Why you should Empirically Evaluate your Al Tool
From SPOSH to yaPOSH

Jakub Gemrot, Martin Cerny and Cyril Brom
Faculty of Mathematics and Physics, Charles University in Prague, Malostranské namésti 25, Prague 1, Czech Republic

Keywords: Behavior Design, Computer Games, Tool Productivity, User-study, Agent Languages.

Abstract: The autonomous agents community has been developing specific agent-oriented programming languages for
more than two decades. Some of the languages have been considered by academia as possible tools for
developing artificial intelligence (Al) for non-player characters in computer games. However, as most of
the research related to the development of new Al languages within the agent community does not reach
production quality, they are seldom adopted by the games industry. As our experience has shown, it is not only
the actual language that matters. The toolchain supporting the language and its integration (or lack thereof)
with a development environment can make or break the success of the language in practical applications. In
this paper, we describe our methodology for evaluating Al languages and associated tools in practice based
on controlled experiments with programmers and/or game designers. The methodology is demonstrated on
our development and evaluation of SPOSH and yaPOSH high level agent behavior languages. We show that
incomplete development support may prevent the tool from giving any benefit to developers at all. We also
present our experience from transferring knowledge gained during yaPOSH development to actual Al design

for an upcoming AAA game.

1 INTRODUCTION

Modern computer games are becoming more and
more complex and game designers seek for a way to
bring rich worlds to their audience. This is especially
true for role-playing games (RPGs) that are advertised
as “large open-worlds” players can explore and inter-
act with. However, the production of such worlds re-
quires a vast amount of authoring time; the time that is
spent not only by environment designers and anima-
tors but also by non-player-characters (NPCs) design-
ers. NPCs designers are responsible for making those
worlds alive by populating them with a wide variety
of NPCs. We see the NPC behavior production as one
of the bottlenecks in the whole game production pro-
cess; the large effort associated with developing com-
plex NPCs behavior causes that most NPCs demon-
strate only very limited and schematic behavior. Thus
players often do not perceive the NPCs as lively in-
habitants of the virtual world and are instead left with
an impression of indifferent soulless puppets.
Although the demand for better NPC behavior is
increasing, the actual NPC behavior in games im-
proves only slowly. In our view, an important rea-
son for that is the lack of proper NPC behavior
specification languages and development tools (fur-

Gemrot J., Cerny M. and Brom C..

Why you should Empirically Evaluate your Al Tool - From SPOSH to yaPOSH.

DOI: 10.5220/0004818604610468

ther referred to uniformly as tools). Over the years,
academia has proposed many technologies that could
be — in theory — applicable to this problem. But
the industry is reluctant to adopt those solutions as
they are not accompanied with case studies that would
shed light on their impact on the game production pro-
cess. We report on our experience that it is hard to
prove that novel/existing Al tools related to the NPC
behavior production are of benefits to the industry.
We also present a methodology how to (try to) do so.
The methodology is based on controlled experiments
we have conducted over past four years, in which we
studied the productivity of the custom NPC behavior
creation tool SPOSH (Bryson, 2001) and its improved
version yaPOSH. We briefly present findings of the
studies as well.

The main goal of the paper is to introduce the
community to practical considerations necessary for
proper empirical evaluation of Al tools and to stress
the importance of evaluation for practical applicabil-
ity. It has been noted that even well-established aca-
demical tools, that seem intuitively beneficial for Al
development, may perform well below a plain pro-
gramming language (Pibil et al., 2012) (although the
evaluation was non-systematical and purely qualita-
tive).

461

In Proceedings of the 6th International Conference on Agents and Artificial Intelligence (ICAART-2014), pages 461-468

ISBN: 978-989-758-015-4

Copyright ¢ 2014 SCITEPRESS (Science and Technology Publications, Lda.)

ICAART 2014 - International Conference on Agents and Artificial Intelligence

While the paper is phrased in game development
vocabulary, we believe that most of our results are
transferrable to other areas of possible industrial Al
applications.

The rest of the paper is organized as follows:
First we discuss various non-cbvious requirements
the game industry imposes on Al tools (Section 2) and
deal with the notion of productivity (Section 3), then
we discuss literature related to tool evaluation (Sec-
tion 4) leading to an overview of our methodology in
Section 5. Section 6 describes user studies we have
conducted and Section 7 deals with several important
details for successful application of the methodology.
Finally, Section 8 discusses the conclusions we have
drawn from our experience.

2 NEEDS & FEARS OF THE
GAME INDUSTRY

Recently we have had the chance to participate in an
Al design process for an-upcoming-AAA game title.
We have successfully transferred many of our ideas
on the NPC behavior design to the game industry;
ideas that are based on our seven years of experiences
from teaching NPC behavior design at our university
and on the studies we have conducted. In this section
we discuss non-obvious requirements the industry im-
poses on Al tools.

Our view of the industry requirements is based
mainly on our tight cooperation with a game studio
that was newly founded but many of the developers
have history in making AAA game titles (Operation
Flash Point, Mafia 1 & 2). Although we work with
a single game studio, discussions with industry rep-
resentatives at conferences and experiences of other
Al researchers indicate that the requirements are very
similar in most of the industry.

Alex J. Champandard pointed out that the industry
yields to the argument “You will ship your game three
months earlier.” (Champandard, 2010). Applying this
to our perspective, industry simply needs to produce
reliable NPC behaviors quickly. However, as NPC
behaviors can be scripted and some tools for behavior
specification already exist, the industry is skeptical to-
wards adopting new ideas and related tools.

The first thing to note is that every Al tool related
to the game development has to be usable under dif-
ferent use cases; each use case is having its own pur-
pose: 1) reading/understanding how concrete behav-
ior works during the design time, 2) debugging exist-
ing behaviors at runtime, 3) extending existing behav-
iors and finally 4) creating new ones. Those four sit-
uations will be referred to as the “game development

462

use cases” (GDUCs).

Secondly, and on a related note, a game develop-
ment studio does not need only good tools, but also a
well thought-out workflow that integrates design, pro-
totyping, development and quality control. If a tool
cannot cope with such a workflow, it is not likely to
be adopted.

Thirdly, it is strongly desirable to redirect as much
development effort as possible to a less qualified
workforce. This is also true for NPC behavior design
as it is impossible to rely on senior programmers for
the behavior production only as they are rather scarce
and expensive resource. Thus a tool (as well as the
language) should be usable by less experienced pro-
grammers or game designers as well.

Generally speaking, development of a computer
game is to a large extent a software engineering task.
The comprehensibility, maintainability and reusabil-
ity of the code and data produced play an impor-
tant role and adoption of complicated algorithms is
avoided if it is not having a great impact 1. Simple so-
lutions are preferred as they facilitate debugging and
keep the system predictable.

To conclude, the game studio will typically fear
that the new tool will not fit into the game production
seamlessly as tools in the academy are not used in the
whole context of the game production and thus the
negatives might well outweigh the positives.

3 MEASURING PRODUCTIVITY

If the industry is to adopt anything, it needs many
proofs. Firstly and the most importantly, a fully work-
ing prototype of the technology that proves the indus-
try that they need it must exist. This serves as an open-
ing for the discussion about the time and the memory
impacts of the tool during the game runtime. If those
are found acceptable, the discussion will turn to the
debate about the productivity of the tool. Unless the
tool allows the designer to achieve something that was
previously unachievable, one has to prove that accom-
plishing a task using the tool is easier compared to not
using any special tool at all or using a different tool.
The term productivity should not be confused
with usability. While usability and productivity are
strongly related, they are not the same. A tool may
prove to be very productive even though it has multi-
ple usability issues. On the other hand a tool may be

LFor instance, the first author of this paper was once
present at discussion of level designers talking about how
high-dynamic-range lighting is great yet extremely hard to
tweak as there are a lot of intertwined parameters so it slows
the whole level creation process down.

Why you should Empirically Evaluate your Al Tool - From SPOSH to yaPOSH

perfectly usable but may turn out to bring no practical
benefit to the user, because the same task can be eas-
ily accomplished with a different workflow. However,
an increase in usability almost certainly results in an
increase in productivity, as it allows the user to work
faster and with less obstacles.

How to formally prove that one tool is more pro-
ductive than the other in the context of NPC behaviors
is hard and rigorous research faces serious method-
ological as well as practical issues. In contrast to the
tool internals, which can often be evaluated by run-
ning the tool on a large set of test cases, it is not clear
how to evaluate the usability or the productivity of
the tool itself. The way users are working with the
tool is bound strongly to the tool internals and thus
any evaluation effectively evaluates the tool itself, its
usability and productivity at the same time. Also the
evaluation is strongly influenced by the user’s ability
to understand and apply the concepts the tool is built
upon and its workflow.

4 RELATED WORK:
EVALUATING PRODUCTIVITY
AND USABILITY OF TOOLS

To our knowledge, the only published evaluation of
productivity of an Al tool is a purely qualitative (one
subject) case study of using an agent-based language
in a non-trivial setting (Pibil et al., 2012). The study
notes that the language is in many aspects inferior to
plain Java. The ScriptEase Al tool (Cutumisu et al.,
2007) was evaluated by letting students design their
own interactive story in the Neverwinter Nights com-
puter game. The study however measured only the
number of various language constructs the students
used and did not focus on usability or productivity,
neither was ScriptEase compared to the default tool
for the respective environment.

Some work has been done in determining the us-
ability of specific general purpose programming lan-
guage constructs (Sadowski and Kurniawan, 2011) or
to evaluate how quickly novice programmers learn
language constructs (Stefik et al., 2011). None of the
works known to us deal with evaluating usability or
productivity of development tools for a language nei-
ther are we aware of a work that would quantitatively
evaluate an agent-oriented language. Since our focus
is on the tools as well as the specific language, we
cannot directly reuse any of the methodologies of the
above papers.

An insight to the evaluation problematic can
be gained from the academic research on human-

computer interaction. A classical paper of Jeffries
et al. (Jeffries et al., 1991) compares four different
techniques for the usability evaluation of software.
They conclude that the best performance is achieved
by letting a group of humans test the application in
a realistic setting. Among user groups, user-interface
(UI) experts following the methodology called heuris-
tic evaluation are better at testing Ul than regular soft-
ware beta testers. Two other methods were also tested
— validating the Ul against expert-designed guide-
lines and cognitive walkthrough which is a structured
analysis of the program by developers. However,
techniques not involving testing with humans fared
much worse at determining usability deficiencies.

Further studies confirmed the findings of Jeffries
et al. (Karat et al., 1992; Nielsen and Phillips, 1993).
A good overview paper on usability testing methods
is (Hollingsed and Novick, 2007). This overview sug-
gests that the most cost-effective results are obtained
by combining internal evaluation within the develop-
ment team early in the design process with user stud-
ies later on.

Although the aforementioned research is aimed at
usability, we think that most of its results generalize
to productivity as well, especially the necessity to in-
volve actual human users working on realistic tasks in
the evaluation process.

5 METHODOLOGY

Based on insights from the related work and the ex-
perience from our studies we propose a general re-
search methodology for comparative controlled ex-
periments that should validate both usability and pro-
ductivity of Al design tools. Proposed methodology
is certainly neither complete nor bullet-proof and is
open for comments. We think that the relation be-
tween the practice of comparative controlled experi-
ments for Al design tools and the respective method-
ology is similar to chicken-egg problem. As there is
no methodology well thought out to follow, it is hard
to conduct experiments yielding fruitful data about
the tools productivity within the whole context of the
game development; as there is a lack of experiments
conducted and presented in papers, it is hard to formu-
late any methodology whatsoever. Although some of
the individual steps might seem obvious, doing every-
thing correctly without any reference methodology is
not trivial as we have learned through trial and error.
For more experienced experimenters, our methodol-
ogy could serve as a kind of a checklist for good ex-
periment design.

463

ICAART 2014 - International Conference on Agents and Artificial Intelligence

5.1

1.

464

Methodology Steps

Choose the game Al problem you plan to solve.
E.g., behavior specification of game NPCs in the
context of first-person shooters (FPS).

. Think about tasks the team of game developers

will face during the problem solving utilizing ex-
isting tools (e.g. GDUCs as introduced in Sec-
tion 2).

Find a technology that is promising in solving the
problem, e.g. SPOSH (Bryson, 2001) that was

successfully used in robotics and shown to be us-
able for NPCs of FPS games.

. Implement the tool internals and create a simple

Ul that should support not only the solving of the
problem but (ideally) also the spectrum of tasks
from the Step 2.

Work with the interface yourself or within the de-
velopment team to determine the most obvious
deficiencies and fix them. Think and stress (at
least) different GDUCs that your tool will un-
dergo during the game development: a) read-
ing/understanding of the data it produces (e.g.,
is your colleague able to quickly grasp what you
have done/created with the tool?), b) debugging
existing data (e.g., is it easy to diagnose and cor-
rect an error you have made?), c¢) extending the
data (e.g., is your colleague able to continue with
a half-done work?) and d) creating the data. Some
of the structured approaches mentioned in the re-
lated work might prove beneficial. Long-term
student projects or bachelor theses using the tool
have also shown to be useful for initial evaluation.

. Design a realistic set of tasks that your tool should

help in solving but limit their complexity to allow
for controlled experiments in a lab. Ideally, users’
solutions should yield qualitative data so the so-
lutions can be compared. The set of tasks should
sample tasks from the Step 2.

Do a “pilot study”: solve the task set by yourself
and entice a few colleagues to solve it as well in
order to predict the time your users will need to
solve the task set and to “debug” the experimental
setting.

Gather two groups of users sampled randomly to
solve the task set: one will use your tool the other
will use a baseline tool or no specific tool at all
(e.g., only standard IDE for underlying program-
ming language the NPCs are implemented in).

Since involving actual game development teams is
usually not feasible, we did our evaluations with
students of Al courses. We think evaluating on

10.

11.

12.

13.

14.

15.

students is reasonable, because a) many of our stu-
dents are of high skill, already working part-time
as junior programmers, b) behavior developers in
games usually are not programming experts and c)
it is accepted practice in other branches of science
to work with student subjects (e. g. many psycho-
logical experiments are performed with students).

. Let all users pass a preliminary test that confirms

they have a sufficient experience using any tool,
platform or game engine they will need to utilize
for your tasks.

Let each user solve the task set. Measure their
time required to solve respective tasks and quality
of the solution. Gather their feedback — what was
easy and/or difficult to achieve? What features of
the tool were used? Distinguish between features
the tool offers during the game runtime and the
design time carefully.

Optionally prepare a second set of tasks and swap
groups to mitigate sampling error (e.g., different
average programming experience between user
groups).

Analyze the results and see, which group per-
formed better and what obstacles users faced. Be
careful to distinguish between artifacts of the ex-
perimental setup (e.g. users became fatigued from
the overly long study, computers used for the
study were misconfigured), artifacts of the as-
signed task (e.g. users misunderstood the assign-
ment, users spent too much time figuring out an
unobvious trick not related to your tool) and the
actual effect of the tool.

Analyze source code / data that solves the task set
to gain insight which features of your tool were
used the most, which were avoided and which
were misused. Perform post-hoc (but as soon as
possible) interviews with users that misused your
tool to gain additional information.

If the tool did not improve user performance suffi-
ciently, alter the tool and its user interface to miti-
gate the difficulties that were faced most often. If
necessary, also change the experimental setup so
that it really tests user performance with as little
noise as possible.

Reiterate to the Step 4. Having the same group of
users in next experimental run can bring valuable
insights about the difference between the two ver-
sions of the software, at the cost of not gathering
data about the performance of novice users.

Why you should Empirically Evaluate your Al Tool - From SPOSH to yaPOSH

6 THREE USER-STUDIES: FROM
SPOSH TO YAPOSH

We now present three user-studies that were con-
ducted to gain insight into the productivity of the
academy tool SPOSH in the context of NPC behavior
design. The first two studies were done with SPOSH
and the last study was done with its improved version
yaPOSH. The presented methodology was formed
based on our experience gained from the studies.

SPOSH s a dialect of POSH action selection de-
veloped by Bryson in late 1990s (Bryson, 2001).
POSH specifies clear action selection semantics cap-
turing NPC behavior in a tree. Roughly speaking,
every edge in the tree is annotated with a sense (or
multiple senses) — a condition that must hold in the
environment for the edge to be active. The children
of nodes are ordered by priority. To determine the ac-
tion to perform, the highest-priority child of the root
node connected by an active edge is chosen. If itis a
leaf, an action or an action sequence associated with
the leaf is executed, otherwise the node is searched re-
cursively. SPOSH behavior primitives (senses and ac-
tions) serve as a communication interface between the
SPOSH engine and the rest of the NPC. Senses and
actions are user-defined and implemented in the same
language as the SPOSH engine (in our case Java). Be-
havior primitives are implemented as (class) methods
of a specific signature. The SPOSH language syntax
is Lisp-like. As Lisp-like syntax has been found con-
fusing to our users, we have developed a simple drag
& drop graphical editor for SPOSH plans and inte-
grated it into NetBeans Java IDE (see Figure 1) . The
same NetBeans Java IDE is used for behavior primi-
tives coding in Java.

Window % 5posh

$teamname="enerny

go-to-flag | Turn to flag

$teamname="enemy" h Add single breakpoint
Starget="enemy"

Add permanent breakpoint

Go to flag

[$team="enemy" Go to source
i="enemy”

eSS] - ca o s o
$teamname="our"
attack-enemy-flag-holder ———_> Ammo>10

Shoot holder of flag
S$team="our"

Figure 1: Screenshot of the yaPOSH Plan Debugger.

6.1 Studies Setting

All studies focused on creation of NPC behaviors
in game-like tasks. We were interested in compar-
ing performance of users using Java with SPOSH

(yaPOSH) tool to users using Java only. Users were
given necessary low-level primitives (turn, move,
navigate, shoot, speak, do-i-see, do-i-hear, etc.) and
they were asked to create high-level plans for the
NPC, which should solve game-like tasks. We have
been working with three tasks. The first task was to
create a simple HunterBot behavior, where an NPC
had to explore its environment, gather weapons and
hunt down an enemy NPC. The second task was a
GuideBot behavior; to search the environment for
other friendly NPCs and guide them home. The NPCs
were programmed to follow the bot after a request and
to stop following whenever they lost visual contact
with the bot. The third task was to alter the existing
GuideBot behavior and turn it into the GuardBot be-
havior that protected the friendly NPC while guiding
it as hostile NPCs were added to the environment.

Studies were always done as a part of the semes-
tral test of the course on intelligent virtual agents;
during the course, students were taught how to cre-
ate NPCs behaviors both in plain Java and using our
SPOSH (yaPOSH) tool.

Users were given 3.5 hours to finish a single task.
We currently measure the productivity by the total
time a subject needs to accomplish the tasks. Future
work should aim on the question how to distinguish-
ing between different development use cases during
the subject’s work, as they are often mixed together.

6.2 The 1% Study — Java vs. SPOSH +
Java

The first study (removed) was a pilot where we have
designed a comparative controlled experiment in or-
der to answer a general question about the SPOSH
tool suitability for the specification of NPC behav-
iors. Its theme was focused on the subjective language
preference not the actual productivity of the tool. The
hypothesis was that the Java IDE NetBeans featuring
graphical SPOSH plan editor plugin will prove to be
better than NetBeans alone. The pilot consisted of
two tasks; HunterBot and GuideBot. 30 students have
participated in the study. The main findings were:

(a) SPOSH was favored for the HunterBot task, but
not for the GuideBot task (quantitative answers).

(b) Students argued that GuideBot task could have
been easily solved with event-driven approach,
which could have been easily captured in Java but
not in SPOSH (qualitative answers).

(c) As no user of any group had a problem finishing
both tasks, it raised questions about tasks com-
plexity and relevance of users opinions.

465

ICAART 2014 - International Conference on Agents and Artificial Intelligence

Students” comments revealed that their language
preference correlated with the difficulty they had with
its actual use. The HunterBot behavior was re-
ported to be better expressible within SPOSH than
the GuideBot behavior and thus the preference for
the SPOSH language differed between these two task.
Although SPOSH is a tool specifically designed for
NPC behavior development, the study did not indicate
that SPOSH is generally preferred than plain Java.

6.3 The 2" Study — Java vs. SPOSH +
Java

The second study (removed) used GuideBot and
GuardBot tasks. This time we introduced a twist
into the setting for the second task; all users received
implementation of GuideBot from someone else and
they were asked to extend it into GuardBot. This was
intended to raise difficulty of the second task and to
test the tool under different GDUC; users were forced
to read alien code and extend it. The study was hard
for students, but brought crucial data. Only two out
of 22 students were able to finish the second Guard-
Bot task. Qualitative data were also more fruitful,
as users were commenting on the code of someone
else. The necessity to alter existing (not always well
thought-out) behavior plan/code revealed strong and
weak points of SPOSH.

However, the study’s findings regarding produc-
tivity of the tools used were rather inconclusive: a)
The average time required to solve the GuideBot task
by subjects in both groups was almost the same: 2:42
hours (sd = 28 minutes) for Java and 2:50 hours
(sd = 33 minutes) for SPOSH. b) It was impossible
to extract data from the GuardBot task as it was fin-
ished by only two students. But the study still brought
some interesting insights:

(a) High-level SPOSH plans helped users to quickly
grasp the general idea behind the code created by
someone else. Understanding behavior written in
plain Java was found to be more difficult.

(b) Both user groups had similar opinions about the
suitability of their tool for the assignment.

(c) There was a shift of users’ opinions to dislike
SPOSH after they failed the 2nd task.

(d) As SPOSH constructs lacked parametrization, the
amount of logic present in the plan was limited.

(e) SPOSH users complained about the complexity
of custom actions they implemented in Java. The
complexity was imposed by the SPOSH engine
implementation that forced users to track the ac-
tion state (action initialization / execution / final-
ization) by themselves.

466

(f) Usability issues of SPOSH plan editor were re-
ported; most notably a problem with the plan de-
bugging that relied on text logs only.

Despite our intuitions about SPOSH, the study re-
sults once again did not show that SPOSH is more
productive than plain Java. Nevertheless, it revealed
an area where SPOSH (if improved) can beat Java and
thus its features may be relevant to the industry.

6.4 The 3" Study —Java vs. SPOSH +
Java

Based on the findings from the 2nd study, we altered
SPOSH and created yaPOSH. Changes: 1) yaPOSH
plan primitives were made parameterizable. 2) New
yaPOSH debugger was created that allowed users to
place breakpoints on plan nodes. 3) yaPOSH engine
was improved to track the state of executed actions.
The third study (not published yet) used the same
setup as the second one. Given the same setting, we
decided to have only single group of users who were
using yaPOSH-+Java. We recruited 18 students differ-
ent from those that participated in the second study.
Results of the study are encouraging:

(&) All students successfully completed both tasks.
Students finished the first task in 1:29 hours (sd
= 31 minutes) on average and the second task in
3:15 (sd = 47 minutes).

(b) All yaPOSH changes were picked by almost
all users, especially yaPOSH debugger and plan
constructs parameterization that allowed pushing
more logic into yaPOSH plans in contrast to the
SPOSH.

(c) Users shifted their opinions to like yaPOSH more
after they finished the 2nd task.

6.5 Discussion

The results of the 3rd study show how proper tool
support can boost productivity. Students from the
3rd study using yaPOSH have finished the first task
around 1.8 times faster than students from the 2nd
study (both tools counted, as the times were very sim-
ilar). Additionally, all students from the 3rd study
were able to finish the second task in the given time-
frame. Unfortunately, due to the nature of studies, it
is hard to isolate which new feature contributed the
most to this improvement. We believe it is a strong
evidence that standard programming languages (such
as C++/Java or Lua) are not sufficient as a tool for
NPC behavior creation. However one can object that
changes done in SPOSH might have helped specifi-
cally in GuideBot and GuardBot tasks (even though

Why you should Empirically Evaluate your Al Tool - From SPOSH to yaPOSH

we did not design yaPOSH this way and we are us-
ing it in different contexts as well) and thus the pro-
ductivity improvement might not generalize to other
tasks. But even if this was the case, our results would
still be applicable to industrial practice as game stu-
dios are always adapting existing tools and engines to
suit the needs of the particular project they are work-
ing on. Therefore, we suggest that Al experts should
be part of the game design team since the early pre-
production stage in order to have the time to tailor and
test the Al tools before the production stage starts.

This necessity is even greater considering the re-
sults of our first two studies: a well thought-out tool
which has taken a significant amount of time to de-
velop (SPOSH) failed to outperform the tool which
was already available (Java).

7 METHODOLOGY DETAILED

Based on experience from conducted studies, we now
discuss some of methodology steps in a greater de-
tail to provide a cook-book of useful ingredients for a
good experimental design.

7.1 Designing Task Sets

Choosing right tasks for the evaluation (Step 4) is crit-
ical. Simple tasks might not let users use the full
power of the tool or provide only small differences
between the groups, e.g. the 1st study.

A task too complex may uncover weaknesses of
tools used (e.g. the 2nd study), but such study will
not provide relevant data about the tool productivity
(e.g. students failed to finish the 2nd task of the 2nd
study). When multiple tasks can be assigned, it is a
good idea to choose them from the whole spectrum.
Another alternative (yet to be tested) is to design a lot
of simple tasks and ask users to complete as many as
they can in a given time frame.

Various tool advantages and disadvantages man-
ifest themselves under different use-cases, e.g., the
2nd tasks of the 2nd and the 3rd study. Thus the task
set should be designed to test how users work with
the tool under different GDUCSs. If possible, each
task should be designed to target a single use-case
(complex tasks can be broken down to several steps,
each step analyzed separately) and the whole task set
should cover them all.

It is also important to minimize the amount of
work needed to solve the task that does not directly
involve your tool, e. g., when testing a behavior tree
debugger, the user should not be forced to fix errors
that stem from the inaccurate NPC navigation.

The scale of the tasks is also important. If the task
set can be completed within hours, it allows for a con-
trolled experiment in a lab, which lets the researcher
to gather data without much noise and to monitor in-
dividual user progress. On the other hand, such a time
frame often precludes realistic problems as they fre-
quently cannot be solved that quickly. In our research
we have focused on controlled experiments, but the
length of the experiments necessary for proper evalu-
ation was on the border of manageability; in 8 hours
long experiment, users became seriously affected by
fatigue throughout its second half. It is always bene-
ficial to let a few colleagues to solve the experiment
tasks during a pilot study. We have observed, that
(the mix of bachelor and master) students required 2-
4 times more time to complete given tasks than our
colleagues experienced in behavior development.

7.2 The Users

Recruiting users to test the tool is probably the most
difficult part of the study. Obviously the more users
the better, but even in case of a few users, methods
of qualitative research allow the researcher to extract
valuable data from the test group. In an academic set-
ting we have found it useful to let students of a rel-
evant course test the tool as a part of their semestral
evaluation test.

Unless very focused test group is available (such
as a development team from a specific studio) it is
necessary to account for differences in skills and
background knowledge of individual users. Pre-test
guestionnaires determining relevant previous experi-
ence of the users are very useful to this end. If possi-
ble, a within-subject experiment design also helps to
alleviate those issues.

The users should also be already familiar with the
tool they will test so that they understand all of its
features necessary for solving the task. This is es-
pecially the case if they are already proficient with a
baseline tool. One should bear in mind that a tool
might be of different value to novice users and to ad-
vanced users and — if possible — experiments should
be conducted with both groups present.

7.3 Collecting Data

There are two major classes of data to collect: objec-
tive and subjective. The objective data include the ac-
tual performance of the user at the tasks, especially
the time it took the user to finish individual tasks,
logs of user activity (even screen capture) allowing for
deeper analysis of the resulting creations of the users.
This is where there is the largest benefit of controlled

467

ICAART 2014 - International Conference on Agents and Artificial Intelligence

experiments — they allow to gather much more ob-
jective data than field studies.

Subjective data include the individual user expe-
riences. The most convenient way to gather them is
through questionnaires and by structured interviews
with the users. While objective data are usually good
at showing “what” happened, the subjective data of-
ten help to clarify “why” it happened or to filter out
biased users. If the user group is large enough, all of
the data should be statistically analyzed.

So far, we do not have other metric for the tool
productivity than the time required to solve the tasks.

8 CONCLUSIONS

We have presented our position on the Al tool design,
in particular we have stressed the importance of user
evaluation of the tools. We believe that comparative
controlled experiments should become the main aca-
demic approach how to demonstrate Al tools useful-
ness to the game industry and how to drive the tool
improvements.

In general, designing proper comparative exper-
iments for usability and productivity evaluation is
tricky as there are many factors that affect user per-
formance, which are difficult to control. Since this
research area is relatively new, there are no definitive
“best practices” to follow. In this paper we have pre-
sented what we consider a candidate for such “best
practice” in the case of languages and tools for de-
sign of game Al. We believe that our experience is to
a large extent transferable to other real world applica-
tions of Al and supporting tools.

The experience we have gathered throughout the
development of SPOSH and yaPOSH have let us de-
sign a new tool for developing NPCs behavior that has
been adopted for real-world deployment in the design
process of an upcoming AAA computer game. Al-
though the project leads were initially skeptical about
the idea, thanks to our studies, we were able to show
that we know how to create a practical tool. The tool
itself was ultimately received very well by both the
project leads and its users (i. e. scripters) and has
fully replaced their previous behavior design solution.

ACKNOWLEDGEMENTS

Human data were collected with APA princi-
ples in mind. This research is supported by
the Czech Science Foundation under the contract
P103/10/1287 (GACR), by student grant GA UK No.

468

655012/2012/A-INF/MFF and partially supported by
SVV project number 267 314.

REFERENCES

Bryson, J. J. (2001). Intelligence by design: Principles of
Modularity and Coordination for Engineering Com-
plex Adaptive Agent. PhD thesis, MIT, Department of
EECS, Cambridge, MA.

Champandard, A. J. (2010). Finding a better way to Mordor.
Presentation, CIG 2010. http://vimeo.com/14390998
Accessed 2014-01-05.

Cutumisu, M., Onuczko, C., McNaughton, M., Roy, T.,
Schaeffer, J., Schumacher, A., Siegel, J., Szafron, D.,
Waugh, K., Carbonaro, M., et al. (2007). ScriptEase:
A generative/adaptive programming paradigm for
game scripting. Science of Computer Programming,
67(1):32 - 58.

Hollingsed, T. and Novick, D. G. (2007). Usability inspec-
tion methods after 15 years of research and practice.
In Proceedings of the 25th annual ACM international
conference on Design of communication, pages 249-
255. ACM.

Jeffries, R., Miller, J. R., Wharton, C., and Uyeda, K.
(1991). User interface evaluation in the real world: a
comparison of four techniques. In Proceedings of the
SIGCHI conference on Human factors in computing
systems, pages 119-124. ACM.

Karat, C.-M., Campbell, R., and Fiegel, T. (1992). Com-
parison of empirical testing and walkthrough methods
in user interface evaluation. In Proceedings of the
SIGCHI conference on Human factors in computing
systems, pages 397-404. ACM.

Nielsen, J. and Phillips, V. L. (1993). Estimating the rela-
tive usability of two interfaces: Heuristic, formal, and
empirical methods compared. In Proceedings of the
INTERACT’93 and CHI’93 conference on Human fac-
tors in computing systems, pages 214-221. ACM.

Pibil, R., Novak, P., Brom, C., and Gemrot, J. (2012). Notes
on pragmatic agent-programming with Jason. In Pro-
gramming Multi-Agent Systems, volume LNCS 7217,
pages 58-73. Springer.

Sadowski, C. and Kurniawan, S. (2011). Heuristic evalua-
tion of programming language features: two parallel
programming case studies. In Proceedings of the 3rd
ACM SIGPLAN workshop on Evaluation and usabil-
ity of programming languages and tools, pages 9-14.
ACM.

Stefik, A., Siebert, S., Stefik, M., and Slattery, K. (2011).
An empirical comparison of the accuracy rates of
novices using the Quorum, Perl, and Randomo pro-
gramming languages. In Proceedings of the 3rd ACM
SIGPLAN workshop on Evaluation and usability of
programming languages and tools, pages 3-8. ACM.

