
A Cloud-based GWAS Analysis Pipeline for Clinical Researchers

Paul Heinzlreiter1,2, James Richard Perkins3, Oscar Torreño5,1, Johan Karlsson5,6,
Juan Antonio Ranea5, Andreas Mitterecker7,1, Miguel Blanca4 and Oswaldo Trelles5,1

1RISC Software GmbH, Softwarepark 35, 4232 Hagenberg, Austria
2Leibniz Supercomputing Centre (LRZ), Boltzmannstr. 1, 85748 Garching, Germany

3Research Laboratory, University Hospital-IBIMA, Málaga, Spain
4Allergy Unit, University Hospital-IBIMA, Málaga, Spain

5Department of Computer Architecture, University of Málaga, Málaga, Spain
6Integromics S.L., Avenida de la Innovación 1, 18100 Armilla, Granada, Spain

7Institute of Bioinformatics, Joh. Kepler University Linz, Linz, Austria

Keywords: Cloud Computing, Bioinformatics, Biomedicine.

Abstract: The cost of obtaining genome-scale biomedical data continues to drop rapidly, with many hospitals and uni-
versities being able to produce large amounts of data. Managing and analysing such ever-growing datasets
is becoming a crucial issue. Cloud computing presents a good solution to this problem due to its flexibility
in obtaining computational resources. However, it is essential to allow end-users with no experience to take
advantage of the cloud computing model of elastic resource provisioning. This paper presents a workflow
that allows the end-user to perform the core steps of a genome wide association analysis where raw gene-
expression data is quality assessed. A number of steps in this process are computationally intensive and vary
greatly depending on the size of the study, from a few samples to a few thousand. Therefore cloud computing
provides an ideal solution to this problem by enabling scalability due to elastic resource provisioning. The key
contributions of this paper are a real world application of cloud computing addressing a critical problem in
biomedicine through parallelization of the appropriate parts of the workflow as well as enabling the end-user
to concentrate on data analysis and biological interpretation of results by taking care of the computational
aspects.

1 INTRODUCTION

This paper presents genCloud, a workflow allowing
the end-user to employ various state of the art tools
for the analysis of genome wide association studies
(GWAS). A workflow describes a series of activi-
ties as part of a process. These activities are typi-
cally linked and information is transferred from one
activity to another. Such links represent dependen-
cies (for example, one activity must occur before an-
other). Currently, running these GWAS applications
requires computational infrastructure and knowledge
of specific tools, including the command line, script-
ing, and the R computational language. These tools
often require an amount of computational resources
greater than what is typically available in a moderate
size hospital, which is a typical environment where
such an analysis takes place. The workflow described
here presents a contribution to the areas of cloud com-

puting and biomedicine allowing end-users with basic
computational knowledge, such as clinical scientists,
to analyse their own experiments. This is possible
because the workflow is made available to end-users
through the jORCA software client (Martin-Requena
et al., 2010). By presenting a case study of such an
analysis, using real life data we apply cloud com-
puting to solve an important biomedical problem in
a real-world situation. Our biomedical use case is
particularly well suited to cloud computing because it
can require very different amounts of computational
resources depending on the size of the analysis.

In terms of the underlying cloud infrastructure
the work presented in this paper offers several dis-
tinguishing characteristics as compared to standard
cloud installations:

• User authentication based on grid technology.

• Specific support for transferring big datasets

387Heinzlreiter P., Perkins J., Torreño Ó., Karlsson J., Ranea J., Mitterecker A., Blanca M. and Trelles O..
A Cloud-based GWAS Analysis Pipeline for Clinical Researchers.
DOI: 10.5220/0004802103870394
In Proceedings of the 4th International Conference on Cloud Computing and Services Science (CLOSER-2014), pages 387-394
ISBN: 978-989-758-019-2
Copyright c 2014 SCITEPRESS (Science and Technology Publications, Lda.)



through grid computing protocols.

• Enactment of specific biomedical and bioinfor-
matics workflows through an user-friendly soft-
ware client, which significantly lowers the level
of computational experience required by the end-
users.

1.1 Applying Cloud Computing for
Workflows

Cloud computing (Mell and Grance, 2011) specifi-
cally addresses requirements of the biomedical work-
flow solution described here:

• Dynamic Instantiation of Additional Resources
through Elasticity: The capacity needed for run-
ning user applications can easily be increased or
decreased either automatically through a schedul-
ing component or following a user request without
requiring interaction with the service provider.

• Flexible Configuration of Workflow Modules with-
out Administrator Intervention: This approach
is specifically viable in a scientific environment,
where the users often rely on specific libraries
and software packages to perform their research.
The domains of biomedicine and bioinformatics –
which are addressed within the scope of the work
described here – are no exception to this rule: For
example the statistical software environment R (R
Development Core Team, 2008) is heavily used in
these research domains.

• Storing readily Configured Instances for
reuse through Snapshotting Mechanisms:
An infrastructure-as-a-service (IaaS) approach
is used giving the user the utmost flexibility by
providing access to fully configurable virtual
instances. Similarly the instances involved in
an analysis workflow can be stored as snapshots
and later reused, allowing the user to recreate the
analysis setup when data sources are updated (for
example for new genome releases), or to allow
other users to recreate their original analysis.
Such reproducibility of published results is a
recurrent problem in biomedical research (Button
et al., 2013) (Mobley et al., 2013).

1.2 Related Work

Considerable work has been done in the field of bioin-
formatics in connecting independent web-services
(WS) into higher-level workflows solving more com-
plex problems.

Taverna (Oinn et al., 2004) is a widely used tool
in bioinformatics for composing web-services into

workflows and enacting them. The stand-alone tool
allows users to access various web-service reposito-
ries and connecting the services graphically. It is im-
portant to note that the focus of Taverna is not spe-
cific for cloud computing environments but instead it
focuses on web-services which could in turn be de-
ployed on cloud computing environments.

Galaxy (Afgan et al., 2010) is an open, web-based
platform for biomedical and bioinformatics research.
The tool allows users to create and execute workflows
either from the web browser or through the API pro-
vided. Users can register and use the system on a
public galaxy server. Additionally it is possible to de-
ploy the tool easily on top of commodity hardware
or in cloud environments such as Amazon EC2 and
Openstack (Le Bras and Chilton, 2013). CloudBi-
oLinux (Krampis et al., 2012) and CloudMan (Af-
gan et al., 2012) allow the researchers to easily and
quickly get access to a functional compute infrastruc-
ture. This infrastructure can be configured in a matter
of minutes and finalized when is no longer required,
using the CloudMan tool. The infrastructure provides
access to a set of bioinformatics tools, as specified in
the CloudBioLinux virtual machines. After the con-
figuration of the compute infrastructure, the Galaxy
workflow engine is deployed. With the galaxy tool
deployed and the compute infrastructure configured,
the end-users could focus on creating analysis work-
flows and running them on the infrastructure being
configured, rather than focussing on specific details
of configuration and deployment.

2 WORKFLOW

This section describes the biomedical workflow and
its underlying technologies in detail. Starting from
the workflow itself, the focus is being put on the un-
derlying cloud technology being applied during its
execution, such as data handling and user authenti-
cation. While the specific workflow as described in
section 2.1 serves as proof of concept, the underly-
ing cloud, data transfer, and authentication solutions
as well as the client software presented in section 2.5
can also be used for other computational workflows
and are not limited to the bioinformatics and biomed-
ical domains.

2.1 GWAS Workflow

An overview of the bioinformatics workflow is given
in Figure 1. The user begins by uploading CEL files
to the cloud data storage. Each CEL file contains
the raw data generated from a single nucleotide poly-

CLOSER�2014�-�4th�International�Conference�on�Cloud�Computing�and�Services�Science

388



morphism (SNP) – an area of variation in the human
genome – microarray analysis for a single patient con-
taining details of the genotype. The amount of data
involved can range from a few megabytes to poten-
tially terabytes in size, depending on the number of
patients included in the study. Once the CEL files
have been uploaded, the birdseed algorithm (Korn
et al., 2008), which is implemented in the Affymetrix
Power Tools package, is executed. It produces a ta-
ble of genotype calls for each of the different probes
on the microarray. Each probe represents a differ-
ent SNP. Next this table is filtered to remove SNPs
that do not vary across different patients, and that
could not be called accurately by the birdseed algo-
rithm. This is achieved through the use of a Python
script that parses the output of the birdseed algorithm.
Once this table has been filtered, an additional python
script must be called to convert the birdseed output,
which is specific for Affymetrix data, into a variant
call format (VCF) file, the standard representation of
a genotype for biomedical data. This script must be
called separately for each CEL file, which is specific
for each patient. Therefore it is an embarrassingly
parallel problem and as such very suitable for a data-
parallel execution on cloud infrastructures. Finally
the user can download the set of VCF files and can
then apply standard web-based tools to view the data,
or further packages for downstream analysis. Given
that this is a standard file format for several types of
genomic biomedical data, it is the starting point for
many well established further workflows. Several of
these workflows are currently under development.

The workflow is using already available software
for all of its stages. The specific novelty is given by its
execution on a community cloud environment, which
has been extended in functionality specifically regard-
ing the data transfer between the stages of the work-
flow.

It should also be noted that the workflow as pre-
sented here is designed to analyse data produced us-
ing the Affymetrix SNP chip microarray platform.
However it is also possible to adapt the workflow to
other types of input data by modifying instances of
the genCloud cloud images or creating new ones as
necessary to implement related workflows processing
data from different platforms, as well as sequencing
data.

Taken together, these raw data analysis work-
flows and different downstream analysis workflows
will provide a flexible, easy to use service enabling a
wide variety of potential analysis workflows, for var-
ious genomics technologies.

Although the workflow as shown in Figure 1 only
contains a small number of steps, it is computation-

CEL files Upload

(Birdseed Algorithm)
Affy Power Tools

CEL Files

output
Birdseed

QC Python Script Clean
Birdseed
Output

Convert to VCF VCF variant call
format file

Figure 1: The GWAS workflow.

ally quite involved and contains the key steps of an
initial GWAS data analysis. Also the different steps
have varying computational requirements. Therefore
we have chosen to implement this workflow as a first
step for testing the different tools available and ensur-
ing its validity for more complex analysis.

2.2 Cloud Computing Infrastructure

The cloud computing infrastructure is provided on
a small community cloud installation running Open-
Stack (Pepple, 2011) as cloud middleware. Besides
offering IaaS cloud services, as an improvement be-
yond the state of the art the cloud installation has been
extended to support efficient transfer of large data sets
through the GridFTP protocol (Allcock et al., 2003).
In addition, the data storage is built on top of the dis-
tributed file system Ceph (Weil et al., 2006a), which
is accessed by OpenStack through the RADOS Gate-
way (Ceph Team, 2012) implementing the API being
used by the OpenStack services. Ceph is made ac-
cessible for OpenStack services like object contain-
ers and persistent volumes. The object containers can
be used as storage for files similar to a directory in
a file system. However OpenStack containers cannot
be nested. Persistent volumes on the other hand are
equivalent to ordinary hard disks and can be dynami-
cally attached to running OpenStack instances.

To glue all of these components together, standard
web-service protocols have been used. To enable the
transfer of mass data into OpenStack object contain-
ers they have been made accessible for the GridFTP
data transfer protocol by mounting them into the local
file system of a GridFTP server. The same mounting
approach is applied for providing access to the con-
tainers from inside the running virtual instances.

This underlying infrastructure enables the config-
uration and execution of arbitrary workflows such as
the genCloud workflow discussed in this paper.

A�Cloud-based�GWAS�Analysis�Pipeline�for�Clinical�Researchers

389



2.3 Data Storage and Transfer

The Ceph distributed file system (Weil et al., 2006a)
is used as the basic data storage system in our cloud
setup. Its main advantage is given by the fact that it
does not have a single point of failure due to not re-
quiring a specific master node. The storage server is
determined by the CRUSH data distribution mecha-
nism (Weil et al., 2006b).

To make the Ceph storage accessible to the Open-
Stack services, a web-service enabled access mecha-
nism is exposed through the RADOS Gateway, which
implements the web-service interfaces defined by the
Amazon S3 (Amazon Web Services, 2013) and Open-
Stack Swift storage services on top of Ceph.

In addition to the web-service based data access
mechanisms, we have configured the OpenStack con-
tainers to be accessible for the mass data transfer pro-
tocol GridFTP. Since a GridFTP server operates on
a local file system, the object containers - which are
normally accessed through web-service calls - need to
be mounted into the local file system of the GridFTP
server.

This is achieved by the Cloudfuse daemon, which
makes the files within the object container accessible
through POSIX file system calls.

The user authentication services represent another
crucial part of the setup of the GridFTP server. They
are performed using Grid credentials, namely X.509
certificates. These can be either long-lived personal
user credentials or short-lived credentials being gen-
erated by a service such as MyProxy (Novotny et al.,
2011) upon user request.

Our setup of GridFTP works with short-lived cre-
dentials, which are generated by MyProxy upon a user
request and can be used by the GridFTP service to
authenticate itself towards remote servers whilst per-
forming the data transfer requested by the user.

To ensure a reliable transfer of the data between
different GridFTP servers, we are relying on the
GlobusOnline service (Allen et al., 2011), which
manages the data transfers on the user’s behalf, as
soon as a GridFTP server has been registered as an
endpoint of the service.

2.4 User Authentication

The user authentication for the whole OpenStack in-
stallation is performed through the Lightweight Di-
rectory Access Protocol (LDAP) (Howes and Smith,
1995) thus allowing for an easy and central manage-
ment of the local credentials for all services. The
management of the OpenStack users follows the cen-
tral grid computing (Foster and Kesselman, 2003)

concept of a Virtual Organization (VO) (Foster et al.,
2001) which is grouping users from different orga-
nizations, who are for example working on a shared
project. Within OpenStack the VOs are mapped onto
user groups called tenants, thus enabling the partici-
pants of one project to easily share resources among
themselves.

The VO concept is used to assign the users to spe-
cific OpenStack tenants and also to ease the manage-
ment of access rights, which are assigned at the level
of VOs. A good example is given by the access to
the local GridFTP server, enabling users to access the
service and to use GlobusOnline to transfer data to
the local OpenStack containers. All the access rights
based on the VOs are represented within the central
LDAP tree of the installation, which is subsequently
queried by the different services during user authenti-
cation.

2.5 Client Software

jORCA (Martin-Requena et al., 2010) is a user-
friendly software client for using web-services. The
application was specifically designed to help users
take advantage of computational resources made
available as web-services, i.e. discover web-services,
display available parameters, request information and
finally execute the web-service. To enable all these
activities, jORCA uses metadata repositories (i.e.
containers of meta-information), with information
about available web-services and data types. The
MAPI library (Karlsson and Trelles, 2013) provides
the unification of metadata information. By using this
library, it is possible to extend the execution function-
ality of jORCA with components called workers.

2.5.1 Web-service Invocation and Data Transfer

Support for invoking a RESTful WS protocol / fron-
tend from jORCA is also implemented, providing an
interface between jORCA and the underlying cloud
infrastructure. This interface provides operations to
submit new jobs, to cancel previous ones, to poll for
status and to retrieve intermediate and final results.
To submit a new job the user has to fill the required
WS parameters as references to data already uploaded
on cloud data storage. Once the frontend receives the
job submission it contacts the job scheduler to dis-
patch the new task. The scheduler will decide de-
pending on the previously mentioned parameters if
it needs to create a new instance and also if some
idle instances could be deleted. The scheduler will
use euca2ools (Debian Wiki, 2012) to perform the de-
scribed operations.

CLOSER�2014�-�4th�International�Conference�on�Cloud�Computing�and�Services�Science

390



At the end of the job submission the front-end will
return a new unique URL resource to the user which
can be cancelled, polled for status, intermediate re-
sults, and, when ready, the final result. The interme-
diate and final results will be data references to the
results stored on the data storage. The user can now
choose to download the data from the data storage
(using the jORCA plugin developed) and/or submit
the result data references as input to another WS. This
greatly facilitates the invocation of a series of WS as
a workflow because the intermediate data is already
available on the infrastructure for a subsequent WS.

The potentially large input and output data
sizes when invoking web-services deployed on the
cloud infrastructure made it essential to use a well-
established protocol to transfer large data sets reli-
ably and securely. The Globus Online (GO) initia-
tive (Allen et al., 2011) uses GridFTP to transfer large
amounts of data. Additionally, GO provides easy-to-
install software for client-side transfer of data and also
supports long-running data transfers where GO medi-
ates the data transfer. The actual data is transferred di-
rectly between two GridFTP servers being registered
as GO endpoints; GO only monitors and controls the
transfer.

jORCA can initiate a GO-mediated data transfer
either upon user request or automatically if the meta-
data of the web-service to be invoked indicates that it
requires the input data to be transferred via GO prior
to invocation. To transfer data from the local com-
puter running jORCA, it is necessary to previously
install and configure the Globus Connect software,
which is acting as a local GO endpoint. The transfer
status – running, finished, or error – is displayed to the
end-user through jORCA. Once finished, the neces-
sary information about the uploaded file is transferred
to the service which, in turn, will use GO to move the
data if necessary.

2.6 Mapping the Workflow onto the
Cloud Infrastructure

The biomedical workflow described in 2.1 consists of
a sequence of computational steps, which are inter-
connected by data stored in POSIX-compliant files.
The output of one step is stored on the file system,
from where it is read by the next module within the
workflow.

To enable a flexible execution of the workflow on
top of the above-described cloud infrastructure and
across multiple cloud instances, the intermediate data
files are being stored in OpenStack containers.

The current cloud setup enables the containers to
be mounted on the local file system of the running

instances. Therefore the existing programs and scripts
accessing local files do not need to be adapted to run
on the cloud infrastructure. When a user wishes to
execute the workflow, the first step is to upload the
input data and store it in a container.

Since the initial input data will typically come
from an external source, the GO service can be in-
voked through jORCA to transfer the data to the local
cloud installation.

Sequential parts of the workflow consisting of
multiple consecutive stages can either be collocated
on one instance or distributed across multiple in-
stances depending on their computational load.

The parts of the workflow, which are executed in
parallel, are replicated across multiple instances run-
ning concurrently.

The instances monitor the availability of their in-
put data: as soon as the corresponding input dataset is
available in the specified container, the instance starts
to copy the input data from the container to its local
hard disk and to subsequently execute its computa-
tional algorithm. As soon as a group of collocated
stages on one instance is finished, the output is written
to a container, enabling the next stage of the workflow
running on a different instance to proceed by consum-
ing the newly produced intermediate data in the same
way.

3 RESULTS

The workflow described in section 2.1 has been exe-
cuted on a small community cloud installation using
the technologies described in section 2.6.

The user starts by uploading the input data for the
workflow, such as the SNP and CEL data, to an Open-
Stack container using GO through the jORCA client.

To perform the data processing workflow, a sim-
ple bash-shell script has been set up which calls the
executables performing the computational as well as
data management steps within the workflow.

The infrastructure enables the containers to be
mounted into the local file system of a running virtual
instance, and thus the data access methodology of the
original non-cloud-aware workflow modules remains
valid.

Initial runtime measurements have shown that the
last step of the workflow – converting the Birdseed
output into a VCF file – is by far the most time-
consuming (see tables 1, 2, and 3). A typical use-case
involves processing a large number of CEL-files and
the VCF conversion of a single CEL-file takes sig-
nificantly longer than the rest of workflow combined.
Given these facts, it is clear that the parallelization of

A�Cloud-based�GWAS�Analysis�Pipeline�for�Clinical�Researchers

391



the conversion to VCF is key to improving the pro-
cess.

Therefore the following parallelization approach
has been realized:
• All steps before the VCF conversion are executed

sequentially on one instance.
• The VCF conversion is parallelized at the file level

by assigning the conversion tasks for different
files to different machine instances.

The workflow starts with the sequential component
retrieving all the input data required for the birdseed
algorithm from the OpenStack container and storing it
on a local disk within the instance. It is important to
note that while the data is directly accessible through
the mounted container, the copy operation speeds up
the computational step, which only has to access a lo-
cal disk as compared to web-service calls for access-
ing the OpenStack container.

After the data has been made available locally the
birdseed algorithm and the filtering of its results are
performed in sequence before the output of the filter-
ing step is again stored in the container.

Making the filtered data accessible within the con-
tainer enables the data-parallel execution of the final
VCF generation step across different cloud instances.

For the initial prototype all instances are execut-
ing the same shell script and accessing the same con-
tainer. The existence of a specific file marks whether
the sequential part of the workflow is still active.

While this is the case the other instances taking
part in the parallel VCF generation load the required
input data for the last workflow step from the con-
tainer onto their local hard disks. Thus this data trans-
fer overlaps in time with the computation of the first
steps of the workflow.

Since the input data for the VCF generation in-
cludes human genome data of significant size, this
overlapping reduces the overall processing time of the
workflow.

As soon as the previous steps of the workflow have
been completed, the responsible instance also loads
the input data for the last step. Meanwhile the other
instances can already start the computation within the
last step of the workflow. As mentioned before, the
completion of the previous workflow steps is indi-
cated by the existence of a specific file in the shared
container, which can be tested by the script being ex-
ecuted by all instances.

To properly distribute the files, which need to be
converted to the VCF format between the involved in-
stances the same lock-by-file approach is performed:

Within a loop, the script iterates over the set of
files to be converted, and adds a corresponding lock
file to the container marking each file that is currently

being or has already been processed. If an input file is
already locked by another instance, it is skipped and
the local instance continues with the next file avail-
able.

While this approach does not guarantee the avoid-
ance of concurrent access to the same file, is has been
chosen as the synchronization mechanism for this first
workflow prototype due to its simplicity.

3.1 Test Runs

Test runs of this setup have been performed based on
the following input data set:

• 8 CEL files with 66 MB each

• Human genome data slightly bigger than 3 GB

The following cloud resources have been used to per-
form the computations:

• 5 instances with 4 GB of RAM and two Intel
Core2 Duo CPUs with 2.4 GHz each. However
for the execution only one CPU per instance was
used.

One of the instances was used to perform the sequen-
tial part and afterwards all five instances processed the
eight CEL files in parallel.

Table 1: Runtimes measured for the sequential part.

Workflow Step Runtime
Input data upload 62 s
Birdseed algorithm 263 s
Filtering SNPs 26 s
Storing Result in Container 3 s
Sum 354 s

Within the parallel execution the data upload has
only been performed once for each instance. The up-
loading times for the input data for the sequential and
parallel parts of the workflow are different due to the
different types of input data of the different workflow
stages.

The result data upload in tables 2 and 3 refers to
the result data of the sequential part of the workflow.

Table 2: Maximum runtimes measured for the parallel part.

Workflow Step Max Runtime
Genome data upload 558 s
Result data upload 8 s
VCF conversion 5207 s
Sum 5773 s

CLOSER�2014�-�4th�International�Conference�on�Cloud�Computing�and�Services�Science

392



Table 3: Mean runtimes measured for the parallel part.

Workflow Step Mean Runtime
Genome data upload 547.80 s
Result data upload 2.80 s
VCF conversion 4970.33 s
Sum 5430.93 s

3.2 Application of the Workflow to Real
Data

We have shown an example usage scenario for this
workflow, where it was used to analyse the genotypes
of patients with cross intolerance to non-steroidal anti
inflammatory drugs, one of the most important drug
allergies, which can lead to potentially fatal reac-
tions (Ayuso et al., 2013). A group of over 100 pa-
tients were genotyped, along with over 100 control
subjects. More details on the data and its analysis are
given in (Cornejo-Garcı́a et al., 2013). This approach
led to the discovery of a number of SNPs that show
a strong association with the pathology. These SNPs
are currently being further investigated in a new co-
hort of patients and through the use of in vitro exper-
imental assays.

4 DISCUSSION AND
CONCLUSIONS

We have presented a novel cloud-based workflow,
genCloud, which allows an end-user to perform a
number of important and computationally intensive
steps in the analysis of genome wide association data.
We believe that close collaboration between target
end-users and developers is essential for the devel-
opment of such a service and to ensure that user de-
mands are met. We also believe that cloud based sys-
tems are the most suitable and flexible solutions for
the computational needs of clinical research groups
in hospitals and medical research groups for two main
reasons:
• They require minimal computational know-how

from the end-user in terms of installation, admin-
istration and scripting. The user can therefore fo-
cus on understanding the details of the tools them-
selves and the biological interpretation of the re-
sults, rather than their implementation.

• They can also be scaled according to the user’s
needs: the analysis presented here focussed on
a small, proof of principle analysis, with 8 sam-
ples. However, some GWAS experiments pro-
duce 100s, even 1000s of samples, requiring more

computational resources. This isn’t an issue for
a cloud based system: the cloud instances started
for the analysis can be as large and as numerous
as required. The upload of the genome data - rep-
resenting the biggest input dataset by far - is only
required once. Afterwards multiple sets of SNP
files can be processed by the workflow.

It should be made clear that the workflow described
here is only able to handle data from the Affymetrix
SNP chip microarray platform. Given the ever grow-
ing popularity of whole genome sequencing data, as
well as its ever reducing cost, the next step will be
to extend the workflow for this kind of data. A typi-
cal whole genome sequencing file with a high cover-
age can have more than 100 GB per individual. The
task to extract the genotypes out of these files can take
around a week and will take around 1 TB temporary
hard disk size per individual. As this step is com-
pletely independent for each individual it will benefit
greatly from a cloud-based implementation, since this
will enable flexible scaling and parallelisation. More-
over, given that the output of the analysis of this data
is also a VCF file, it could be combined with the same
downstream analysis workflows that are used for the
current data.

The runtime measurements presented in Sec-
tion 3.1 have been collected from a workflow of in-
stances being started by the user before the actual
workflow was invoked by starting the workflow script
on each instance through an interactive shell. While
the automatic invocation of instances stored as snap-
shots has already been performed for other applica-
tions on the same infrastructure it has not been ap-
plied yet for the workflow described here. The auto-
matic deployment of new instances will be realised as
part of the scheduler component of the infrastructure,
which is still in the design phase.

Future work will focus on the integration of the
above-mentioned cloud technologies and our commu-
nity cloud with the Galaxy workflow engine subse-
quently enabling us to provide a much better and sim-
plified user experience to medical and research staff,
who are not experts in cloud computing and work-
flows. As additional steps we will investigate possi-
bilities of automatic exploitation of cloud elasticity to
enable scalable workflows being able to handle differ-
ent input sizes.

ACKNOWLEDGEMENTS

This publication is supported by the European Com-
munity through the FP7 IAPP project Mr. Sym-
BioMath, grant agreement number 324554.

A�Cloud-based�GWAS�Analysis�Pipeline�for�Clinical�Researchers

393



REFERENCES

Afgan, E., Baker, D., Coraor, N., Chapman, B., Nekrutenko,
A., and Taylor, J. (2010). Galaxy cloudman: deliv-
ering cloud compute clusters. BMC Bioinformatics,
11(Suppl 12)(S4).

Afgan, E., Chapman, B., Jadan, M., Franke, V., and Taylor,
J. (2012). Using cloud computing infrastructure with
cloudbiolinux, cloudman, and galaxy. Current Proto-
cols in Bioinformatics.

Allcock, W., Bester, J., Bresnahan, S., Plaszczak, P., and
Tuecke, S. (2003). Gridftp: protocol extensions to ftp
for the grid. Technical Report GFD-R-P.020, Open
Grid Forum. Proposed Recommendation.

Allen, B., Bresnahan, J., Childers, L., Foster, I., Kan-
daswamy, G., and Kettimuthu, R. (2011). Globus
online: Radical simplification of data movement via
saas. Technical Report Preprint CI-PP-5-0611, Com-
putation Institute, The University of Chicago.

Amazon Web Services (2013). Amazon simple storage ser-
vice (amazon s3). http://aws.amazon.com/s3/.

Ayuso, P., Blanca-López, N., Doña, I., Torres, M., Guéant-
Rodriguez, R., Canto, G., Sanak, M., Mayorga, C.,
Guéant, J., Blanca, M., and Cornejo-Garcı́a, J. (2013).
Advanced phenotyping in hypersensitivity drug reac-
tions to nsaids. Clinical and Experimental Allergy,
43(10):1097–1109.

Button, K., Ioannidis, J., Mokrysz, C., Nosek, B., Flint,
J., Robinson, E., and Munaf, M. (2013). Power fail-
ure: why small sample size undermines the reliabil-
ity of neuroscience. Nature Reviews Neuroscience,
14(5):365–376.

Ceph Team (2012). Rados gateway - ceph documentation.
http://eu.ceph.com/docs/wip-3060/radosgw/.

Cornejo-Garcı́a, J., Liu, B., Blanca-López, N., na, I. D.,
Chen, C., Chou, Y., Chuang, H., Wu, J., Chen, Y.,
Plaza-Serón, M., Mayorga, C., Guéant-Rodrı́guez, R.,
Lin, S., Torres, M., Campo, P., Rondón, C., Laguna,
J., Fernández, J., Guéant, J., Canto, G., Blanca, M.,
and Lee, M. (2013). Genome-wide association study
in nsaids-induced acute urticaria/angioedema in span-
ish and han-chinese populations. Pharmacogenomics.
in press.

Debian Wiki (2012). euca2ools - debian wiki.
https://wiki.debian.org/euca2ools.

Foster, I. and Kesselman, C., editors (2003). The Grid 2:
Blueprint for a New Computing Infrastructure. Else-
vier.

Foster, I., Kesselman, C., and Tuecke, S. (2001). The
anatomy of the grid: Enabling scalable virtual organi-
zations. International Journal of Supercomputer Ap-
plications, 3(15).

Howes, T. and Smith, M. (1995). A scalable, deployable di-
rectory service framework for the internet. Technical
Report UM-CITI 95-7, University of Michigan.

Karlsson, J. and Trelles, O. (2013). Mapi: a software frame-
work for distributed biomedical applications. Journal
of Biomedical Semantics, 4(4).

Korn, J., Kuruvilla, F., McCarroll, S., Wysoker, A.,
Nemesh, J., Cawley, S., Hubbell, E., Veitch, J.,

Collins, P., Darvishi, K., Lee, C., Nizzari, M., Gabriel,
S., Purcell, S., Daly, M., and Altshuler, D. (2008). In-
tegrated genotype calling and association analysis of
snps, common copy number polymorphisms and rare
cnvs. Nature Genetics, 10(40):1253–1260.

Krampis, K., Booth, T., Chapman, B., B. Tiwari, M. B.,
Field, D., and Nelson, K. (2012). Cloud biolinux: pre-
configured and on-demand bioinformatics compu ting
for the genomics community. BMC Bioinformatics,
13(1):42.

Le Bras, Y. and Chilton, J. (2013). Deploying pro-
duction galaxy instances on openstack with
cloudbiolinux and cloudman. https://www.e-
biogenouest.org/resources/243.

Martin-Requena, V., Rios, J., Garcia, M., Ramirez, S., and
Trelles, O. (2010). jorca: easily integrating bioinfor-
matics web services. Bioinformatics, 26(4):553–559.

Mell, P. and Grance, T. (2011). The nist definition of cloud
computing. Technical Report 800-145, National Insti-
tute of Standards and Technology.

Mobley, A., Linder, S., Braeuer, R., Ellis, L., and Zwelling,
L. (2013). A survey on data reproducibility in can-
cer research provides insights into our limited ability
to translate findings from the laboratory to the clinic.
PLoS One, 8(5). e63221.

Novotny, J., Tuecke, S., and Welch, V. (2011). An on-
line credential repository for the grid: Myproxy. In
Proceedings of the Tenth International Symposium on
High Performance Distributed Computing.

Oinn, T., Addis, M., Ferris, J., Marvin, D., Senger, M.,
Greenwood, M., Carver, T., Glover, K., Pocock, M.,
Wipat, A., and Li, P. (2004). Taverna: a tool for the
composition and enactment of bioinformatics work-
flows. Bioinformatics, 20(17):3045–3054.

Pepple, K. (2011). Deploying OpenStack. O’Reilly Media,
first edition.

R Development Core Team (2008). R: A language ad en-
vironment for statistical computing. R Foundation for
Statistical Computing.

Weil, S., Brandt, S., Miller, E., Long, D., and Maltzahn,
C. (2006a). Ceph: A scalable, high-performance dis-
tributed file system. In Proceedings of the 7th Sym-
posium on Operating System Design and Implementa-
tion, pages 307–320.

Weil, S., Brandt, S., Miller, E., and Maltzahn, C. (2006b).
Crush: controlled, scalable, decentralized placement
of replicated data. In Proceedings of the 2006
ACM/IEEE Conference on Supercomputing.

CLOSER�2014�-�4th�International�Conference�on�Cloud�Computing�and�Services�Science

394


