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Abstract: A Constraint Satisfaction Problem (CSP) is a fundamental problem that can formalize various applications
related to Artificial Intelligence problems. A Weighted Constraint Satisfaction Problem (WCSP) is a CSP
where constraints can be violated, and the aim of this problem is to find an assignment that minimizes the
sum of weights of the violated constraints. Most researches have focused on developing algorithms for solv-
ing static mono-objective problems. However, many real world satisfaction/optimization problems involve
multiple criteria that should be considered separately and satisfied/optimized simultaneously. Additionally,
they are often dynamic, i.e., the problem changes at runtime. In this paper, we introduce a Multi-Objective
WCSP (MO-WCSP) and develop a novel MO-WCSP algorithm called Multi-Objective Branch and Bound
(MO-BnB), which is based on a new solution criterion called(l ,s)-Pareto solution. Furthermore, we first for-
malize a Dynamic MO-WCSP (DMO-WCSP). As an initial step towards developing an algorithm for solving a
DMO-WCSP, we focus on the change of weights of constraints and develop the first algorithm called Dynamic
Multi-Objective Branch and Bound (DMO-BnB) for solving a DMO-WCSPs, which is based on MO-BnB.
Finally, we provide the complexity of our algorithms and evaluate DMO-BnB with different problem settings.

1 INTRODUCTION

A Constraint Satisfaction Problem(CSP) (Mack-
worth, 1992) is a problem that finds a consistent
assignment of values to variables. A surprisingly
wide variety of Artificial Intelligence problems can
be formalized as CSPs, e.g., resource allocation
problem (Cabon et al., 1999), scheduling (Verfail-
lie et al., 1996), combinatorial auctions (Sandholm,
1999), and bioinformatics (Backofen and Gilbert,
2001). A Weighted Constraint Satisfaction Problem
(WCSP) (Schiex et al., 1995; Larrosa and Schiex,
2004) is a CSP where constraints can be violated. The
aim of this problem is to find an assignment that min-
imizes the sum of weights of the violated constraints.

Most researches on CSPs and WCSPs have fo-
cused on developing algorithms for solving static
mono-objective problems. However, many real world
satisfaction/optimization problems involve multiple
criteria that should be considered separately and satis-
fied/optimized simultaneously. Additionally, they are
often dynamic, i.e., the problem changes at runtime.

In this paper, we formalize aMulti-Objective
Weighted Constraint Satisfaction Problem(MO-
WCSP) which is a WCSP that involves multiple
criteria. We also develop a novel MO-WCSP al-
gorithm called Multi-Objective Branch and Bound
(MO-BnB), which is based on a new solution cri-
terion called(l ,s)-Pareto solution. This algorithm
utilizes branch and bound technique and depth-first
search strategy, and finds a subset of Pareto front us-
ing adjustable parametersl and s. In MO-WCSPs,
generally, since trade-offs exist among criteria, there
does not exist an ideal assignment, which minimizes
all criteria simultaneously. Thus, we characterize the
solution of MO-WCSPs using the concept ofPareto
optimality. Solving a MO-WCSP is to find the Pareto
front. The Pareto Front is a set of (weighted) cost vec-
tors obtained by Pareto optimal solutions. An assign-
ment is a Pareto optimal solution, so there does not
exist another assignment that improves all of the cri-
teria. A MO-WCSP can be represented using a graph
called constraint graph, in which a node represents a
variable and an edge represents a constraint. In MO-
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WCSPs, even if a constraint graph has the simplest
tree structure, the size of the Pareto front, i.e., the
number of Pareto optimal solutions, is often exponen-
tial in the number of cost vectors. In such problems,
finding all Pareto optimal solutions is not realistic.

Furthermore, we first introduce aDynamic Multi-
Objective Weighted Constraint Satisfaction Problem
(DMO-WCSP) which is defined by a sequence of
static MO-WCSPs. As an initial step towards devel-
oping an algorithm for DMO-WCSPs, we focus on
the change of weights of constraints, i.e., we assume
that only the weight of each constraint changes at run-
time. However, the change is unpredictable, i.e., it is
not known in advance how the weights will change
in the next problem in a sequence. This assumption
requires areactive approach, i.e., we need to solve
each MO-WCSP in a sequence one by one. We also
develop the first algorithm called Dynamic Multi-
Objective Branch and Bound (DMO-BnB) for DMO-
WCSPs, which is based on MO-BnB. Finally, we pro-
vide the complexities of these two algorithms, respec-
tively. In section evaluation, we evaluate the perfor-
mance of DMO-BnB with different problem settings.

A Multi-Objective Constraint Optimization Prob-
lem(MO-COP) (Rollon and Larrosa, 2006; Perny and
Spanjaard, 2008; Marinescu, 2010) is the extension
of a mono-objective Constraint Optimization Prob-
lem (COP) (Dechter, 2003; Schiex et al., 1995). A
COP is a problem where the goal is to find an as-
signment of values to variables so that the sum of the
resulting costs is optimized. This problem is quite
similar to a WCSP. An MO-COP is a COP that in-
volves multiple criteria. For MO-COPs, various com-
plete algorithms have been developed (Rollon and
Larrosa, 2006; Rollon and Larrosa, 2007; Marinescu,
2009). In an MO-COP, the size of the Pareto front
is exponential in the number of variables, i.e, all as-
signments are Pareto optimal solutions in the worst
case. Since finding all Pareto optimal solutions be-
comes easily intractable, it is important to consider
fast but incomplete algorithms for large-scale appli-
cations. Also, various incomplete algorithms have
been developed (Rollon and Larrosa, 2006; Perny and
Spanjaard, 2008; Marinescu, 2010). Compared to
these MO-COP algorithms, our proposed algorithm
DMO-BnB is for solving a Dynamic MO-WCSP.

Furthermore, there exists several works on Dy-
namic CSPs (DynCSP) (Dechter and Dechter, 1988;
Faltings and Macho-Gonzalez, 2002). Compared to
these previous works, there exists no work on con-
sidering multiple criteria in a dynamic environment,
as far as the authors are aware. Also, compared to
evolutionary algorithms (Deb et al., 2002; Bringmann
et al., 2011) for Multi-Objective Optimization Prob-

lems (MOOPs), the advantage of our algorithm is that
it can guarantee to find all Pareto optimal solutions
and DMO-BnB is an algorithm for DMO-WCSPs.

About application domains of DMO-WCSPs, we
believe that sensor networks would be a promising
area. This problem is a kind of resource allocation
problems which can be formalized as a COP and a
WCSP. For example, consider a sensor network in a
territory, where each sensor can sense a certain area
in this territory. When we consider this problem with
multiple criteria, e.g., data management, quality and
quantity of observation data, and electrical consump-
tion, it can be formalized as a MO-WCSP. Also, when
we consider this problem in a dynamic environment,
e.g., when we need to sense some objectives that in-
vade this territory and move to different areas at run
time, we can apply DMO-WCSP technique.

2 PRELIMINARIES

A Weighted Constraint Satisfaction Problem
(WCSP) (Larrosa and Schiex, 2004) is defined by a
tuple<V,D,CW >, whereV is a set of variables,D is
a set of domains,CW is a set of weighted constraints.
A variable xi takes its value from a finite, discrete
domainDi . A constraint relation(i, j) means there
exists a constraint relation betweenxi andx j . Each
constraint relation(i, j) has a weightwi j , where
∑(i, j)∈CW

wi j = 1. Forxi andx j , which have a con-
straint relation, the cost for an assignment{(xi ,di),
(x j ,d j)} is defined by a weighted cost function

fwi j (di ,d j) =

{

0 (i, j) is satis f ied.

wi j (i, j) is unsatis f ied.
(1)

For a value assignment to all variablesA, let us denote

R(A) = ∑
(i, j)∈CW,{(xi ,di),(xj ,d j )}⊆A

fwi j (di ,d j), (2)

wheredi ∈Di andd j ∈D j . Solving a WCSP is to find
an assignment that minimizes the sum of the value
of all weighted cost functions. When all (weighted)
constraints are satisfied, the resulting weighted cost is
zero, and in case all constraints are unsatisfied, the to-
tal cost is one. A WCSP can be represented using a
graph called constraint graph, in which a node repre-
sents a variable and an edge represents a constraint.

In thi paper, we assume that all constraints are bi-
nary for simplicity. However, relaxing this assump-
tion to general cases is relatively straight forward.

Example 1 (WCSP). Figure 1 shows a graph col-
oring problem with three variablesx1,x2 and x3.
Each variable has to choose a different color with
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wi j weight
w12 0.1
w13 0.3
w23 0.6

Figure 1: Example of WCSP.

its neighbors and takes its value from a discrete do-
main {black, white}. The right table represents the
weights of all constraints, e.g., when all variables
chooseblack, all constraints are not satisfied, and the
total weighted cost isw12 + w13 + w23 = 1. The solu-
tions of this problem, i.e, an assignments which mini-
mizes the sum of the weighted costs, are{(x1,black),
(x2,black), (x3,white)} and{(x1,white), (x2,white),
(x3,black)}, and the resulting weighted cost is 0.1.

3 MULTI-OBJECTIVE WCSP

In this section, we formalize a Multi-Objective
Weighted Constraint Satisfaction Problem (MO-
WCSP). Furthermore, we introduce a new solution
criterion called(l ,s)-Pareto solution and develop an
algorithm for obtaining all(l ,s)-Pareto solutions.

3.1 Model

A Multi-Objective Weighted Constraint Satisfaction
Problem (MO-WCSP) is defined by a tuple<
V,D,CW >, whereV is a set of variables,D is a set of
domains,CW = {C1

W1,C
2
W2, ...,C

m
Wm} is a set of multi-

objective weighted constraints, wherem is the number
of objectives. For an objectiveh (1≤ h≤ m) and a
value assignment to all variablesA, let us denote

Rh(A) = ∑
(i, j)∈Ch

Wh ,{(xi ,di),(xj ,d j )}⊆A

f h
wh

i j
(di ,d j), (3)

wheredi ∈ Di andd j ∈ D j . Then, the sum of the val-
ues of all weighted cost functions form objectives
is defined by a cost vector, denotedR(A) = (R1(A),
. . ., Rm(A)). When all constraints are satisfied, the
resulting cost vector is(0,0, ...,0), and in case all
constraints are unsatisfied, the resulting cost vector is
(1,1, ...,1). Finding an assignment that minimizes all
objective simultaneously is ideal. However, in gen-
eral, since trade-offs exist among objectives, we can-
not obtain such an ideal assignment. Thus, the (op-
timal) solution of a MO-WCSP is characterized by
using the concept ofPareto optimality. A MO-WCSP
can be also represented using a constraint graph.

Definition 1 (Dominance). For a MO-WCSP and two
cost vectorsR(A) andR(A′) obtained by assignments

w1
i j weight

w12 0.1

w13 0.3

w23 0.6

w2
i j weight

w12 0.6

w13 0.3

w23 0.1

(x1,x2,x3) cost vector

(b,b,b) (1,0)

(b,b,w) (0.1,0,4)

(b,w,b) (0.3,0.7)

(w,b,b) (0.6,0.9)

(w,w,b) (0.1,0.4)

(w,b,w) (0.3,0.7)

(b,w,w) (0.6,0.9)

(w,w,w) (1,0)

Figure 2: Example of bi-objective-WCSP.

A andA′, we say thatR(A) dominates R(A′), denoted
by R(A)≺ R(A′), iff R(A) is partially less thanR(A′),
i.e., (i) it holdsRh(A) ≤ Rh(A′) for all objectivesh,
and (ii) there exists at least one objectiveh′, such that
Rh′(A)< Rh′(A′).

Definition 2 (Pareto Optimal Solution). For a MO-
WCSP and an assignmentA, we sayA is thePareto
optimal solution, iff there does not exist another as-
signmentA′, such thatR(A′)≺ R(A).

Definition 3 (Pareto Front). For a MO-WCSP, a set
of cost vectors obtained by Pareto optimal solutions is
called aPareto front. Solving a MO-WCSP is to find
the Pareto front.

Example 2 (MO-WCSP). We use the same problem
as in Example 1. Figure 2 shows the tables for weights
and cost vectors for a bi-objective WCSP, wherew1

i j

represents a weight for objective one andw2
i j for ob-

jective two. For objective one, constraints are same
as in Example 1, i.e., each variable must choose a dif-
ferent color with its neighbors. For the constraints
of objective two, we require that each variable has
to choose the same color with its neighbors. The
right table shows the weighted cost table obtained by
all combination of assignments. When all variables
chooseblack, the total weighted cost for objective
one is 1, i.e., all constraints are unsatisfied, and 0 for
objective two, i.e., all constraints are satisfied. The
Pareto optimal solutions of this problem are{ {(x1,b),
(x2,b), (x3,b)}, {(x1,b), (x2,b), (x3,w)}, {(x1,w),
(x2,w), (x3,b)}, {(x1,w), (x2,w), (x3,w)} } and the
obtained Pareto front is{(1,0),(0.1,0.4)}.

For a MO-WCSP withm objectives, a vector
R(A) = (r1, ..., rm) obtained by an assignmentA, a
constant vectorl = (l1, ...lm), and a non-negative in-
teger s, where rh and lh are costs for objectiveh
(1≤ h≤ m), we define the following novel solution
criteria,l -weak,s-sum, and(l ,s)-Pareto solutions.

Definition 4 (l -weak Pareto Solution). For a MO-
WCSP, we call thatA is an l-weak Pareto solution,
iff A is a Pareto optimal solution and it holdsrh ≤ lh

for all objectivesh (1≤ h≤m).
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Definition 5 (s-sum Pareto Solution). For a MO-
WCSP, we call thatA is ans-sum Pareto solution, iff
A is a Pareto solution and it holdsr1+ ...+ rm≤ s.

Definition 6 ((l ,s)-Pareto Solution). For a MO-
WCSP, we call thatA is a (l ,s)-Pareto solution, iff
A is anl -weak and ans-sum Pareto solution.

Intuitively, we try to avoid violated constraints
with hight weighted costs adjusting a constant vec-
tor l and want to restrict the sum of weighted costs
of all objectives with a parameters. In our Ex-
ample 2, when we setl to (0.6,0.6), and s to 0.7,
we can ignore the Pareto optimal solutions{{(x1,b),
(x2,b), (x3,b)}, {(x1,w), (x2,w), (x3,w)}}. The
(l ,s)-Pareto solutions of this problem are{{(x1,b),
(x2,b), (x3,w)}, {(x1,w), (x2,w), (x3,b)}}. For the
cost vector(0.1,0.4) obtained by these two assign-
ments, they arel -Pareto solutions, since the weighted
costs, i.e., 0.1 for objective one and 0.4 for objective
two, are less than 0.6 (= l1 = l2). They are alsos-
sum Pareto solutions, since the total weighted costs
of two objectives, i.e., 0.1+0.4 = 0.5, are less than
0.7 (= s). Thus, they are the(l ,s)-Pareto solutions.
When we setl = (1,1) ands= 2, i.e., no restriction,
the set of(l ,s)-Pareto solutions is the same as the set
of all Pareto optimal solutions.

3.2 Algorithm

We introduce a novel algorithm called Multi-
Objective Branch and Bound (MO-BnB) which can
find all (l ,s)-Pareto solutions for MO-WCSPs. This
algorithm utilizes a branch and bound technique and
depth-first search strategy that are well-known tech-
niques for solving constraint optimization problems.

Algorithm 1 and 2 show the pseudo-code of MO-
BnB. We assume that a variable ordering is given. The
input is a MO-WCSP, a constant vectorl , and a non-
negative integers, and the output is the entire set of
(l ,s)-pareto solutions (line 1 and 2 in Algorithm 1).
MO-BnB starts with an empty pareto front and a null
cost vector and solves the first variable according to
the variable ordering (line 7-10 in Algorithm 1). It
chooses a value for the variable and updates the cost
vector according to the cost tables (step 1 in Algo-
rithm 2). At this moment the obtained cost vectorc
has to ensure three properties:

• c is not dominated by the constant vectorl

• the sum of the elements ofc is not larger thans

• c is not dominated by the current Pareto frontPS

If one of the three properties is violated, MO-BnB
branches on the next value of the variable. When its
domain is completely explored, the search branches to
the previous variable and continues the solving (step

Algorithm 1 : MO-BnB.

1: INPUT : a MO-WCSPP, a constant vectorl and a non-negative integer
s.

2: OUTPUT : the set of all(l ,s)-pareto solutionsPS

3: Root: the root ofP
4: AS: an assignment of variables
5: Cost: the cost vector ofAS
6: PS: a set of pairs<cost vector, set of assignments>

7: AS← /0
8: PS← /0
9: Cost← null vector

// Launch solving from the root
10: PS← f irst.solve(AS,Cost,PS, l ,s)
11: return PS

Algorithm 2 : Solve(AS,Cost,PS).

1: INPUT : <AS,Cost,PS, l ,s>
2: OUTPUT :PSthe set of all(l ,s)-pareto solutions

3: for each valuev1 of the variable domaindo
4: AS← v1

5: local cost← null vector
// step 1: Compute local cost of the choice

6: for each constraint with an ancestora do
7: v2← value ofa in AS
8: local cost← local cost+cost(v1,v2)

// cost(v1,v2) is a vector given by the constraint
9: end for
10: newcost←Cost+ local cost

// step 2: Bound checking
11: if r i > l i , r i ∈ newcost, l i ∈ l then
12: AS← (AS\v1)

13: continue
14: end if
15: if ∑ri∈new costr

i
> s then

16: AS← (AS\v1)

17: continue
18: end if
19: if newcost is dominated byPSthen
20: AS← (AS\v1)

21: continue
22: end if

// step 3.1: New pareto solution
23: if AS is completethen
24: E← all elements ofPSdominated bynewcost
25: PS← PS\E
26: PS← PS∪ {(new cost,AS)}
27: continue
28: end if

// step 3.2: Continue solving
29: PS← next.solve(AS,Cost,PS)
30: AS← (AS\v1)

31: end for
32: return PS

2 in Algorithm 2). When a complete assignment is
formed, i.e. no variable left to be assigned, a new
solution is added to the Pareto frontPS. All previ-
ous dominated solutions are removed from the Pareto
front and the search continues with the next values
of the variable (step 3.1 in Algorithm 2). Ifc ful-
fills the three properties, it continues the solving with
the next variable according to the ordering (step 3.2
in Algorithm 2). The search stops when the whole
search space has been covered by the Branch and
Bound search. MO-BnB finally outputs the entire set
of (l ,s)-Pareto solutions of the MO-WCSP.

Theorem 1. For a MO-WCSP, the memory required
by MO-BnB is O(mdn) and the required computa-
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tion time is O(nmdn + md2n). (which belongs to
O(md2n)), wherem is the number of objectives,d is
the maximal domain size of variables, andn is the
number of variables.

Proof. Let P be a MO-WCSP andPF be the pareto
front of P. In the worst case, all possible combina-
tions of assignments of variables are Pareto optimal
solutions, i.e., there existsdn Pareto optimal solu-
tions. Thus, with each assignment being associated
with a weighted cost vector of sizem, the number of
Pareto optimal solutions is bounded byO(dn). Since
MO-BnB only requires to store the Pareto front dur-
ing solving, its memory use is bound byO(mdn).

Let ST be the number of partial assignment ofP
andk be a non-negative integer(1≤ k≤ n). Consider
that only one variable can change its value at a given
time. When no pruning occurs, and since there are
dk possible assignments for the firstk variables in a
variable ordering, the number of partial assignments

is given by∑n
k=1 |D|

k =
|D|n+1−1
|D|−1

−1. Each time a

new value is assigned to a variable, MO-BnB :

• updates the current cost vectorc, this operation is
linear in the size of the vector, i.e.,(n−1)×m,

• checks ifc is dominated by a constant vectorl ,
this operation is linear in the size of the vector:m,

• checks if the sum of the element ofc is superior to
the parameters, this operation is linear in the size
of the vector:m.

• checks if c is dominated by the current pareto
front, this operation is linear in the size of the
pareto front:|PF|.

If no pruning occurs,ST represents the maximal oc-
currence of the four above operations. Solving a MO-
WCSP by MO-BnB is then bound byO(|ST|× ((n−

1)m+m+m+ |PF|)) =O((dn+1−1
d−1 −1)+((n+1)m+

mdn)), which belongs toO(nmdn+md2n). Thus, the
runtime complexity belongs toO(md2n).

4 DYNAMIC MO-WCSP

In this section, we formalize a Dynamic Multi-
Objective Weighted Constraint Satisfaction Problem
(DMO-WCSP) which is the extension of a MO-
WCSP. Furthermore, we develop the first com-
plete DMO-WCSP algorithm called Dynamic Multi-
Objective Branch and Bound (DMO-BnB) which is
based on MO-BnB. We also provide its complexity.

4.1 Model

A Dynamic Multi-Objective Weighted Constraint Sat-
isfaction Problem, we denote DMO-WCSP, is defined
by a sequence of static MO-WCSPs

< MO-WCSP0, MO-WCSP1, ..., MO-WCSPk > .

(4)
Solving a DMO-WCSP is to find a sequence of Pareto
fronts

< PF0, PF1, ...,PFk >, (5)

where PFi (0 ≤ i ≤ k) is the Pareto front of MO-
WCSPi . In our model, it allows to change the number
of variables, constraints, objectives, domain size, and
weights of constraints. In this paper, as an initial step
towards developing an algorithm for solving a DMO-
WCSP, we focus on the change of the weights of con-
straints. Since the change is unpredictable, i.e., it is
not known in advance how the weights will change in
the next problem in a sequence, it requires areactive
approach. For dynamic problems, there exist two ap-
proaches, i.e., proactive and reactive. For a proactive
approach, all MO-WCSPs in a sequence are known
in advance. Since we know the changes among MO-
WCSPs in a sequence, one possible goal of this ap-
proach is to find a common solution in a sequence.
On the other hand, for a reactive approach, since the
next problem MO-WCSPi+1 becomes known only af-
ter current problem MO-WCSPi was solved, it re-
quires to solve each MO-WCSP in a sequence one by
one. The goal is to find a sequence of Pareto fronts.

4.2 Algorithm

We develop the first DMO-WCSP algorithm called
Dynamic Multi-Objective Branch and Bound (DMO-
BnB) which is based on MO-BnB. In DMO-BnB, we
reuse the(l ,s)-Pareto solutions of the previous prob-
lem, and compute the weighted cost vector which is
utilized as an upper bound for the current problem.
More specifically, we modified our algorithm MO-
BnB as follows. The input containsPSi−1 which
is the Pareto front of the previous problem. DMO-
BnB initializes the Pareto front of the new problem
with PSi−1 by replacing line 8 in Algorithm 1 by:
PS← compute(P,PSi−1). For each assignment of
PSi−1, it computes the new cost vector. The rest of its
pseudo-code is almost the same as that of MO-BnB.

Theorem 2. Let k be the size of the sequence of a
DMO-WCSP. The memory required by DMO-BnB is
given byO(mdn) and the required computation time
is given byO(kmd2n), wherem is the number of ob-
jectives,d is the maximal domain size of variables,n
is the number of variables.
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Proof. Solving a DMO-WCSP has the same memory
complexity as solving one MO-WCSP with MO-BnB.
To solve the initial MO-WCSP of a sequence, DMO-
BnB needs to store its Pareto front in the memory,
where the complexity belongs toO(mdn). For the
next MO-WCSP, DMO-BnB reuses the Pareto front
of the previous MO-WCSP. It updates the previous
Pareto front by computing the new cost vectors of
each (l,s)-Pareto solution and checks the dominance.
The memory use of this operation is bounded by the
size of the Pareto front, i.e.,O(mdn). Since DMO-
BnB solves the problems one by one, the memory use
of this algorithm is bounded byO(mdn).

For the computation time, it solves the initial MO-
WCSP of a sequence from scratch. Its complex-
ity belongs toO(md2n). To solve the next MO-
WCSP, DMO-BnB starts by revising the previous
Pareto front. For each assignment, it computes a
new cost vector. For each variable, it checks at most
n−1 constraints. Since there aren variables in an as-
signment, the complexity of this operation belongs to
O(mn2). Since there isdn possible assignments, this
operation belongs toO(dn×mn2). We also check the
dominance amongl , s, and previous|PF|, i.e., m+
m+ |PF|. The complexity of the whole preprocessing
is O(dn× (mn2 +m+m+ |PF|)) = O(dn× (mn2 +
2m+mdn)) = O(mn2dn + 2mdn +md2n) which be-
longs to O(md2n) This preprocessing is done be-
fore solving each MO-WCSP from a sequence, ex-
cept the initial problem. The complexity of solv-
ing a DMO-WCSP withk MO-WCSPs belongs to
O((k−1)(md2n)+k(md2n) =O(2kmd2n−md2n) that
belongs toO(kmd2n).

5 EVALUATION

In this section, we evaluate the performance of DMO-
BnB. In our experiments, we use the following prob-
lem instances. We generate DMO-WCSPs, where the
sequence contains ten MO-WCSPs. All the tests are
made with density one, i.e., complete graph which is
the most difficult problem. For each objective of a
MO-WCSP in a sequence, we generate the same com-
plete graph and choose the weight of a constraint uni-
formly at random so that the sum of the weights of all
constraints is one. Each data point in a graph repre-
sents the average of 50 problem instances. We imple-
mented DMO-BnB in C++ and carried out all exper-
iments on one core running at 2.6GHz with 12GB of
RAM. For a constant vectorl , we mostly use setting
l = (l1, ..., lm) with l i = l j , 1≤ i, j ≤ m and set ten
hours time limit for the experimentation.

Figure 3 represents the run time of DMO-BnB
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Figure 3: Results of run time fors= 1, 2, and 3.
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Figure 4: Results of ratio fors= 1, 2, and 3.

with differents, varying the number of variables, do-
main size is two, the number of objectives is three,
and each value ofl is one, i.e., no restriction withl .
The x axis represents the number of variables andy
axis shows the run time. Note that three is the max-
imal value fors, since the number of objectives is
three. We can see that the results fors= 2 ands= 3
are almost same, but the run time improves when
we sets is equal to one. This is because when we
set smalls, the solution space becomes smaller, i.e.,
the number of(l ,s)-Pareto solutions that DMO-BnB
finds, in general, becomes smaller1. Figure 4 shows
the ratio of the number of(l ,s)-Pareto solutions ob-
tained by DMO-BnB in all Pareto optimal solutions.
When we set thats is three, i.e., no restriction, DMO-
BnB finds all Pareto optimal solutions which means
100%. In cases is two, the(l ,s)-Pareto solutions are
more than 95% of all Pareto optimal solutions. How-
ever, when we decreases to 1, i.e., strong restriction,
the obtained(l ,s)-Pareto solutions are less than 1% of
all. This is because, in our experiments, most Pareto

1There is no guarantee that the run time always becomes
smaller, when we set smalls. It depends on the Pareto sur-
face which we don’t know in advance. In a special case,
it may happen that Pareto solutions exist only in a specific
solution area so that the run times for allsare almost same.
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Table 1: Results of run time and ratio of obtained(l ,s)-Pareto solutions. Naive represents the results where MO-BnB is
iteratively applied without any re-used of previous results.

# Var Run time/Precision (and Run time improvement)
Naive s=4 (l=1.0) s=3 (l=1.0) s=2 (l=1.0) s=1 (l=1.0)

10 2.28s 2.11s/100% (7.45%) 2.1s/100% (0.47%) 2.03s/99.21% (3.79%) 0.13s/0.09% (93.83%)
11 7.15s 6.54s/100% (8.53%) 6.51s/100% (0.45%) 6.31s/98.03% (3.51%) 0.46s/0.12% (92.96%)
12 14.97s 14.01s/100% (6.41%) 13.95s/100% (0.42%) 13.45s/98.78% (3.99%) 1.05s/0.07% (92.5%)
13 60.72s 56.18s/100% (7.47%) 55.95s/100% (0.46%) 54.04s/99.46% (3.81%) 2.94s/0.06% (94.76%)
14 207.14s 192.68s/100% (6.54%) 192.51s/100% (0.55%) 186.67s/97.36% (3.57%) 5.88s/0.08% (96.96%)
15 826.72s 762.39s/100% (7.78%) 758.35s/100% (0.52%) 737.54s/98.488% (3.26%) 22.36s/0.03% (97.06%)

optimal solutions exist in the solution space2, where
o1 ≤ 1, o2 ≤ 1, o3 ≤ 1, ando1 + o2 + o3 > 1. We
can see that there is a trade-off between the run time
and the ratio of obtained(l ,s)-Pareto solutions, i.e.,
when we set a strong restriction likes= 1, we can
find (l ,s)-Pareto solutions quickly, but the ratio of ob-
tained(l ,s)-Pareto solutions becomes low.

Figure 5 represents the run time of DMO-BnB
with different l , varying the number of variables, do-
main size is two, the number of objectives is three,
and the parameters is three, i.e., no restriction with
s. Note that one is the maximal value for each el-
ement of a constant vectorl . We can see that all
results are almost same3, i.e., adjustingl does not
help to decrease the run time. However, the ratio of
obtained(l ,s)-Pareto solutions increases significantly
compared to that of in Figure 4. Figure 6 shows the
ratio of obtained(l ,s)-Pareto solutions in all Pareto
optimal solutions. We can see that the ratio of ob-
tained(l ,s)-Pareto solutions is more than 75% for all
tests. Specifically, when the number of variables is
20, DMO-BnB can find more than 90% of all Pareto
optimal solutions. We consider that adjustingl is suit-
able for obtaining more(l ,s)-Pareto solutions, but not
for the run time. We will examine in greater detail
why the ratio becomes higher, when the number of
variables increases.

Table 1 represents the results of run time and ra-
tio of (l ,s)-Pareto solutions obtained by DMO-BnB,
where the domain size increases from two to three,
and from three to four for the number of objectives.
Because of the page limitation, we only show the re-
sults for different values ofs. We obtained the similar
results as in Figure 3 and 4. The run time of DMO-
BnB for s= 2, 3, and 4 are almost same, but it can
find (l ,s)-Pareto solutions very quickly in cases= 1.
When the number of variables is 15, the run times for
s= 2,3, and 4 are more than 730s, but in cases= 1, it

2Even when we chose the weight of each constraint uni-
formly at random, we observed these results. We will ex-
amine it for different graph structures, e.g., scale-free,small
world, and tree instead of complete graph.

3In casel is less than 0.5, we could not obtain any(l ,s)-
Pareto solutions in these problem instances.
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Figure 5: Results of run time forl = 0.6, 0.8, and 1.0.
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Figure 6: Results of ratio forl = 0.6, 0.8, and 1.0.

is 22.3s, i.e., 97% improvement. The ratio of obtained
(l ,s)-Pareto solutions is more than 97% fors= 2,3,
and 4, while it is less than 0.03% fors= 1. For a con-
stant vectorl , we also obtained the similar results as
in Figure 5 and 6.

In summary, these experimental results reveal that
adjusting parameters is suitable when we want to find
(l ,s)-Pareto solutions quickly. On the other hand, in
case we want to have a number of(l ,s)-Pareto solu-
tions, adjusting a constant vectorl is a good strategy.

As we shown in Figure 4, we obtained the extreme
results for the ratio of(l ,s)-Pareto solutions, i.e., al-
most everything fors= 2 and 3, or almost nothing for
s= 1. One might imagine that is it possible to obtain
the results between them. We additionally examine
with a real number ofs using the same problem in-
stances of Figure 3 and 4. We show the run time and
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Figure 7: Results of run time fors= 1, 1.2, 2, and 3.
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Figure 8: Results of ratio fors= 1, 1.2, 2, and 3.

the ratio of(l ,s)-Pareto solutions fors= 1.2 in Fig-
ure 7 and 8. We can see that it is possible to obtain the
results between extreme results fors= 1 and 2, e.g.,
we can obtain the ratio from 40% to 65% fors= 1.2.

6 CONCLUSIONS

In this paper, we introduced a MO-WCSP and de-
veloped a novel algorithm MO-BnB, which is based
on a new solution criterion called(l ,s)-Pareto solu-
tion. Furthermore, we first introduced a DMO-WCSP
which is defined by a sequence of static MO-WCSPs.
As an initial step towards developing an algorithm for
solving a DMO-WCSP, we focused on the change of
weights of constraints and developed the first algo-
rithm DMO-BnB which is based on MO-BnB. We
also provided the complexity of our algorithms. In the
experiments, we evaluated our algorithm DMO-BnB
with different problem settings. Our experimental
results showed that adjusting parameters is suitable
when we want to find(l ,s)-Pareto solutions quickly.
In case we want to have a number of(l ,s)-Pareto so-
lutions, adjusting a constant vectorl is good strategy.

For future work, we want to abandon the as-
sumption of this paper that considers only changes of
weights of constraints, and develop a novel algorithm
for DMO-WCSPs. We also consider to develop an
incomplete algorithm for DMO-WCSPs. Since find-
ing all Pareto optimal solutions becomes easily in-

tractable, it is important to consider to develop a fast
but incomplete algorithm for large-scale applications.
Finally, we will develop algorithms based on scalar-
ization methods (Ehrgott, 2005; Marler and Arora,
2004; Miettinen, 1999). Also, we intend to apply our
algorithm on challenging real world problems, e.g.,
sensor network and scheduling problems.
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