
Ontology Integration with Contextual Information

Dan Wu
Software and Computer Systems, School of Information and Communication Technology, Stockholm, Sweden

Keywords: Ontology Integration and Merging, Non-contradictory Ontology Integration, Context, Rules.

Abstract: By studying ontologies in an ontology repository, context rules are developed to improve ontology
integration result. A context rule contains conditions for identifying a context. These context conditions are
described by, so called, context criteria, which are, e.g., author and domain of an ontology. When the
conditions, in a rule, are met, the rule is fired and the contextual information, in the body of the rule, is
inserted into the reasoner, which is used for ontology integration. An example shows the construction of a
context rule. The rule is used for an ontology integration. The integration result is indeed improved
comparing with integration without contextual information.

1 INTRODUCTION

Semantic ontology integration and matching is
important in many applications such as the semantic
web and the knowledge and information integration
(Euzenat et al., 2007). Although methods (Meilicke
et al., 2007; Aleksovski et al., 2006 a,b) have been
proposed, improvements are needed.

An approach of using contextual information is
proposed here to improve the ontology integration.
Our previous works show that different ontologies
are considered as different terminology definitions
from various perspectives (Håkansson and Wu,
2013); perspectives are then described with context
and used for reasoning among different ontologies in
a repostitory (Wu, 2013).

The paper is structured in five parts. Part 2
discusses related work. In part 3, the repository and
context in the repository is presented. Part 4 shows
an example of building contextual rules and how to
apply them to integrate ontologies; in part 5, the
discussion is given, and the last part concludes the
work and present future work.

2 RELATED WORK

Meilicke and Stuckenschmidt (2007) combined
numerical opimization and logical reasoning to
improve the ontology matching result. It uses
hungarian method to compute the optimal one-to-

one mapping and then check if the mapping is
consistent with the union of the ontologies. The idea
of consistency checking is very similar to our
apporach. However, we use rules to resolve the
inconsistency, the results are different. And we
create an integrated ontology that extend the
previous ontologies, while Meilicke and
Stuckenschmidt generate a mapping between two
ontologies.

Aleksovski (2006 a, b) used the background
knowledge for ontology matching. The background
knowledge is an ontology covering the source and
target ontologies and with rich semantic conceptual
descriptions of the domian. In our approach, the
contextual information is an ontology, however
identified by context criteria, which domain is only
one criterion. Context can be identified by a
combination of seven criteria. The reasoning
processes in two approaches are also different.

In an industrial scenario, a context ontology is
used to improve the matching result of an enterprise
ontology and a target ontology (Lin el al., 2010).
Abstract context and operational context are
modelled. During the matching process, the
enterprise ontology, the target ontology and the
context ontology are matched in turn. The
overlapping terminologies of these ontologies are
assigned with different weights or altering
algorithms. This work uses a context ontology,
however, created for the specific scenario. It is not
certain if the context ontology can be reused or not.

485Wu D..
Ontology Integration with Contextual Information.
DOI: 10.5220/0004820504850490
In Proceedings of the 6th International Conference on Agents and Artificial Intelligence (ICAART-2014), pages 485-490
ISBN: 978-989-758-015-4
Copyright c
 2014 SCITEPRESS (Science and Technology Publications, Lda.)

The processes and the algorithms of handling the
match and using context are also different.

3 CONTEXT AND REASONING

An OWL 2 ontology repository is used for reusing
and integrating ontologies (Wu, 2013). The
ontologies in the repository can be integrated to
generate ontology intersections that covering
broader and deeper descriptions of ontologies (ibid.)

3.1 Context and the Context Rules

The ontology and ontology intersections in the
repository can be used as context for other ontology
integration. Context criteria describe the context.
Instead of using a term, criteria are used, such as,
components of ontologies, metadata and
administrative data of ontologies. The components
of an ontology are entities of ontologies, e.g., a class
or a property. The metadata of ontologies are
domain information, author of ontology, purpose of
ontology, context agent and time for creating the
ontology. Context agent is the context user who can
be either a person or an application. The
administrative data is the ontology and the context
identification. In the repository, the context criteria
are represented as entity of ontology, domain of
ontology, author of ontology, purpose of ontology,
context agent, time of ontology,
OntologyIdentification and Contextidentification.
The context criteria may be used all together or with
any combinations of the criteria. Thus, context is
defined as:

Context := {ontologyEntity} | ontologyDomain |
ontologyAuthor | ontologyPurpose | contextAgent |
time | ontologyIdentification | contextIdentification

Context rules relate the situation of the ontology
integration with ontologies in the repository. The
rules are in the form of if context () then
contextualInformation. The function context () uses
context criteria to delimit situations. The
contextualInformation is a collection of expressions
and axioms from an ontology or an ontology
intersection.

For example, if several ontologies define class
"author" and "paper" for conference domain, the
contextual information extracted from the ontologies
or ontology intersections is presented in a context
rule as:

If context (entities ("author", "paper") and
domain ("conference"))

Then contextualInformation (Author
ConferenceMember; Author ⊏User; submitPaper
(Author,Paper); writePaper ≡ hasAuthor ━ ;
hasAuthor(Paper,Author);

contributes (Person,Conference_document);
has_authors ≡ contributes ━ ;
has_authors(Conference_document, Person); etc.…)

This rule fires when a situation that is described
with "author" and "paper" entities and the domain
"conference". The contextual information is, then,
used for the reasoning for integrating ontologies.

Context rules are used to build up the context
knowledge. Context knowledge tackles the
conceptual and the pragmatic heterogeneities of
ontologies. For example, different ontology authors
create different ontologies for the same domain.
Then, the different perspectives of the authors are
integrated and defined in the consequence part of the
context rule. The integrated ontologies cover a
broader and deeper conceptual description of the
initial ontologies (Wu, 2013). These integrated
ontologies are, then, used in context rules.

3.2 The Reasoning Process

The process for integrating task of two ontologies is
described below, see Figure 1.

Figure 1: Process of contextual ontology integration.

From left to right, the integration starts with two
input ontologies Q and Q'. The ontology intersection
is produced through the non-contradictory process
(Wu, 2013). The generated ontology intersection is
an independent ontology with its own identification
in the repository (ibid.). Then context rule is
identified to refine the ontology intersection result.

By examining the ontology intersection from the
first step, the knowledge expert chooses the proper
context criteria values. Through the integration
module, the values are added into the rule engine.

ICAART�2014�-�International�Conference�on�Agents�and�Artificial�Intelligence

486

The rule engine fires the most specific rule, i.e., the
most conditions are satisfied by the context criteria.
The integration module will take the
contextualinformation from the fired rule, and add it
as the contextual information into the OWL reasoner
to help to infer and refine the integration of the
ontology intersection. This refining process is an
integration of two ontologies, between the ontology
intersection and the contextual information, with the
help of integration rules. Finally, the integration
module generates the result, the contextual ontology
intersection. The process starts with two ontologies
and ends with the contextual ontology intersection as
the result.

4 AN EXAMPLE

This section describes an example to illustrate the
process of the contextual ontology integration. The
task is to integrate two ontologies using a context
rule. Ontologies are downloaded from OAEI 2012
ontology evaluation website
(http://oaei.ontologymatching.org/2012/conference/i
ndex.html). Three ontologies, “cmt.owl”,
“cocus.owl” and “conference.owl”, are downloaded
first in the repository and used for generating a
context rule. New ontologies are downloaded later
for showing the integration with the context rule.

4.1 The Context Rules

By integrating the three ontologies with the non-
contradiction process, an intersection is generated.
Since all ontologies describe conference domain, a
context rule is generated for the domain of
conference. The ontologies are integrated two by
two because the non-contradiction process takes
only two ontologies at a time. In other words,
“cmt.owl” is integrated with “cocus.owl” first. The
intersection of them is then integrated with the third
ontology “conference.owl”. The result is an
intersection of the three ontologies. Since terms of
"Author" and "Paper" are commonly used in the
domain of conference, this example uses only the
definitions concerning these two terms. All the
descriptions that contain "Author" and "Paper" are
extracted from the ontologies. Protégé is used to
extract the class usages and the result is presented in
Table 1.

Table 1: The ontologies in the repository.

Cmt.owl Author ConferenceMember
Author ⊏ User
AuthorNotReviewer ⊏ Author
Co-author ⊏ Author
∀x,y: (x,y)  (submitPaper)op implies x
Author and y Paper
(writePaper)op={(x,y)|(y,x)  (hasAuthor)op}
∀x,y: (x,y)  (hasAuthor)op implies x  Paper
and y  Author
∀x,y: (x,y)  (markConflictOfInterest)op implies
(x  Author | x  Chairman | x  Reviewer) and
y  Paper
Paper ⊏	Document
Paper⊓Reviewൌ∅
PaperAbstract ⊏	Paper
PaperFullVersion ⊏	Paper
∀x,y: (x,y)  (acceptPaper)op implies x 
Adminstrator and y  Paper
∀x,y: (x,y)  (acceptedBy)op implies x  Paper
and y  Administrator
acceptPaper≡acceptedBy━
∀x,y: (x,y)  (assignedTo)op implies x  Paper
and y  Reviewer
∀x,y: (x,y)  (hasBeenAssigned)op implies x 
Reviewer and y  Paper
∀x,y: (x,y)  (co-writePaper)op implies x  Co-
author and y  Paper
∀x,y: (x,y)  (hasBid)op implies x  Paper and
y  Bid
∀x,y: (x,y)  (hasCo-author)op implies x 
Paper and y  Co-author
∀x,y: (x,y)  (hasDecision)op implies x  Paper
and y  Decision
∀x,y: (x,y)  (readByReviewer)op implies x 
Paper and y  Reviewer
∀x,y: (x,y)  (readPaper)op implies x 
Reviewer and y  Paper
∀x,y: (x,y)  (rejectPaper)op implies x 
Administrator and y  Paper
∀x,y: (x,y)  (rejectBy)op implies x  Paper
and y  Administrator

Cocus.owl Author ⊏ User
Corresponding_Author	⊏	Author	
Paper ⊏	Document
Abstract ⊏	Paper
Full_Paper ⊏	Paper
Invited_Paper ⊏ Paper
Short_Paper ⊏ Paper

Conference.
owl

Regular_author⊏Conference_contributor
Contribution_1th‐author	⊏	Regular_author
Contribution_co‐author	⊏	Regular_author
∀x,y: (x,y)  (has_authors)op implies x 
Conference_Document and y  Person
∀x,y: (x,y)  (contributes)op implies x  Person
and y  Conference_document
Paper⊓Extended_abstract	ൌ	∅
Paper ⊏	Regular_contribution
∀x,y: (x,y)  (has_an_abstract)op implies x 
Paper and y  Abstract
∀x,y: (x,y)  (is_the_1th_part_of)op implies x 
Abstract and (y  Paper | y  Poster | y 
Presentation)

Ontology�Integration�with�Contextual�Information

487

First, the signatures of ontology “cmt.owl” and
“cocus.owl” are extracted and four sets of entities
are produced: two sets are their labels of the classes;
and two sets are their labels of object properties.
Second, the comparison of syntax of the sets of
labels of the classes and the object properties are
conducted. Synonyms are identified from WordNet
(http://wordnetweb.princeton.edu/perl/webwn). The
string-identical labels and synonyms from the entity
candidates are used for generating assumptions. The
third step is to test the assumptions with the
ontologies one by one and check the contradiction
between them. Integration rules are used to handle
the process and conflicts. An integration rule is for
example: If string-identical (Q.c, Q'.c') and
synonyms (Q.m. Q'n) and (Q.c ⊏ Q.m | Q.m ⊏	 Q.cሻ
and (Q'.c' ⊏ Q' n | Q'.n ⊏ Q'.c') then c ≡ c'. This
rule says that to merge two string identical class c
and c' in two ontologies if they share either the super
classes that are synonyms or children classes that are
synonyms. The non-contradiction part is preserved
in the ontology intersection of ontologies “cmt.owl”
and “cocus.owl”. The ontology intersection is then
integrated with “conference.owl” following the same
non-contradiction process to generate the final
intersection of the three ontologies. The ontology
intersection of the three ontologies is used for
building a context rule.

The rule condition is domain ("conference") and
entities ("Author", "Paper"). The consequence part
of the rule is extracted from the ontology
intersection of the three ontologies. The rule is
shown in Table 2.

Table 2: The contextual rule.

If context (domain("conference") and entity
("Author", "Paper"))

Then contextualInformation(
∀x,y: (x,y)  (hasAuthor)op implies x  Paper and y 
Author; ∀x,y: (x,y)  (writePaper)op implies x 
Author and y  Paper; writePaper≡hasAuthor━;∀x,y:
(x,y)  (submitPaper)op implies x Author and y Paper;
∀x,y: (x,y)  (has_authors)op implies x 
Conference_Document and y  Person; ∀x,y: (x,y) 
(contributes)op implies x  Person and y 
Conference_document; has_authors ≡ contributes ━ ;
Author⊏Person; Paper⊏Regular_contribution;
Regular_contribution⊏Written_contribution;
Written_contribution⊏Conference_contribution;
Conference_contribution ⊏Conference_document; etc…..)

In the consequent part of the rule, only part of the
intersection is shown because of the limit of space.
The expressions, in bold font, are used for
contextual integration carried out later on.

4.2 Integration with the Context Rule

Ontologies confious.owl and confof.owl are then
downloaded and the task is to integrate them using
the context rule shown in Table 2. Only classes and
properties that contain terms "Author" and "Paper"
are extracted from the ontologies and used in the
example, shown in Table 3. They represent
ontologies Q and Q’ in section 3.2. In order to
generate a contextual ontology intersection of these
two ontologies, an intersection according to the non-
contradictory integration process (Wu, 2013) is
produced first. The result is shown in Table 4.

Table 3: Ontologies for showing contextual integration.

Confious.owl ∀x,y: (x,y)  (has_author)op implies x
 Article and y  Human;
∀x,y: (x,y)  (is_author_of)op implies x
 Human and y  Article;
has_author≡ is_author_of━ ; Paper ⊏
Article;
abstract_of_paper ⊏	Article;
Accepted_Paper ⊏ Paper
Rejected_Paper ⊏ Paper
Undecided_Paper ⊏ Paper
∀x,y: (x,y)  (is_concerned)op implies
y  Paper; Contact_Person ⊏	Human

Confof.owl ∀x,y: (x,y)  (writes)op implies x 
Author and y  Contribution; ∀x,y:
(x,y)  (writenby)op implies x 
Contribution and y  Author; writes≡
writtenby━;
Author ⊏	 Person;	 Paper ⊏
Contribution; Paper⊓Posterൌ∅;	
Paper⊓short_paperൌ∅	

If only one definition exists in either ontology,
the definition is per se true and preserved in the
intersection. The string identical entity, e.g., paper,
is integrated as one class in the intersection. The
integration does not contradict the input ontologies.
That is to say, classes “Accepted_Paper”,
“Rejected_Paper” and “Undecided_Paper” are
subclasses of class “Contribution”, which cause non
contradiction to both original ontologies. The
ontology intersection, in Table 4, is then been
examined for identifying the context rule.

ICAART�2014�-�International�Conference�on�Agents�and�Artificial�Intelligence

488

Table 4: Ontology intersection of Confious.owl &
Confof.owl.

Paper ⊏	Article; Paper ⊏	Contribution; Accepted_Paper
⊏ Paper; abstract_of_paper ⊏	 Article; Rejected_Paper ⊏
Paper; Undecided_Paper ⊏ Paper; Paper⊓Posterൌ∅;	
Paper⊓short_paperൌ∅; Author ⊏	 Person	 ;	
Contact_Person ⊏	Human;
∀x,y: (x,y)  (writes)op implies x  Author and y 
Contribution;
∀x,y: (x,y)  (writenby)op implies x  Contribution
and y  Author;
writes≡writtenby━;
∀x,y: (x,y)  (has_author)op implies x  Article and y
 Human;
∀x,y: (x,y)  (is_author_of)op implies x  Human and
y  Article;
has_author≡is_author_of━;
∀x,y: (x,y)  (is_concerned)op implies y  Paper;

When context condition data, i.e., domain is
"conference" and entities are "paper" and "author",
are entered into the rule engine, the context rule in
Table 2 fires. The contextual information in the rule
is then inserted into the OWL reasoner to help
further integrating the ontology intersection. This
process is actually an integration of the ontology
intersection with the contextual information. The
process of non-contradiction is applied also for this
integration.

With OWL 2, inverse object properties can be
defined, such as “has_author” and “is_author_of”
are inverse properties. That is to say, if two
individuals x and y are related by “has_author”, then
y and x are related by “is_author_of”. One
integration rule about the inverse relation is:

ObjectProperty-Inverse-rule:
If O: r1 (A, B) and O: r2 (B, A) and
inverseProperties (O: r1, O: r2) and O: r3 (B, A)
and O: r4 (A, B) and inverseProperties (O: r3, r4)
AND
Q: r1 (A, B) and Q: r3 (B, A) and
inverseProperties (Q:r1, Q: r3)

Then r2(B, A) and r4 (A, B) and
inverseProperties (r2, r4)

The rule is shown in functional-style syntax, rather
than using DL syntax as in the tables. O and Q
symbolize two general ontologies. For example, O:
r1 (A, B) states that the class A is the domain of the
property r1 in ontology O, and the class B is the
range of the property r1 in O. InverseProperties (O:
r1, O: r2) means that r1 and r2 are inverse
properties. This integration rule shows the transfer
of inverse role relations in two ontologies. A and B

are two string identical classes in ontology O.
Properties r1, r2, r3 and r4 are four object properties.
If there are two definitions of inverse properties in
one ontology as inverseProperties(O:r1. O:r2) and
inserseProperties(O:r3, O:r4); and if in the other
ontology, the inverse property is between the inverse
properties from the previous ontology, i.e.,
inversProperties(Q:r1, Q:r3); and all definitions are
about the string-identical two classes A and B. The
inverse property will transfer to the other unrelated
properties, i.e., invserProperties(r2, r4). In the rule
condition, namespaces O and Q are used. In the
result part, the namespace is escaped since the result
is the new independent ontology, the ontology
intersection.

Back to the example, there two pairs of inverse
properties are identified in Table 4:
InverseProperties (writes, writtenby) and
InverseProperties (is_author_of, has_author). From
the contextual information in Table 2,
InverseProperties (writePaper, hasAuthor) is
identified. "hasAuthor" is string-identical to
"has_author". However, the rule conditions are not
completely fulfilled. The property "writes" and
"writePaper" are not equivalent. The integration
module asks the knowledge expert in such a
situation: EquivalentProperties(writes,writePaper)?.
When the knowledge expert confirms the axiom, it is
added into the ontology intersection.

Another axiom, which needs to be confirmed, is
EquivalentClasses(Contact_Person, Author)?. The class
"Contact_Person" is defined in confious.owl, where
a contact_person is a human and is_author of an
article. And it is not defined in other ontologies;
therefore, it is not a problem to add this axiom.
When this axiom is confirmed, the integration rule is
fired.

Accordingly, the new knowledge in the result is:
"is_author_of" is the inverse property "writtenby",
shown below:

∀x,y: (x,y)  (writterBy)op implies x  Paper and y

 Author;

∀x,y: (x,y)  (is_author_of)op implies x 

Contact_Person and y  Paper;

is_author_of≡writtenBy━;
Author⊏Human; writes ≡ writePaper;
Contact_Person≡Author

The final result is a non-contradictory ontology
intersection under the open world assumption,
shown below:

Article≡Contribution; abstract_of_paper⊏
Article; Rejected_Paper ⊏ Paper;

Ontology�Integration�with�Contextual�Information

489

Undecided_Paper ⊏ Paper; Accepted_Paper ⊏
Paper; Paper ⊓	 Poster = ∅; Paper ⊓	 short_paper
= ∅; Paper ⊏	 Regular_contribution;
Regular_contribution ⊏	 Written_contribution;
Written_contribution ⊏	 Conference_contribution;
Conference_contribution ⊏	
Conference_document; Author ⊏ Person;
Contact_Person ⊏ Human; Contact_Person 

Author;∀x,y: (x,y)  (contributes)op implies x 

Person and y  Conference_document;

Contribute ⊓ has_author=∅;∀x,y: (x,y) 

(has_author)op implies x  Article and y 

Human;∀x,y: (x,y)  (is_author_of)op implies x 

Human and y  Article;∀x,y: (x,y) 

(is_author_of)op implies x  Contact_Person and

y  Paper;is_author_of 

writePaperwrites;∀x,y: (x,y)  (is_concerned)op

implies y  Paper; ∀x,y: (x,y)  (submitPaper)op

implies x Author and y Paper;∀x,y: (x,y) 

(writePaper)op implies x  Author and y  Paper;

∀x,y: (x,y)  (writes)op implies x  Author and y

 Contribution; ∀x,y: (x,y)  (writenby)op implies

x  Contribution and y  Author;∀x,y: (x,y) 

(writterBy)op implies x  Paper and y  Author;

writes≡writtenby ━ ; has_author≡is_author_of ━

;has_author≡writes━; has_author≡writePaper━;
writePaper ≡ writtenBy ━ ;
is_author_of≡writtenBy ━ ; is_author_of ≡
writtenBy━;

With the help of the contextual information, the
ontology integration result has been improved
because of more available information. The
contextual ontology integration result is covering
even more axioms than the first time ontology
integration result. As we can see, the result contains
non-contradictory axioms from the first intersection
of the two ontologies and the contextual
information. The result contains as well new axioms
from the integration rules, which do not contradict
the original ontologies.

Some approaches create ontologies to describe
context. We use context criteria. Using criteria for
context is better than using a single term for
describing context. The context can be described by
the different combination of the criteria. In this
sense, the context is dynamic identified. To create a
context ontology costs more comparing with reusing
ontologies and ontology intersection in a repository.
And it is very uncertain if the context ontology can

be reused in future or not. Building the context
condition and the contextual information into rules
for reusing is an improvement for using context in
reasoning.

5 CONCLUSIONS AND FUTURE
WORK

This paper shows how contextual information can be
used for improving ontology integration using
context rules. The result is promising: the example
shows that broader and deeper conceptual
definitions are deduced from the initial ontologies
and the implied contextual information become
explicit in the final result.

However, more tests need to be conducted to
validate the context rules and the integration rules.
Another important work is to develop methods to
automatically discern the context and suggest the
context criteria, which is dependent on the
knowledge expert at the current stage.

REFERENCES

Aleksovski, Z., Klein, M., ten Kate, W., and van
Harmelen, F., 2006. Matching unstructured
vocabularies using a background ontology. s.l.,
Knowledge Engineering and Knowledge Management
(EKAW).

Aleksovski, Z., ten Kate, W., and van Harmelen, F., 2006.
Expliting the structure of background knowledge used
in ontology matching. s.l., International Workshop on
Ontology Matching (OM-2006).

Euzenat, J., SHvaiko, P., 2007. Ontology Matching.
Berlin, Heidelberg: Springer-Verlag.

Håkansson, Anne; Wu, Dan, 2013. Conceptual Ontology
Intersection for Mapping and Alignment of
Ontologies. In: Agent and Multi-Agent Systems in
Distributed Systems - Digital Economy and E-
Commerce. s.l.:Springer Berlin Heidelberg, pp. 105-
124.

Lin, Feiyu, Butters, Jonathan, Sandkuhl, Kurt, Ciravegna,
Fabio, 2010. Context-based Ontology Matching:
Concept and Application Cases. s.l., 2010 10th IEEE
International Conference on Computer and
Information Technology (CIT 2010).

Meilicke, C. and Stuckenschmidt, H., 2007. Applying
logical constraints to ontology matching. s.l., KI2007:
Advances in Artificial Intelligence.

Wu, D., 2013. Ontology Integration with Non-Violation
Check and Context Extraction, Stockholm: KTH
Royal Institute of Technology.

ICAART�2014�-�International�Conference�on�Agents�and�Artificial�Intelligence

490

