per each of the 
tasks in the composite services. To turn cost into a 
dynamic QoS value, the number of times  a  service 

Table 1: QoS evaluation algorithm. 

Input:  
rt   response time 
cost cost 
ec energy consumption 
av availability 
eRt   response time error 
eCost cost error 
eEc energy consumption error 
eAv availability error 
 
Output:  
߱  benefit of adaptation 
   response time weight ߙ
 cost weight ߚ
 energy consumption weight ߛ
߶ availability weight 

 
(1) Sort by response time 
(2) rt  Obtain measured response time 
(3) eRt  Obtain response time error 
(4) Sort by cost 
(5) cost  Obtain measured cost 
(6) eCost  Obtain cost error 
(7) Sort by energy consumption 
(8) ec  Obtain measured energy consumption 
(9) eEc  Obtain energy consumption error 
(10) Sort by availability 
(11) av  Obtain measured availability 
(12) eAv  Obtain availability error 

//fuzzy system 1 
(13) ߱  Obtain benefit of adaptation 
(14) if ߱ >= medium then 
             //fuzzy system 2 
  Obtain response time weight ߙ (15)
  Obtain cost weight ߚ (16)
  Obtain energy consumption weight ߛ (17)
(18) ߶  Obtain availability weight 
(19) Adjust weights 
(20) return ߙ	ߚ,	ߛand ߶ 
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has been invoked within a period of time is evaluated 
continuously. Based on this information, it is possible 
to establish a new cost based on the demand (number 
of times the service is invoked), assuming that higher 
the demand, higher the cost. Cost value is updated on 
the WSDL file of each service.  

Regarding energy consumption, each of the 
servers where the Web services are executed is 
assumed to have different hardware and software 
configurations. Servers information and their 
characteristics were selected from the Energy Star 
report (Energy Star, 2012). Using the model 
proposed in (Buyya et al., 2010), which is based on 
the percentage of CPU usage, it is possible to 
determine an approximate value to the server energy 
consumption. 

ܲሺݑሻ ൌ ܲ௫ ∙ 	݇  ሺ1 െ ݇ሻ ∙ ܲ௫ ∙  (13)            ݑ	

ܧ ൌ  ܲሺݑሺݐሻሻ௧                             (14) 

Where ܲሺݑሻ is the power consumed in an 
instance of time; ܲ௫  is the power consumed when 
the server is fully utilized; ݑ is the utilization level; 
and ݇ is the fraction of power consumed by the idle 
server. ܧ is the total energy consumed by a node over 
a period of time ݐ. 

Servers’ utilization is considered to be variable 
over time. The power consumed by a server is 
obtained periodically and exposed on the WSDL files 
of the corresponding services. It is computed using 
equations (13) and (14) and the data presented in 
Table 2. 

Table 2: QoS parameters initial setup. 

Server Set 
Time 
delays 
(ms) 

Cost 

Energy 
Consumption 

(W/sec) 
Availability

Idle Load 

Node 2 
S1 0 120 

50.75 129.5 
0.9 

S2 350 80 0.9 
S3 200 100 0.9 

Node 3 
S1 0 150 

45.27 81.9 
0.64 

S2 350 100 0.62 
S3 200 120 0.63 

Node 4 
S1 0 100 

210.85 388.3 
0.5 

S2 350 60 0.46 
S3 200 80 0.48 

4.2 Experiment Description 

Two test cases have been modelled in order to asses 
the proposed approach. These models are BPEL 
(OASIS, 2007) processes that represent typical 
examples for service composition scenarios. Test 

case 1 is illustrated in Figure 2(a), it implements an 
order booking process that validates the product 
availability, obtains the best price of the product from 
two different providers, selects the best provider, 
performs the payment, and finally completes the 
order. Test case 2 implements a travel planning 
process, as shown in Figure 2(b).  It validates a credit 
card, performs flight and hotel reservations in 
parallel, and finally invokes a car rental operation. 
For matter of simplicity, both diagrams only depict 
those activities that involve service invocations. 

Per each of the tasks in the processes, there are 9 
candidate services, distributed among the servers 
(nodes) that fulfil the required functionality and offer 
different QoS, giving a total of 45 candidate services 
to be used in test case 1 and 36 for test case 2. These 
services were previously registered into the service 
registry (UDDI), and executed several times to 
populate the historical data base and enable the 
estimation of their QoS attributes. Both processes are 
hosted and invoked from Node1.  

In order to evaluate the proposed approach, both 
test cases where executed 100 times. These 
executions were performed from two different 
perspectives: 1) using the proactive optimization 
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Figure 2: Test cases. (a) Order booking process. (b)
Travel planning process.  

Proactive�Adaptation�in�Service�Composition�using�a�Fuzzy�Logic�Based�Optimization�Mechanism

263



mechanism; 2) using a non-adaptive method. The 
experiment was repeated 5 times to assess the 
consistency of the results based on statistical 
analysis. 

4.3 Evaluation Results 

The behaviour of the proactive optimization 
mechanism was compared with a non-adaptive 
approach, where service selection was performed 
using fixed weights set to 0.25. Initial results show 
improvements in the global QoS values of the 
composition when using the proposed approach. 
Global QoS refers to the final values of the different 
QoS properties (response time, cost, energy 
consumption and availability). 

The plots shown in Figure 3 depict the behaviour 
of the order booking process, showing the mean 
values of the different QoS parameters after 
performing 5 sets of 100 runs. For the proposed 
approach, the values of cost and energy consumption 
change over time, as previously described, while for 
the non-adaptive approach, remain constant. For both 
cases, the value of availability changes according to 
the behaviour of the component services. 

After analyzing the value of each of the QoS 

parameters, in both processes, it was identified that, 
in order to improve response time, energy 
consumption and availability, there was an increment 
in the composition’s cost.  

In test case 1, results show that the proposed 
approach provides a mean reduction of 2% with a 
standard deviation of 6.7% in the measured response 
time values. Also, it can be noticed from Figure 3(a), 
that it presents a more stable behaviour, without 
showing high peaks, as compared to the non-adaptive 
approach. This is due to the constant evaluation of 
the QoS parameters during execution.  

In terms of energy consumption, it is important to 
notice that this value is not only based on power 
consumption, but also influenced by time. As a 
result, a small response time may produce a small 
energy consumption value. Figure 3(b) shows the 
values corresponding to energy consumption, which 
have a similar behaviour to response time, and 
provide a mean reduction of 14.7% with a standard 
deviation of 18.9%. Results also indicate that there is 
a significant improvement in the processes’ 
availability, presenting a mean increase of 41% with 
a standard deviation of 35%. The availability values 
corresponding to the order booking process are 
illustrated in Figure 3(c). Regarding cost, it can be 
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Figure 3: Order booking process results. (a) Response time. (b) Energy consumption. (c) Availability. (d) Cost. 
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noticed from Figure 3(d) that the use of the proposed 
approach turns into more expensive composite 
services. It shows a mean increase of 11% with a 
standard deviation of 8.4%.  

Results obtained from test case 2 show a similar 
behaviour; where response time, energy consumption 
and availability values are improved, while cost 
increases. In terms of response time, it shows a mean 
reduction of 8.9% with a standard deviation of 16%. 
For energy consumption, the obtained mean 
reduction is 4.6% with a standard deviation of 29%. 
Regarding availability, it provides an improvement of 
18% with a standard deviation of 25%. Finally, in 
terms of cost, there is an increment of 12.5% with 
standard deviation of 6.8%. 

Based on the analysis of the weight values 
obtained by the optimization model and sent to the 
service binder, the parameter that had the higher 
impact within the adaptation process was energy 
consumption, followed by response time. Because of 
this, at the moment of selecting new services to be 
invoked, priority would be given to those that are 
being executed on servers with lower energy 
consumption, and lower response time. Which, based 
on the QoS configuration, are the services that also 
involve higher costs. Different QoS configurations 
may give different results; however, because of the 
use of multiple QoS criteria, it is likely to find that 
not all the parameters can be improved.  

5 RELATED WORK 

Several works have been proposed to mitigate the 
impacts of unexpected events during the execution of 
services, ensuring/maintaining the functional and 
quality levels. These approaches can be classified 
based on the moment when adaptation takes place 
into the categories: reactive and proactive. Reactive 
adaptation occurs after the appearance of an 
undesired event, while proactive adaptation aims to 
predict and prevent the occurrence of the problem 
(Aschoff and Zisman, 2012).    

Some of the approaches that support reactive 
adaptation implement self-* properties. Self-healing 
mechanisms aim to prevent composite services from 
failing, from functional and non-functional 
perspectives. Projects like those presented in 
(Canfora et al., 2008, Erradi and Maheshwari, 2008, 
Dai et al., 2009, Wu et al., 2009, Ying et al., 2009, 
Ardagna et al., 2011, Wenjuan et al., 2010, Baker et 
al., 2013) apply self-healing approaches, where new 
services are selected and invoked after a functional 
failure or a QoS constraint violation.  Self-

optimization mechanisms are closely related to the 
selection of services at runtime, in order to maintain 
the expected QoS of the entire composition. 
Examples of works belonging to this category are 
described in (Ardagna et al., 2011, Calinescu et al., 
2011, Cardellini et al., 2012). 

Approaches that support proactive adaptation are 
presented in (Hielscher et al., 2008, Tosi et al., 2009, 
Leitner et al., 2010, Aschoff and Zisman, 2012, 
Metzger, 2011, Yuelong et al., 2012, Sammodi et al., 
2011). The work presented in (Aschoff and Zisman, 
2012) introduces a proactive adaptation approach 
that enables service replacement (1-1, 1-n, n-1, n-m) 
when it detects situations that may cause the 
composition to stop its execution (unavailable or 
malfunctioning services); or that allow the 
composition to continue its execution, but not in its 
best way. Also it considers the emergence of better 
services and new requirements. The approach uses a 
composition template as start point and selects a set 
of candidate services to be used in the composition 
and their replacements. The approach introduced in 
(Yuelong et al., 2012) combines runtime information 
with design-time specifications (of each component 
service within a composition), in order to construct a 
k-step model of the current service states. The 
resulted model can be used to be compared with the 
desired behaviour of the composition. The work in 
(Leitner et al., 2010) aims to minimize Service Level 
Agreement (SLA) violations. It uses predictions of 
SLA violations generated with regressions of 
monitored and estimated data. These predictions are 
evaluated at defined checkpoints. In (Hielscher et 
al., 2008), a framework that uses online testing to 
trigger proactive adaptation in service-based 
applications is described. Test objects can be single 
or composite services. While performing online 
testing, if an online test fails or deviates from its 
expected behaviour, the framework will trigger 
adaptation to avoid undesirable consequences. One 
of the application scenarios for this approach is 
composite services. The work presented in (Tosi et 
al., 2009) proposes a self-adaptive mechanism based 
on the use of test cases to obtain possible 
mismatches between requested and provided 
services. When the diagnosis mechanism reveals 
mismatches, it triggers adaptation strategies that 
update the structure and the behaviour of the client 
application to solve the identified problems. Even 
though this approach is not mainly focus in service 
composition, it presents a proactive mechanism that 
works in service-based applications.  In (Sammodi et 
al., 2011) it is presented a proactive approach for 
adaptation in service-based applications that 
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combines monitoring, online testing and quality 
prediction. When a service is likely to be used with a 
high frequency, it is selected to be tested. The use of 
pre-defined test cases (concrete data inputs) enables 
the system to collect information about the 
behaviour of the services and complement the data 
gathered during monitoring. Finally, the work 
described in (Metzger, 2011) discusses two main 
directions than can be followed in order to perform 
proactive adaptation in service oriented systems. The 
first direction is to improve the failure predictions 
techniques. Some prediction techniques identified by 
the authors include data mining, online testing, 
runtime verification, statics analysis and simulation. 
The second direction is by dynamically estimating 
the accuracy of the predicted failures during the 
operation of the service-oriented system.  

Although these approaches are closely related 
with the work described in this paper, there are 
significant differences:  

 The QoS parameters considered in this study 
are response time, cost, energy consumption 
and availability, while related approaches 
mainly focus on response time.  

 Adaptation is not limited to failure prevention, 
but also considers the possibility of 
improvement in the QoS levels.  

 The use of the benefit of adaptation, obtained 
from the measured QoS values, to determine 
whether adaptation is needed or not.  

 The use of fuzzy logic as a decision making 
tool to determine the need of adaptation in the 
context of proactive adaptation in service 
composition. 

6 CONCLUSION AND FUTURE 
WORK 

This paper presents a proactive adaptation approach 
for service composition that implements a self-
optimization mechanism, which aims to 
improve/maintain the quality levels of the composite 
services. At runtime, this mechanism performs a 
continuous evaluation of the composite services’ 
behaviour and triggers adaptation when the benefit of 
performing this action is considered to be significant. 
In order to perform this decision making process, it 
uses fuzzy support systems and carries out an 
analysis on historical and fresh QoS data. 

Evaluation results show that the proposed 
mechanism improves the global QoS values of the 
compositions, showing significant improvements 

regarding response time, energy consumption and 
availability. However, it was not possible to improve 
all the considered quality parameters, as there was an 
increment in the cost of the composite services. This 
behaviour is shown due to the relationship between 
the values of quality parameters exhibit by the 
services, as those services with lower energy 
consumption and higher availability, also display 
higher costs. 

Future work includes the use of Service Level 
Agreements on top of the composite services, in 
order to provide a contract between the provider and 
consumer. Also, it is considered the extension of the 
adaptation mechanism, by adding features that enable 
service replacements considering different structures 
with the forms 1-n, n-1 and n-m. Finally, with the 
aim of performing a comparison, it is considered the 
implementation and evaluation of mechanisms 
proposed in the related work, using the same 
composition environment.   
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