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When an intelligent tutoring system (ITS) teaches its human student on a turn-by-turn base, the teaching can

be modeled by a Markov decision process (MDP), in which the agent chooses an action, for example, an
answer to a student question, depending on the state it is in. Since states may not be completely observable
in a teaching process, partially observable Markov decision process (POMDP) may offer a better technique
for building ITSs. In our research, we create a POMDP framework for ITSs. In the framework, the agent
chooses answers to student questions based on belief states when it is uncertain about the states. In this paper,
we present the definition of physical states, reduction of a possibly exponential state space into a manageable
size, modeling of a teaching strategy by agent policy, and application of the policy tree method for solving a
POMDP. We also describe an experimental system, some initial experimental results, and result analysis.

1 INTRODUCTION

An intelligent tutoring system (ITS) is a computer
system that teaches a subject to human students, usu-
ally in an interactive manner. An ITS may work on
a platform of a regular desktop or laptop computer,
a smaller device like a mobile phone, or the Internet.
ITSs have advantages of flexibility in scheduling and
pace, and so on. ITSs will play an important role in
computer based education and training.

An ITS performs two major tasks when it teaches
a student: interpreting student input (e.g. questions),
and responding to the input. In this research, we ad-
dress the problem of how to choose the most suitable
response to a question, when the tutoring is conducted
in a form of question-and-answer.

Many subjects (e.g. software basics, mathematics)
can be considered to include a set of concepts. For
example, the subject of “basic software knowledge”
includes concepts of binary digit, bit, byte, data, file,
programming language, database, and so on. Under-
standing the concepts is an important task in study-
ing the subject, possibly followed by learning prob-
lem solving skills. In teaching such a subject, an ITS
must teach the concepts. Quite often, a student studies
a subject by asking questions about the concepts.

In a subject, concepts are interrelated. Among
the relationships between concepts, an important one
is the prerequisite relationship. Ideally, to answer a
student question about a concept, an ITS should first
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teaches all the prerequisites of the concept that the
student does not understand, and only those prerequi-
sites. If the ITS talks about many prerequisites that
the student already understands, the student may be-
come impatient and the teaching would be inefficient.
If the ITS misses a key prerequisite that the student
does not understand, the student may become frus-
trated and the teaching would be ineffective.

To decide how to teach a student about a concept,
it is essential for the ITS to determine the right set
of prerequisites to “make up”. The decision depends
on the student’s study state. It can be seen that the
selection of right system responses can be modeled
by a Markov decision process (MDP).

In practical applications, the study state of a stu-
dent may not be completely observable to the system.
That is, the system may be uncertain about the stu-
dent’s study state. To enable an ITS to make a deci-
sion when information about a state is uncertain, we
apply the technique of partially observable Markov
decision process (POMDP). We create a POMDP
framework for building an ITS, and develop a rein-
forcement learning (RL) algorithm in the framework
for choosing the most suitable answers to student
questions.

The novelty of our work includes techniques for
efficiently solving POMDP and dramatically reduc-
ing the state space. The great complexity in solving
POMDP and exponential state space are two major is-
sues to address in applying POMDP to building ITSs.
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In this paper, we describe the POMDP framework,
including the representation of student study states by
POMDP states, representation of questions and an-
swers by POMDP actions and observations, our tech-
nique for dealing with the exponential state space,
modeling of teaching strategy by an agent policy, and
the policy tree method for solving the POMDP.

2 RELATED WORK

POMDP had been applied in education in 1990s. In
an early survey paper (Cassandra, 1998), the work
for using POMDP to build teaching machines was re-
viewed, in which POMDP was applied to model in-
ternal mental states of individuals, and to find the best
ways to teach concepts.

Recent work related with using RL and POMDP
for tutoring dialogues include (Litman and Silliman,
2004), (William et-al, 2005), (Williams and Young,
2007), (Folsom-kovarik et-al, 2010), (Thomson et-al,
2010), (Rafferty et-al, 2011), (Chinaei et-al, 2012),
and (Folsom-Kovarik et-al, 2013). In the following,
we review in more details some representative work.

In the work (Theocharous et-al, 2009), researchers
developed a framework called SPAIS (Socially and
Physically Aware Interaction Systems), in which So-
cial Variables defined the transition probabilities of a
POMDP whose states are Physical Variables. Opti-
mal teaching with SPAIS corresponded to solving an
optimal policy in a very large factored POMDP.

The paper of (Rafferty et-al, 2011) presented a
technique of faster teaching by POMDP planning.
The researchers framed the problem of optimally se-
lecting teaching actions using a decision-theoretic ap-
proach and showed how to formulate teaching as a
POMDP planning problem. They considered three
models of student learning and presented approximate
methods for finding optimal teaching actions.

The work in (Folsom-kovarik et-al, 2010) and
(Folsom-Kovarik et-al, 2013) studied two scalable
POMDP state and observation representations. State
queues allowed POMDPs to temporarily ignore less-
relevant states, and observation chains represent in-
formation in independent dimensions.

The existing work of applying POMDP to build
ITSs was characterized by off-line policy improve-
ment. The costs of solving POMDP and searching
in an exponential state space created great difficul-
ties in building systems for practical teaching tasks.
In our research, we aim to developing more efficient
techniques for solving POMDP and reducing the state
space into a manageable size, and to achive online
policy improvement.
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3 RL AND POMDP

3.1 Reinforcement Learning

Reinforcement learning (RL) is an interactive ma-
chine learning technique (Sutton and Barto, 2005).
In an RL algorithm, there is one or a group of learn-
ing agents, which learn knowledge through interac-
tions with the environment. A learning agent is also a
problem-solver. It applies the knowledge it learns to
solve problems. Meanwhile, it improves the knowl-
edge in the process of problem-solving.

The major components of an RL algorithm are S,
A, T and p, where S is a set of states, A is a set of ac-
tions, T: S X Ax.S — [0,1] defines state transition
probabilities, and p: SxA xS — R is the reward
function where R is a set of rewards.

At time step 7, the agent is in state s;, it takes action
a;. The action causes a state transition from s; to a
new state s,.. When the agent enters s,y at time
step ¢ + 1, it receives reward r, 1 = p(s;,as,514+1). The
long term return at time step ¢ is defined as

n
R =Y Yrium (1)
k=0

where r; € R isareward i =7+ 1,1 +2,...), and yis
a future reward discounting factor (0 <y <1).

An additional component is policy T. T can be
used to choose the optimal action to take in a state:

n(s) = a = argmax, Q" (s,a), )
where s is the state, @ is the optimal action in s, and
O™ (s,a) is the action-value function given T. It eval-

uates the expected return if a is taken in s and the
subsequent actions are chosen by T

Q" (s,a) = ZP(s’Is,a)V“(s’> 3)

where s’ is the state that the agent enters after it takes
a in s, P(s'|s,a) is the probability of transition from
s to " after a is taken, and V™(s) is the state-value
function that evaluates the expected return of s given
policy m:
Vi(s) = Zn(s,a) ZP(S/|s,a)[K(s,a,s/) +WE(s")
a s

“)

where 7y is a future reward discounting factor, and

R (s,a,s") is the expected reward when transiting
from s to s after a is taken.

3.2 Partially Observable Markov
Decision Process

The RL discussed above is based on Markov decision
process (MDP), in which all the states are completely



observable. For applications in which states are not
completely observable, POMDP may provide a better
technique (Kaelbling et al., 1998).

The major components of POMDP are S, A, T, p,
0, Z, and by. The first four are the same as the coun-
terparts in RL. O is a set of observations. Z: A x S —
O defines observation probabilities, P(o|a,s') denotes
the probability that the agent observes o € O after tak-
ing a and entering s’. by is the initial belief state.

POMDP is differentiated from MDP by the intro-
duction of belief state denoted by b:

b= [b(sl),b(S2)7...,b(SN)] (5)

where s5; € S (1 <i < N) is the ith state in S, N is the
number of states in S, b(s;) is the probability that the
agent is currently in s; and YN, b(s;) = 1. To avoid
confusion, we refer to an s € S as a physical state.

At a point of time, the agent is in a physical state
s € . Since states are not completely observable, the
agent has only the probabilistic information about the
states that it is in. The information is represented by b,
as given in (5). Based on b, the agent chooses action
a to take. After taking a, the agent enters s’ € S and
observes 0. The process is showed in Figure 1. The
total probability for the agent to observe o after a is

P(ola) = Zb(s) Z P(s'|s,a)P(o|a,s’).  (6)

seS s'es

Action a causes a physical state transition: The
agent enters s’, which is not observable either. The
state information available to the agent is a new belief
state &’. Each element in &’ is calculated as

b'(s') =) b(s)P(s'|s,a)P(ola,s") /P(ola)  (7)
seS
where o is what the agent observes after taking a, and
P(0|a) defined in (6) is used as a normalization con-
stant so that the elements in ' sum to one.
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Figure 1: Physical states, belief states, actions, observa-
tions, and state transitions.
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In POMDP, we use T to guide the agent to take
actions. Differing from a policy in MDP, a policy in
POMDP is a function of a belief state. The task to find
the optimal policy is referred to as solving a POMDP.

The method of policy tree is used to simplify the
process of solving a POMDP. In a policy tree, nodes
represent actions, and edges represent observations.
After the agent takes action a represented by a tree
node, it observes o. The next action the agent will
take is one of the children of a, connected by the edge
representing o.

A policy tree is associated with a V function. In
the following, we denote the V function of policy tree
p as V,. The value of physical state s given p is:

Vy(s)=R(s,a)+Y Z P(s'|s,a) Z P(0|a,s/)VI,<0) (s')

s'es 0€0
(3)

where a is the root action of policy tree p, R (s,a) is
the expected immediate reward after a is taken in s, o
is the observation after a is taken, p(o) is the subtree
in p which is connected to the root action by an edge
labeled o, and 7 is a reward discounting factor. The
second term in the expression on the right side of (8)
is the discounted expected value of future states.
The value of belief state b is

Vp(b) =} b(s)Vy(s). ©)
seS
For belief state b, there is an optimal policy tree p,
which maximizes the value of the belief state:

V(b) = max Vp(b) (10)

The policy m(b) (approximated by a policy tree) is
a function of b, returning a policy tree that maximize
the value of V (b):

n(b)=p= argmax,,eTVp(b) (11)

4 INTELLIGENT TUTORING
SYSTEM ON POMDP

4.1 An Overview

We cast our ITS onto the framework of RL and
POMDP. The main components of the ITS include
states, actions, observations, and a policy. The states
represent the student’s study states: what the student
understands, and what the student does not under-
stand. The actions are the system’s responses to stu-
dent input, and the observations are student input, in-
cluding questions. The policy represents the teaching
strategy of the system.
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At a point of time, the learning agent is in state
s, which represents the agent’s knowledge about the
student’s study state. Since in practical applications,
the knowledge is not completely certain, we calculate
belief state b for the knowledge. b is a function of
the previous belief state, previous system action (e.g.
answer), and the immediate student action (e.g. ques-
tion) just observed by the agent. To respond to the
student action, policy 7t(b) is used to choose the most
suitable system action a, for example, the answer to
the student question.

After seeing system action a, the student may take
another action, treated as observation o. Then new
belief state b’ is calculated from a and o, and the next
system action is chosen by (b'), and so on.

4.2 States: Student Study States

In teaching a student, the knowledge about the stu-
dent’s study state is essential to choose a teaching
strategy. By study state, we mean what concepts
the student understands and what concepts the stu-
dent does not understand. We define the states in the
POMDP to represent student study states.

As mentioned, a subject includes a set of concepts.
For each concept C, we define two conditions:

e the understand condition, denoted by /C, indi-
cating that the student understands C, and

e the not understand condition, denoted by —C, in-
dicating that the student does not understand C.

We use expressions made of /C and —C to rep-
resent study states. For example, we can use expres-
sion (1/C1/C2—C3) to represent that the student un-
derstands concepts C; and C,, but not concept Cs.

A state is associated with an expression made of
/C and —C. We call such an expression a state
expression. A state expression specifies the agent’s
knowledge about the student’s study state. For ex-
ample, when the agent is in a state associated with
expression (/C1/C2—C3), the agent has the knowl-
edge about the concepts that student understands and
does not understands. When the subject taught has N
concepts, each state expression is of the form

(CGG...Cy), (12)

where ; takes /C; or =C; (1 <i<N).

The major advantage of this state definition is
that each state has the most important information re-
quired to teach the student — the study state. In addi-
tion, the states thus defined are Markovian. The in-
formation required for choosing a system response is
available in the state that the agent is in.
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4.3 Dealing with the Exponential State
Space

As mentioned, when there are N concepts in the sub-
ject taught by the ITS, a state expression is of the
form (i G C...Cy), where G takes 1/C; or =C; (1 <
i < N). Thus we have N possible state expressions,
which is exponential. However, the actual number of
states is much smaller than 2V. The reason is that
most expressions are for invalid states. For example,
(1/C1—C24/C5...) is for an invalid state when C; is a
prerequisite of C3. Assume that C; is “bit” and C3
is “byte”. The expression represents an invalid state
in which a student understands “byte” without knowl-
edge of “bit”, which is a prerequisite of “byte”.

computer
file

——
\ query

language

/

datebase
bit

byte dat:

binary digit

/A

high level
language

- i

machine
T laguage

programming

language

instruction program

program

Figure 2: A DAG showing prerequisites between concepts.

To deal with the exponential space, we use the re-
lationship of concept prerequisites in encoding state
expressions. The relationship helps eliminate invalid
states and maintain a state space of a manageable size.
Let C; and C; be two concepts in a subject. If to un-
derstand concept Cy, a student must first understand
C1, we say C is a prerequisite of C,. A concept may
have one or more prerequisites, and a concept may
serve as a prerequisite of one or many other concepts.
The concepts and their prerequisite relationships can
be represented in a directed acyclic graph (DAG). Fig-
ure 2 is such a DAG for a subset of concepts in basic
software knowledge.

When encoding state expressions in the form of
(12), we perform a topological sorting on the DAG, to
generate a 1-D sequence of the concepts. For exam-
ple, the following is a topologically sorted sequence
of the concepts in the DAG in Figure 2:

BD BIBY DA FI IN PL ML AL HL QL PR AP DB

where BD stands for “binary digit”, BI for “bit lan-
guage”, BY for “byte”, DA for “data”, FI for “file”,
IN for “instruction”, PL for “programming language”,
ML for “machine language”, AL for “assembly lan-
guage”, HL for “high-level language”, QL for “query



language”, PR for “program”, AP for “application
program”, and DB for “database”.

In a topologically sorted state expression, all the
direct and indirect prerequisites of a concept are on
the left hand side of it. The sorting helps determine
invalid states. For example, (1/C;—C2+/C3...) is for
an invalid state when C; is a prerequisite of C3. In a
state expression, if the jth concept is in /C; condi-
tion, and there exists a prerequisite left to it, e.g. the
ith concept, which in condition —C;, we can determine
that the state is invalid by using simple calculation.

Let Cj1, Cj, ... C N be the set of prerequisites of
C;. We call Cj1CJ-2...C,-NjCj the prerequisite sequence
of Cj. A prerequisite sequence is in a valid condi-
tion, if and only if when concept Cy in the sequence is
/Cx, any concept C; to its left is 1/C;. A state expres-
sion made of N concepts has at most N prerequisite
sequences, and each of the prerequisite sequences has
at most NV valid conditions. We can thus estimate that
the maximum number of valid states is N?.

4.4 Definition of Actions

In a tutoring session, asking and answering questions
are the primary actions of the student and system.
Other actions are those for confirmation, etc.

We classify actions in the ITS into student actions
and system actions. Student actions mainly includes
the actions of asking questions about concepts. Ask-
ing “what is a database?” is such an action. Each stu-
dent action involves only one concept. In the follow-
ing discussion, we denote a student action of asking
about concept C by [C].

The system actions mainly include the actions of
answering questions about concepts, like “A database
is a collection of interrelated computer files and a set
of application programs in a query language”. We use
{C?} to denote a system action of explaining C.

Quite often, the system can answer [C] directly by
taking the action of {C}. However, sometimes to an-
swer a question, the system has to “make up” some
prerequisite knowledge. For example, before answer-
ing a question about “database”, the system has to
explain “query language” and “computer file” if the
student does not understand them. Let’s use C; repre-
sent “database”, C; represent “query language”, and
Cy, represent “computer file” (1 < j < k < [), and as-
sume j < k. Subscripts j, k, [ are indexes of the con-
cepts in the state expressions, which are topologically
sorted. We express such actions as {C;CyC;}, which
specifies that the system explains C;, then Cy, and
then C;. It explains C; and Cy in order to eventually
explain C;. In the following discussion, we refer to
such a sequence of actions for answering a question

POMDP Framework for Building an Intelligent Tutoring System

as a answer path.

S OPTIMIZATION OF TEACHING
STRATEGY

5.1 Teaching Strategy as Policy Trees

As discussed, when answering a question about a con-
cept, an ITS may directly explain the concept, or it
may start with one of the prerequisites to make up
the knowledge that is needed for the student to under-
stand the concept in question. In this paper, teaching
strategy is used to select of the starting concept in an-
swering a question. The teaching strategy largely de-
termines student satisfaction and teaching efficiency.

A question can be answered in different ways. As-
sume the student question is [Cy] and Cy has prerequi-
sites Cy, Cy, ..., Cx—1. A possible system action is to
teach C; directly, without making up a prerequisite.
The second possible action is to start with Cy, then
teach C, until C;. The third action is to start with
(C,, then teach C3, until Cy, and so on. For example,
when asked about “database”, the agent may explain
what a database is, without making up any prerequi-
site. A disadvantage is the student may become frus-
trated and has to ask about many prerequisites. An-
other answer is to start with a very basic prerequisite.
A disadvantage of this answer is low efficiency and
the student may become impatient. When answering
a student question, the system should choose a an-
swer which starts with the “right” prerequisite if the
concept in question has prerequisites.

We model the teaching strategy as the policy. In
POMDP, policy trees can be used to simplify the pro-
cess of POMDP solving, that is, the process to find the
optimal policy. In a policy tree, a node represents an
action and an edge represents an observation. When
executing a policy tree, the system first takes the ac-
tion at the root node, then depending on the observa-
tion, takes the action at the node that is connected by
the edge representing the observation, and so on.

A policy is comprised of a set of policy trees.
When we use POMDP to solve a problem, we se-
lect the policy tree that maximizes the value function.
For different belief state b, we choose different policy
trees to solve the problem. The calculation for policy
selection is given in Eqn (11).

For each concept, we create a set of policy trees to
answer questions about the concept. Let the concept
in question be C;. For each direct prerequisite Cy, we
create a policy tree p with Cj being the root. In the
policy tree, there is one or more paths Cy, ..., C;, which
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are answer paths for student question [C;]. When the
student asks a question about C;, we select the pol-
icy tree p that contain the most suitable answer path,
based on the student’s current study state.

5.2 Policy Initialization

From (11), (9), (10), and (8), we can see that a pol-
icy is defined by the V function, and the V func-
tion is defined by R (s,a), P(s'|s,a), and P(ola,s’).
The creation of R (s,a), P(s'|s,a), and P(o|a,s’) is
the primary task in policy initialization. R (s,a) is
the expected reward after the agent takes a in s. We
define the reward function as § x A — R, and have
R (s,a) = p(s,a), which returns rewards depending
on if action a taken in state s is accepted or rejected
by the student. More about rejection and acceptance
of a system action will be given in the discussion of
experimental results.

Policy initialization mainly involves creating
P(s'|s,a) and P(o|a,s’). We will see that updating
them is also the primary task in policy improvement.

P(s'|s,a) is defined as

P(s/|s,a) = P(s41 :S/|St =S8, :a) (13)

where ¢ denotes a time step, and s’ is the new state at
time step 7+ 1. P(o|a,s’) is defined as

P(o|a,s’) = P(0,41 =ola; = a,5,41 :S/) (14)

where ¢ and ¢ + 1 are the same as (13).

To initialize P(s'|s,a) and P(o|a,s’), we create ac-
tion sequences as training data. The data are repre-
sented as tuples:

"'(§taat70t7§t+1)(§f+17a7+1701‘+17§t+2)"' (15)

where the a denoted a system action, and o denotes a
student action since the agent treats a student action
as an observation.
Let s be §, and s’ be $;41. P(s'|s,a) and P(o|a,s’)
can be initialized as
_|transition from s to s’ when a is taken in s|

P(s'|s,a) =
(sls,a) |a is taken in s ’
(16)

|a is taken, s’ is perceived, o is observed|

P(ola,s")

amn
where | | is the operator for counting. In (16) and
(17) the counts are from the training data in the form
of (15).

|a is taken and s’ is perceived|

5.3 Policy Improvement

Policy improvement updates P(s'|s,a) and P(ola,s’),
so that belief states can model physical states better.
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The objective of policy improvement is to enable the
agent to choose more understandable and more effi-
cient answers to student questions.

In reinforcement learning, the learning agent im-
proves its policy through the interaction with the en-
vironment, and the policy improvement is conducted
when the agent applies the policy to solve problems.

We use a delayed updating method for policy im-
provement. In this method, the current policy is fixed
for a certain number of tutoring sessions. In the ses-
sions, system and student actions are recorded. Af-
ter the tutoring sessions, while the policy continues to
work, information about the recorded actions is pro-
cessed, and the transition probabilities and observa-
tion probabilities are updated. When the improve-
ment is completed, the updated probabilities replace
the current ones and are used for choosing system ac-
tions, then they are updated again after a certain num-
ber of tutoring sessions, and so on.

The recorded data for policy improvement are se-
quences of tuples. In the tuples, we use a to denote a
system action and o to denote a student action. The
recorded data are

"'(fl‘;at70t7§t+1)(§t+17at+170t+17§t+2)"' (18)

where §; is the most probable physical state in b; (i =
1,..,t,t+1,...). At time step i, the agent believes that
it is most likely in §;. In the following, we call § the
believed physical state.

The recorded tuple sequences are modified for up-
dating the probabilities. We modify believed phys-
ical state $;y; by using student action o;. Here
we use tuple (§,a,0/,8.+1) to explain the modifica-
tion. Assume o, = [C}], and the expression of §;;; is
(...v/Cj\/C—C...) where C; and Cy are prerequisites
of C;. That is, the student asks a question about Cj,
and to the agent, the student is in a study state of not
understanding C; but understanding C; and Cy. If in
the subsequent tuples in the same recorded tutoring
session there are student actions of 0,1 = [C;] and
o142 = [Ci], we modify the expression of §;; into
(...mCj=Cx—C;...), which is for a state in which the
student does not understand the three concepts. This
is a different state. We thus modify the tuple into
(8, a4,0¢,5+1), where §4 is the state represented by
(...mCj=Cx—C;...). In the following, we use $ for the
states in the modified tuples.

After the modification, the tuple sequences for up-
dating the probabilities become

"'(Sll‘a a, Ot7if+1)(§t+17at+1 ) 0t+17‘§:f+2)"' (19)
From (19), we derive sequence

...(it,a[,§t+])(§[+],a[+1,§t+2)... (20)



for updating P(s'|s,a), and derive sequence

co(@r,00,3141) (@41, 0041, 8142) - 20

for updating P(o|a,s’).
P(s'|s,a) is updated as

P(s'|s,a) =C1/(C2+Ca) +C3/(C2+Cs)  (22)

where

e () is the accumulated count of tuples (s,a,s’) in
which s = §;, a = a, and s’ = $,, 1 in initialization
and all the previous updates.

e (; is the accumulated count of tuples (s,a,*) in
which s = §;, a = a;, and * is any state in initial-
ization and all the previous updates.

e C; is the count of tuples (s,a,s’) in which s = §,
a=a;, and s =5, a, = a and $;.; = 5 in the
current update.

e (4 is the count of tuples (s,a,*) in which s = §,
a = a;, and % is any state and a; = a in the current
update.

P(ola,s") is updated in the same way.

6 EXPERIMENTS AND RESULTS

6.1 Experimental System

An experimental system has been developed for im-
plementing the techniques. It is an interactive ITS for
teaching basic software knowledge. It teaches soft-
ware knowledge in terms of about 150 concepts. The
system teaches a student at a time on a turn-by-turn
basis: The student asks a question about a concept,
and the system answers the question, then based on
the system answer the student asks a new question
or asks a question for understanding the concept just
questioned, and the system answers, and so on. The
student communicates with the system by using a key-
board, and the system’s output device is the screen.
The ITS is a part of a larger project of a spoken di-
alogue system (SDS). Using the keyboard and screen
for input and output allows us to focus on the develop-
ment and improvement of the teaching strategy, with-
out considering issues in speech recognition.

The main components of the system include a stu-
dent module, an agent module, and a collection of
databases. The student module is responsible for in-
terpreting student input and converting it into a form
usable to the agent module. (The student module and
the input interpretation function are not discussed in
this paper because of the limitation of paper length.)
The agent module is the dialogue manager. For a
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student input (mostly a question), the agent module
invokes policy m(b) to choose the most suitable re-
sponse.

The databases are the system action database
storing human understandable system responses (an-
swers), policy tree database storing policy trees for
solving POMDP, transition probability database stor-
ing P(s'|s,a), observation probability database stor-
ing P(ola,s"), and reward database storing R (s,a).

6.2 Experiment

30 people participated in the experiment. In the fol-
lowing, we call them students. The students know
how to use desktop or laptop computers, Windows or
Mac operating systems, and application programs like
Web browsers, word processors, and so on. They did
not have formal training in computer science and soft-
ware development.

The 30 students were randomly divided into two
groups of the same size. The students in Group 1
studied with the ITS which did not have the improved
teaching strategy. When a student asked about a con-
cept, the system either explained the concept directly,
or randomly chose a prerequisite to start. The students
in Group 2 studied with the ITS in which the teaching
strategy was continuously improved.

The ITS taught a student at a time. Each student
studied with the ITS for about 45 minutes. For each
student, the question-answer sessions were recorded
for performance analysis.

The performance perimeter is rejection rate.
Roughly, if right after the system explains concept
C, the student asks a question about a prerequisite of
C, or says “I already know C”, we consider the stu-
dent rejects the system action. For a student session,
the rejection rate is defined as the ratio of the number
of system actions rejected by the student to the total
number of system actions.

6.3 Result Analysis

We applied a two-sample #-test method to evaluate
the effects of the optimized teaching strategy to the
teaching performance of an ITS. The test method is
the independent-samples t-test (Heiman, 2011).

For each student, we calculated the mean rejection
rate. For the two groups, we calculated means X; and
X>. Sample mean X; is used to represent population
mean uy, and X, represent .

The alternative and null hypotheses are:

Hyipn—wo #0,  Ho:tpn—p =0

The means and variances calculated for the two
groups are listed in Table 1. In the experiment, n;=15
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Table 1: Number of students, mean and estimated variance
of each group.

Group 1 Group 2

Number of students np =15 n, =15
Sample mean X1 =0.5966 | X, =0.2284
Estimated variance | s7=0.0158 | s7 =0.0113

and ny=13, thus the degree of freedom is (15— 1) +
(15— 1) = 28. With alpha at 0.05, the two-tailed f,
is 2.0484 and we calculated 7,,; = +8.6690. Since
the 7, is far beyond the non-reject region defined by
terir = 2.0484, we should reject Hy and accept H,.

As listed in Table 1, the mean rejection rate in
Group 1 was 0.5966 and the mean rejection rate in
Group 2 was 0.2284, and the accepted alternative
hypothesis indicated the difference between the two
means was significant. The analysis suggested that
by using the optimized teaching strategy, the rejection
rate has been reduced from 0.5966 to 0.2284.

7 CONCLUSIONS

In teaching a student, an effective teacher should be
able to adapt a suitable teaching strategy based on
his/her knowledge about the student’s study state, and
should be able to improve his/her teaching when be-
coming more experienced. An effective ITS should
have the same abilities. In our research, we attempt to
build such an ITS. Our approch is POMDP.

Our research has novelty in state definition,
POMDP solving, and online strategy improvement.
The state definition allows important information to
be available locally for choosing the best responses,
and reduces an exponential space into a polynomial
one. Compared with the existing work for applying
RL and POMDP to build ITSs, which mainly depend
on off-line policy improvement, our online improve-
ment algorithm enables the system to continuously
optimize its teaching steategies while it teaches.
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