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Abstract: We extend knowledge gradient (KG) policy for the multi-objective, multi-armed bandits problem to effi-
ciently explore the Pareto optimal arms. We consider two partial order relationships to order the mean vec-
tors, i.e. Pareto and scalarized functions. Pareto KG finds the optimal arms using Pareto search, while the
scalarizations-KG transform the multi-objective arms into one-objective arm to find the optimal arms. To
measure the performance of the proposed algorithms, we propose three regret measures. We compare the per-
formance of knowledge gradient policy with UCB1 on a multi-objective multi-armed bandits problem, where
KG outperforms UCB1.

1 INTRODUCTION

The single-objective multi-armed bandits (MABs)
problem is a sequential Markov Decision Process
(MDP) of an agent that tries to optimize its decisions
while improving its knowledge on the arms. At each
time stept, the agent pulls one arm and receives re-
ward as a feedback signal. The reward that the agent
receives is independent from the past implementa-
tions and independent from all other arms. The re-
wards are drawn from a static distribution, e.g. normal
distributionsN(µ,σ2), whereµ is the true mean and
σ2 is the variance. We assume that the true mean and
variance parameters are unknown to the agent. Thus,
by drawing each arm, the agent maintains estimations
of the true mean and the variance which are known as
µ̂ andσ̂2, respectively.

The goal of the agent is to minimize thelossof not
pulling the best armi∗ that has the maximum mean all
the time. The loss, ortotal expected regret, is defined
for any fixed time stepsL as:

RL = Lµ∗−
L

∑
t=1

µt (1)

where µ∗ = maxi=1,··· ,|A|µi is the true mean of the
greedy (best) armi∗ and µt is the true mean of the
selected armi at time stept.

In the multi-armed bandits problem, at each time
step t, the agent either selects the arm that has
the maximum estimated mean (exploiting the greedy

arm), or selects one of the non-greedy arms in or-
der to be more confident about its estimations (ex-
ploring one of the available arms). This problem is
known asthe trade-off between exploitation and ex-
ploration (Sutton and Barto, 1998). To overcome this
problem, (Yahyaa and Manderick, 2012) have com-
pared several action selection policies on the multi-
armed bandits problem (MABs) and have shown that
Knowledge Gradient (KG) policy (I.O. Ryzhov and
Frazier, 2011) outperforms other MABs techniques.

In this paper, we extend knowledge gradient
KG policy (I.O. Ryzhov and Frazier, 2011) to vec-
tor means, obtaining theMulti-Objective Knowledge
Gradient (MOKG). In the multi-objective setting,
there is a set of Pareto optimal arms that are incom-
parable, i.e. can not be classified using a designed
partial order relationship. Thus, the agent trades-
off the conflicting objectives (or dimensions) of the
mean vectors, the exploration (finding the Pareto front
set) and the exploitation (selecting fairly the optimal
arms).

The Pareto optimal arm set is found either by us-
ing: i) the Pareto partial order relationship (Zitzler
and et al., 2002), or ii) the scalarized functions (Eich-
felder, 2008). Pareto partial order finds the Pareto
front set by optimizing directly the multi-objective
space. The scalarized functions convert the multi-
objective space to a single-objective space, i.e. the
mean vectors are transformed in scalar values. There
are two types of scalarization functions, linear and
non-linear (or Chebyshev) functions. Linear scalar-
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ization function is simple and intuitive but can not
find all the optimal arms in a non-convex Pareto front
set. In opposition, Chebyshev scalarization function
has an extra parameter to be tuned, however can find
all the optimal arms in a non-convex Pareto front
set. Recently, (Drugan and Nowe, 2013) have used
a multi-objective version of the Upper Confidence
Bound (UCB1) policy to find the Pareto optimal arm
set (exploring) and select fairly the optimal arms (ex-
ploiting), i.e. solve the trade-off problem in the Multi-
Objective, Multi-Armed Bandits (MOMABs) prob-
lem. We compare KG policy and UCB1 on the
MOMABs problem.

The rest of the paper is organized as follows. In
Section 2 we present background information on the
algorithms and the used notation. In Section 3 we in-
troduce multi-objective, multi-armed bandits frame-
work and upper confidence bound policy UCB1 in
multi-objective normal distributions bandits. In Sec-
tion 4 we introduce knowldge gradient (KG) pol-
icy and we propose Pareto knowldge gradient algo-
rithm, linear scalarized knowledge gradient across
arms algorithm, linear scalarized knowledge gradient
across dimensions algorithm, and Chebyshev scalar-
ized knowledge gradient algorithm. In Section 5 we
present scalarized multi-objective bandits. In Sec-
tion 6, we describe the experiments set up followed
by experimental results. Finally, we conclude and dis-
cuss future work.

2 BACKGROUND

In this section, we introduce the Pareto partial or-
der relationship, order relationships for scalarization
functions and regret performance measures of the
multi-objective, multi-armed bandits problem.

Let us consider the multi-objective, multi-armed
bandits (MOMABs) problem with|A|, |A| ≥ 2 arms
and withD objectives (or dimensions). Each objective
has a specific value and the objectives are conflicting
with each other. This means that the value of armi can
be better than the value of armj in one dimension and
worse than the value of armj in other dimension.

2.1 The Pareto Partial Order
Relationship

Pareto partial order finds the Pareto optimal arm set
directly in the multi-objective space (Zitzler and et al.,
2002). Pareto partial order uses the following rela-
tionships between the mean vectors of two arms. We
usei and j to refer to the mean vector (estimated mean

vector or true mean vector) of armsi and j, respec-
tively:

1. Arm i dominates or is better thanj, i ≻ j, if there
exists at least one dimensiond for which id ≻ jd

and for all other dimensionso we haveio � jo.

2. Arm i weakly-dominatesj, i � j, if and only if
for all dimensionsd, i.e. d = 1, · · · ,D we have
id � jd.

3. Arm i is incomparable withj, i ‖ j, if and only
if there exists at least one dimensiond for which
id ≻ jd and there exists another dimensiono for
which io ≺ jo.

4. Arm i is not dominated byj, j ⊁ i, if and only
if there exists at least one dimensiond for which
jd ≺ id. This means that eitheri ≻ j or i ‖ j.

Using the above relationships, the Pareto optimal arm
A∗ set,A∗ ⊂ A be the set of arms that are not domi-
nated by all other arms. Then:

∀a∗ ∈ A∗, and∀o /∈ A∗(∀o ∈ A), we haveo⊁ a∗

Moreover, the Pareto optimal armsA∗ are incom-
parable with each other. Then:

∀a∗,b∗ ∈ A∗, we havea∗ ‖ b∗

2.2 The Scalarized Functions Partial
Order Relationships

In general, scalarization functions convert the multi-
objective into single-objective optimization (Eich-
felder, 2008). However, solving a multi-objective op-
timization problem means finding the Pareto front set.
Thus, we need a set of scalarized functionsSto gener-
ate a variety of elements belonging to the Pareto front
set. There are two types of scalarization functions that
weigh the mean vector, linear and non-linear (Cheby-
shev) scalarization functions.

The linear scalarizationassigns to each value of
the mean vector of an armi a weightwd and the result
is the sum of these weighted mean values. The linear
scalarized across mean vector is:

f j (µi) = w1µ1
i + · · ·+wDµD

i (2)

where (w1, · · · ,wD) is a set of predefined weights
for the linear scalarized functionj, j ∈ S, such that
∑D

d=1wd = 1 andµi is the mean vector of armi. The
linear scalarization is very popular because of its sim-
plicity. However, it can not find all the arms in the
Pareto optimal setA∗ if the corresponding mean set is
a non-convex set.

The Chebyshev scalarizationbeside weights,
Chebyshev scalarization has aD-dimensional refer-
ence point, i.e. z = [z1, · · · ,zD]T . The Chebyshev
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scalarized can find all the arms in a non-convex Pareto
mean front set by moving the reference point (Mietti-
nen, 1999). For maximization multi-objective multi-
armed bandits problem, the Chebyshev scalarization
is (Drugan and Nowe, 2013):

f j (µi) = min
1≤d≤D

wd(µd
i − zd), ∀i (3)

zd = min
1≤i≤A

µd
i − εd, ∀d

whereε is a small value,ε > 0. The reference pointz
is dominated by all the optimal mean vectors. Thus,
it is the minimum of the current mean vector minusε
value.

After transforming the multi-objective problem to
single-objective problem, the scalarized functions se-
lect the arm that has the maximum function value:

i∗ = max
1≤i≤A

f j(µi)

2.3 The Regret Metrics

To measure the performance of the Pareto, scalar-
ized functions partial order relationships, (Drugan and
Nowe, 2013) have proposed three regret metric crite-
ria.

1. Pareto regret metric RPareto measures the distance
between a mean vector of an armi that is pulled
at time stept and the Pareto optimal mean set.
RPareto is calculated by finding firstly the virtual
distancedis∗. The virtual distancedis∗ is defined
as the minimum distance that is added to the mean
vector of the pulled armµt at time stept in each
dimension to create a virtual mean vectorµ∗t that
is incomparable with all the arms in Pareto setA∗,
whereµ∗t ||µi ∀i∈A∗ as follows:

µ∗t = µt + ε∗

where ε∗ is a vector,ε∗ = [dis∗,1, · · · ,dis∗,D]T .
Then, the Pareto regretRPareto is:

RPareto= dis(µt ,µ
∗
t ) = dis(ε∗,0) (4)

wheredis, dis(µt ,µ∗t ) =
√

∑D
d=1(µ

∗
t −µt)2 is the

Euclidean distance between the mean vector of
the virtual armµ∗t and the mean vector of the
pulled armµt at time stept. Thus, the regret of the
Pareto front is 0 for optimal arms, i.e. the mean of
the optimal arm coincides itself (dis∗ = 0 for the
arms in the Pareto front set).

2. The scalarized regret metricmeasures the dis-
tance between the maximum value of a scalarized
function and the scalarized value of an arm that is

pulled at time stept. Scalarized regret is the dif-
ference between the maximum value for a scalar-
ized functionf j which is either Chebyshev or lin-
ear on the set of armsA and the scalarized value
for an armk that is pulled by the scalarizedf j at
time stept,

Rscalarizedj (t) = max
1≤i≤A

f j(µi)− f j(µk)(t) (5)

3. The unfairness regret metricis related to the vari-
ance in drawing all the optimal arms. The unfair-
ness regret of multi-objective, multi-armed ban-
dits problem is the variance of the times the arms
in A∗ are pulled:

Run f airness(t) =
1
|A∗| ∑

i∗∈A∗
(Ni∗(t)−N|A∗|(t))

2 (6)

whereRun f airness(t) is the unfairness regret at time
stept, |A∗| is the number of optimal arms,Ni∗(t)
is the number of times an optimal armi∗ has been
selected at time stept andN|A∗|(t) is the number
of times the optimal arms,i∗ = 1, · · · , |A∗| have
been selected at time stept.

3 MOMABs FRAMEWORK

At each time stept, the agent selects one armi
and receives a reward vector. The reward vector is
drawn from a normal distributionN(µi ,σ2

i ), where
µi = [µ1

i , · · · ,µD
i ]

T is the true mean vector andσi =
[σ1

i , · · · ,µD
i ]

T is the standard deviation vector of arm
i, andT is the transpose.

The true mean and standard deviation vectors of
armsi are unknown to the agent. Thus, by drawing
each armi, the agent estimates the mean vector ˆµi and
the standard deviation vectorσ̂2

i . The agent updates
the estimated mean ˆµi and the estimated varianceσ̂2

in each dimensiond as follows (Powell, 2007):

Ni+1 = Ni +1 (7)

µ̂d
i+1 = (1− 1

Ni+1
) µ̂d

i +
1

Ni+1
rd
t+1 (8)

σ̂2,d
i+1 =

Ni+1−2
Ni+1−1

σ̂2,d
i +

1
Ni+1

(rd
t+1− µ̂d

i )
2 (9)

whereNi is the number of times armi has been se-
lected,µ̂d

i+1 is the updated estimated mean of armi

for dimensiond, σ̂2,d
i+1 is the updated estimated vari-

ance of armi for dimensiond andrd
t+1 is the collected

reward from armi in the dimensiond.

3.1 UCB1 in Normal MOMABs

In the single-obtimization bandits problem, upper
confidence bound UCB1 policy (P. Auer and Fischer,
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2002) plays firstly each arm, then adds to the esti-
mated mean ˆµ of each armi an exploration bound.
The exploration bound is an upper confidence bound
which depends on the number of times armi has been
selected. UCB1 selects the optimal armi∗ that maxi-

mizes the function ˆµi +
√

2 ln(t)
Ni

as follows:

i∗ = max
1≤i≤A


µ̂i +

√
2ln(t)

Ni




whereNi is the number of times armi has been pulled.
In the multi-objective multi-armed bandits prob-

lem MOMABs with Bernoulli distributions, (Drugan
and Nowe, 2013) have extended UCB1 policy to find
the Pareto optimal arm set either by using UCB1 in
Pareto order relationship or in scalarized functions. In
this paper, we use UCB1 in the multi-objective multi-
armed bandits problem with normal distributions.

3.1.1 Pareto-UCB1 in Normal MOMABs

Pareto-UCB1 plays initially each armi once. At each
time stept, it estimates the mean vector of each of
the multi-objective armsi, i.e. µ̂i = [µ̂1

i , · · · , µ̂D
i ]

T and
adds to each dimension an upper confidence bound.
Pareto-UCB1 uses a Pareto partial order relationships,
Section 2.1 to find the Pareto optimal arm setA∗PUCB1

.
Thus, for all the non-optimal armsk /∈ A∗PUCB1

there
exists a Pareto optimal armj ∈A∗PUCB1

that is not dom-
inated by the armsk:

µ̂k+

√
2ln(t 4

√
D|A∗|)

Nk
⊁ µ̂j +

√
2ln(t 4

√
D|A∗|)

Nj

Pareto-UCB1 selects uniformly, randomly one of
the arms in the setA∗PUCB1

. The idea is to select most
of the times one of the optimal arm in the Pareto front
set,i ∈ A∗. An arm j /∈ A∗ that is closer to the Pareto
front set according to metric measure is more selected
than the armk /∈ A∗ that is far fromA∗.

3.1.2 Scalarized-UCB1 in Normal MOMABs

scalarized UCB1 adds an upper confidence bound to
the pulled arm under the scalarized functionj. Each
scalarized functionj has associated a predefined set
of weights,(w1, · · · ,wD) j , ∑D

d=1wd = 1. The upper
bound depends on the number of times the scalarized
function j has been selected,N j and on the number of
times the armi has been pulledN j

i under the scalar-
ized function j. Firstly, the scalarized UCB1 plays
each arm once and estimates the mean vector of each
arm,µ̂i, i = 1, · · · , |A|. At each time stept, it pulls the
optimal armi∗ as follows:

i∗ = max
1≤i≤A

(
f j (µ̂i)+

√
2ln(N j)

N j
i

)

where f j is either linear scalarized function, Equa-
tion 2, or Chebyshev scalarized function, Equation 3
with a predefined set of weights and ˆµi is the estimated
mean vector of armi.

4 MULTI OBJECTIVE
KNOWLEDGE GRADIENT

Knowledge gradient (KG) policy (I.O. Ryzhov and
Frazier, 2011) is an index policy that determines for
arm i the indexVKG

i as follows:

VKG
i = ˆ̄σi ∗ x


−|

µ̂i− max
j 6=i, j∈|A|

µ̂j

ˆ̄σi
|




where ˆ̄σi = σ̂i/Ni is the Root Mean Square Er-
ror (RMSE) of the estimated mean of an armi.
The function x(ζ) = ζΦ(ζ) + φ(ζ) where φ(ζ) =
1/
√

2πexp(−ζ/2) is the standard normal density and its

cumulative distribution isΦ(ζ) =
∫ ζ
−∞ φ(ζ′)dζ′. KG

chooses the armi with the largestVKG
i and it prefers

those arms about which comparatively little is known.
These arms are the ones whose distributions around
the estimate mean, ˆµi have larger estimated standard
deviations,σ̂i . Thus, KG prefers an armi over its al-
ternatives if its confidence in the estimate mean ˆµi is
low. This policy trades-off between exploration and
exploitation by selecting its armi∗KG as follows:

i∗KG = argmax
i∈|A|

(
µ̂i +(L− t)VKG

i

)
(10)

wheret is a time step andL is the horizon of experi-
ment which is the total number of plays that the agent
has. In (Yahyaa and Manderick, 2012), KG policy is
the competitive policy for the single-objective multi-
armed bandits problem according to the collected cu-
mulated average reward and average frequency of op-
timal selection performances. Moreover, KG policy
does not have any parameter to be tuned. Therefore,
we used KG policy in the MOMABs problem.

4.1 Pareto-KG Algorithm

Pareto order knowledge gradient (Pareto-KG) uses
the pareto partial order relationship (Zitzler and et al.,
2002) to order arms. The pseudocode of Pareto-KG
is given in Figure 1. At each time stept, Pareto-KG
calculates an exploration bound ExpB for each arm
a, (ExpBa = [ExpB1

a, · · · ,ExpBD
a ]

T ). The exploration
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bound of arma depends on the estimated mean of all
arms and on the estimated standard deviation of the
arma. The exploration bound of arma for dimension
d (ExpBd

a) is calculated as follows:

ExpBd
a = (L− t)∗ |A|D∗ vd

a

vd
a = ˆ̄σd

a x


−|

µ̂d
a− max

k6=a,k∈A
µ̂d

k

ˆ̄σd
a

|


 , ∀d∈D

wherevd
a is the index of an arma for dimensiond, L

is the horizon of experiment which is the total num-
ber of time steps,|A| is the total number of arms,D
is the number of dimensions andˆ̄σd

a is the root mean
square error of an arm for dimensiond which equals
σ̂d

a/
√

Na. Na is the number of times arma has been
pulled. After computing the exploration bound for
each arm, Pareto-KG sums the exploration bound of
arma with the corresponding estimated mean. Thus,
Pareto-KG selects the optimal armsi that are not dom-
inated by all other armsk,k∈ |A| (step: 4). Pareto-KG
chooses uniformly, randomly one of the optimal arms
in A∗PKG

(step: 5). WhereA∗PKG
is a set that contains

Pareto optimal arms using KG policy. After pulling
the chosen armi, Pareto-KG algorithm, updates the
estimated mean ˆµi vector, the estimated standard de-
viation σ̂2

i vector, the number of times armi is chosen
Ni and computes the Pareto and the unfairness regrets.

1. Input: length of trajectory L;time step t;
number of arms |A|;number of dimensions D;
reward distribution r ∼ N(µ,σ2

r ).

2. Initialize: plays each arm Initial steps to
estimate mean vectors µ̂i = [µ̂1

i , · · · , µ̂D
i ]

T;
standard deviation vectors σ̂i = [σ̂1

i , · · · , σ̂D
i ]

T.

3. For t = 1 to L
4. Find the Pareto optimal arms set A∗PKG

such that ∀i ∈ A∗PKG
and ∀ j /∈ A∗PKG

µ̂j + ExpBj ⊁ µ̂i + ExpBi

5. Select i uniformly, randomly from A∗PKG

6. Observe: reward vector r i, r i = [r1
i , · · · , rD

i ]
T

7. Update: µ̂i; σ̂i; Ni ← Ni +1
8. Compute: the unfairness regret;Pareto regret
9. End for

10. Output: Unfairness regret, Pareto regret, N.

Figure 1: Algorithm: (Pareto-KG).

4.2 Scalarized-KG Algorithm

Scalarized knowledge gradient (scalarized-KG) func-
tions convert the multi-dimensions MABs to one-

dimension MABs and make use of the estimated mean
and estimated variance.

4.2.1 Linear Scalarized-KG Across Arms

Linear scalarized-KG across arms (LS1-KG) con-
verts immediately the multi-objective estimated mean
µ̂i and estimated standard deviationσ̂i of each arm
to one-dimension, then computes the correspond-
ing exploration bound ExpBi . At each time step
t, LS1-KG weighs both the estimated mean vector,
i.e. ([µ̂1

i , · · · , µ̂D
i ]

T ) and estimated variance vector,
i.e. ([σ̂2,1

i , · · · , σ̂2,D
i ]T ) of each armi, converts the

multi-dimension vectors to one-dimension by sum-
ming the elements of each vector. Thus, we have
one-dimension multi armed bandits problem. KG cal-
culates for each arm, an exploration bounds which
depends on all other arms and selects the arm that
has the maximum estimated mean plus exploration
bounds. LS1-KG is as follows:

µ̃i = f j(µ̂i) = w1µ̂1
i + · · ·+wDµ̂D

i ∀i (11)

σ̃2
i = f j(σ̂2

i ) = w1σ̂2,1
i + · · ·+wDσ̂2,D

i ∀i (12)

˜̄σ2
i = σ̃2

i/Ni ∀i (13)

vi = ˜̄σi x


−|

µ̃i− max
j 6=i, j∈A

µ̃j

˜̄σi
|


 ∀i (14)

where f j is a linear scalarization function that has
a predefined set of weight(w1, · · · ,wD), µ̃i , σ̃2

i are
the modified estimated mean and variance of an arm
i, respectively which are one-dimension values and
˜̄σ2

i is the modified RMSE of an armi which is a
one-dimension value.vi is the KG index of an arm
i. x(ζ) = ζΦ(ζ) + φ(ζ) whereΦ and φ are the cu-
mulative distribution and the density of the standard
normal density, respectively. Linear scalarized-KG
across arms selects the optimal armi∗ according to:

i∗LS1KG = argmax
i=1,··· ,|A|

(µ̃i +ExpBi) (15)

= argmax
i=1,··· ,|A|

(µ̃i +(L− t)∗ |A|D∗ vi) (16)

where ExpBi is the exploration bound of armi, |A| is
the number of arms,D is the number of dimension,L
is the horizon of an experiments, i.e. length of trajec-
tories andt is the time step.

4.2.2 Linear Scalarized-KG across Dimensions

Linear scalarized-KG across dimensions (LS2-KG)
computes the exploration bound ExpBi for each arm,
i.e. ExpBi = [ExpB1

i , · · · ,ExpBD
i ], adds the ExpBi to

ICAART�2014�-�International�Conference�on�Agents�and�Artificial�Intelligence

78



the corresponding estimated mean vector ˆµi , then con-
verts the multi-objective problem to one dimension.
At each time stept, LS2-KG computes exploration
bounds for all dimensions of each arm, sums the esti-
mated mean in each dimension with its corresponding
exploration bound, weighs each dimension, then con-
verts the multi-dimension to one-dimension value by
taking the summation over each vector of each arm.
Linear scalarized-KG across dimensions is as follows:

f j (µ̂i) = w1(µ̂1
i +ExpB1

i )+ · · ·+wD(µ̂D
i +ExpBD

i )∀i
(17)

where

ExpBd
i = (L− t)∗ |A|D∗ vd

i , ∀d∈D

vd
i = ˆ̄σd

i x


−|

µ̂d
i − max

j 6=i, j∈A
µ̂d

j

ˆ̄σd
i

|


 , ∀d∈D

|A| is the number of arms,L is the horizon of each
experiment,vd

i is the index of armi for dimensiond,
µ̂d

i is the estimated mean for dimensiond of arm i,
ˆ̄σd

i is the RMSE of armi for dimensiond, ExpBd
i is

the exploration bound of armi for dimensiond and
x(ζ) = ζΦ(ζ) + φ(ζ) whereΦ and φ are the cumu-
lative distribution and the density of the standard nor-
mal density, respectively. LS2-KG selects the optimal
arm i∗ that has maximumf j (µ̂i) as follows:

i∗LS2KG = argmax
i=1,··· ,|A|

f j (µ̂i)

4.2.3 Chebyshev Scalarized-KG

Chebyshev scalarized-KG (Cheb-KG) computes the
exploration bound of each arm in each dimension,
i.e. ExpBi = [ExpB1

i , · · · ,ExpBD
i ], then converts the

multi-objective problem to one-dimension problem.
Cheb-KG is as follows:

f j (µ̂i) = min
1≤d≤D

wd(µ̂d
i +ExpBd

i −zd) ∀i (18)

where f j is a Chebyshev scalarization function that
has a predefined set of weights(w1, · · · ,wD), ExpBd

i
is the exploration bound of armi for dimensiond
which is calculated as follows:

ExpBd
i = (L− t)∗ |A|D∗ vd

i , ∀d∈D

vd
i = ˆ̄σd

i x



−|
µ̂d

i − max
j 6=i, j∈A

µ̂d
j

ˆ̄σd
i

|



 , ∀d∈D

And, z= [z1, · · · ,zD]T is a reference point. For each
dimensiond, the corresponding reference is the min-
imum of the current estimated means of all arms mi-
nus a small positive value,εd > 0. The referencezd

for dimensiond is calculated as follows:

zd = min
1≤i≤|A|

µ̂d
i − εd, ∀d

Cheb-KG selects the optimal armi∗ that has maxi-
mum f j (µ̂i) as follows:

i∗Cheb−KG = argmax
i=1,··· ,|A|

f j(µ̂i)

5 THE SCALARIZED
MULTI-OBJECTIEVE BANDITS

The pseudocode of the scalarized MOMABs prob-
lem (Drugan and Nowe, 2013) is given in Fig-
ure 2. Given the type of the scalarized function
f , ( f is either linear-scalarized-UCB1, Chebyshev-
scalarized-UCB1, linear scalarized-KG across arms,
linear scalarized-KG across dimensions or Cheby-
shev scalarized-KG) and the scalarized function set
( f 1, · · · , f S) where each scalarized functionf s has
different weight set,ws = (w1,s, · · · ,wD,s).

1. Input: length of trajectory L;reward vector
r ∼ N(µ,σ2

r );type of scalarized function f;set
of scalarized function S= ( f 1, · · · , f S).

2. Initialize: For s= 1 to S
plays each arm Initial steps;
observe (r i)

s;
update: Ns ← Ns+1;Ns

i ← Ns
i +1;(µ̂i)

s;(σ̂i)
s

End
3. Repeat
4. Select a function s uniformly, randomly
5. Select the optimal arm i∗ that maximizes the

scalarized function f s

6. Observe: reward vector r i∗, r i∗ = [r1
i∗ , · · · , rD

i∗ ]
T

7. Update: µ̂i∗;σ̂i∗;Ns
i∗ ← Ns

i∗ +1;Ns ← Ns+1
8. Compute: unfairness regret;scalarized regret
9. Until L

10. Output: Unfairness regret;Scalarized regret.

Figure 2: Algorithm: (Scalarized multi-objective function).

The algorithm in Figure 2 plays each arm of each
scalarized functionf s, Initial plays (step: 2). Ns

is the number of times the scalarized functionf s is
pulled andNs

i is the number of times the armi un-
der the scalarized functionf s is pulled. (r i)

s is the
reward of the pulled armi which is drawn from a nor-
mal distributionN(µ,σ2

r ) whereµ is the true mean and
σ2

r is the true variance of the reward.(µ̂i)
s and(σ̂i)

s

are the estimated mean and standard deviation vectors
of the armi under the scalarized functions, respec-
tively. After initial playing, the algorithm chooses
randomly at uniform one of the scalarized function
(step: 4), selects the optimal armi∗ that maximizes
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the type of this scalarized function (step: 5) and sim-
ulates the selected armi∗. The estimated mean vector
(µ̂i∗)

s, estimated standard deviation vector(σ̂i∗)
s, and

the numberNs
i∗ of the selected arm and the number of

the pulled scalarized function are updated (step: 7).
This procedure is repeated until the end of playingL
steps which is the horizon of an experiment.

6 EXPERIMENTS

In this section, we experimentally compare Pareto-
UCB1, and Pareto-KG and we compare linear-
scalarized-UCB1, Chebyshev-scalarized-UCB1, lin-
ear scalarized-KG across arms, linear scalarized-KG
across dimensions, and Chebyshev scalarized-KG.
The performance measures are:

1. The percentage of time optimal arms are pulled,
i.e. the average ofM experiments that optimal
arms are pulled.

2. The percentage of time each of the optimal arms
is drawn, i.e. the average ofM experiments that
each one of the optimal arms is pulled.

3. The average regret at each time step which is the
average ofM experiments.

4. The average unfairness regret at each time step
which is the average ofM experiments.

We used the algorithm in Figure 2 for the scalar-
ized functions, and the algorithm in Figure 1 for the
Pareto-KG. To compute the Pareto regret, we need
to calculate the virtual distance. The virtual distance
dis∗ that is added to the mean vectorµt of the pulled
arm at time stept (the pulled arm is not element in the
Pareto front (Pareto optimal arm) setA∗) can be calcu-
lated by firstly ranking all the Euclidean distancedis
between the mean vectors of the Pareto optimal arm
set and 0 as follows:

dis(µ∗1,0)< dis(µ∗2,0)< · · ·< dis(µ∗|A∗|,0)

dis1 < dis2 < · · ·< dis|A∗|

where 0 is a vector, 0= [01, · · · ,0D]T . Secondly, find-
ing the minimum added distancedis∗ which is calcu-
lated as follows:

dis∗ = dis1−dis(µt ,0) (19)

wheredis1 is the Euclidean distance between 0 vector
and the Pareto optimal mean vectorµ∗1, anddis(µt ,0)
is the Euclidean distance between the mean vector
of the pulled arm that is not element in the Pareto
front set and vector 0. Then, adddis∗ to the mean
vector of the pulled armµt to create a mean vector

that is element in the Pareto optimal mean set, i.e.
µ∗t = µt + dis∗ and check ifµ∗t is a virtual vector that
is incomparable with the Pareto front set. Ifµ∗t is in-
comparable with the mean vectors of Pareto front set,
thendis∗ is the virtual distance, calculate the regret.
Otherwise, reduce the added distance to finddis∗ as
follows:

dis∗ = (dis1−
dis2−dis1

1/D
)−dis(µt ,0)

whereD is the number of dimensions. And, check if
dis∗ createsµ∗t that is incomparable with the Pareto
front set. If not reduce again thedis∗ by usingdis3
instead ofdis2 and so on.

The number of experimentsM is 1000. The hori-
zon of each experimentL is 1000. The rewards
of each armi in each dimensiond, d = 1, · · · ,D
are drawn from normal distributionN(µi ,σ2

i,r) where
µi = [µ1

i , · · · ,µD
i ]

T is the true mean andσi,r =

[σ1
i,r , · · · ,σD

i,r ]
T is the true standard deviation of the re-

ward. The true means and the true standard deviations
of arms are unknown parameters to the agent.

First of all, we used the same example in (Dru-
gan and Nowe, 2013) because it contains non-convex
mean vector set. The number of arms|A| equals 6,
the number of dimensionsD equals 2. The stan-
dard deviation for arms in each dimension is either
equal and set to 1, 0.1, or 0.01 or different and gen-
erated from a uniform distribution over the closed
interval [0,1], i.e. taken from a normal distribu-
tion N(0.5,1/12). The true mean set vector is(µ1 =
[0.55,0.5]T, µ2 = [0.53,0.51]T, µ3 = [0.52,0.54]T,
µ4= [0.5,0.57]T, µ5= [0.51,0.51]T, µ6= [0.5,0.5]T).
Note that the Pareto optimal arm set (Pareto front set)
is |A∗| = (a∗1,a

∗
2,a
∗
3,a
∗
4) where a∗i refers to the op-

timal arm i∗. The suboptimala5 is not dominated
by the two optimal armsa∗1 and a∗4, but a∗2 and a∗3
dominatesa5 while a6 is dominated by all the other
mean vectors. For upper confidence bounce UCB1,
each arm is played initially one time, i.e.Initial = 1
as (Drugan and Nowe, 2013) (for Pareto-, linear-,
Chebyshev-UCB1), then the estimated mean of arms
are calculated and the scalarized or Pareto selection
is computed. Knowledge gradient KG needs the esti-
mated standard deviation for each arm,σ̂i , therefore,
each arm is either played initially 2 times,Initial = 2
which is the minimum number to estimate the stan-
dard deviation or each arm is considered unknown
until it is visitedInitial times. If the arm is unknown,
then the estimated mean of that arm has a maximum
value, i.e.µ̂d

i = maxd∈D µd
j , ∀ j , j∈|A| and the estimated

standard deviation, i.e.̂σd
i = maxd∈D σd

j , ∀ j , j∈|A| to
increase the exploration of arms. We compare the
different setting for KG and found out that play-
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ing each arm initially 2 times, KG performance is
increased, therefore, we used this to compare with
UCB1. The number of Pareto optimal arms|A∗| is un-
known to the agent, therefore,|A∗|= 6. We consider
11 weight sets for the linear-, and Chebyshev-UCB1
and linear scalarized-KG across arms (LS1-KG),
linear scalarized-KG across dimensions (LS2-KG),
and Chebyshev-KG (Cheb-KG) functions, i.e.w =
{(1,0)T ,(0.9,0.1)T , · · · ,(0.1,0.9)T ,(0,1)T}. For
Chebyshev-UCB1 and Chebyshev-KG,ε was gener-
ated uniformly, randomly,ε ∈ [0,0.1].

Table 1 gives the average number± the upper and
lower bounds of the confidence interval that the opti-
mal arms are selected in columnA∗, the average num-
ber± the upper and lower bounds of the confidence
interval that one of the optimal arma∗ is pulled in
columnsa∗1, a∗2, a∗3, anda∗4 using the scalarized func-
tions in column Functions.

Table 1 shows the number of selecting the op-
timal arms is increased by using knowledge gradi-
ent. Pareto-KG plays fairly the optimal arms. Al-
thoughε set to a fixed value for all the scalarized
functions set (j = 1, · · · ,11), Chebyshev-KG per-
forms better than the linear scalarization-KG across
arms (LS1-KG) and linear scalarization-KG across
dimensions (LS2-KG ) in playing fairly the optimal
arms. While, the performance of linear scalarized-
KG across arms (LS1-KG) in playing fairly the opti-
mal arms is as same as linear scalarized-KG across
dimensions (LS2-KG). Moreover, LS1-KG prefers
the optimal armsa∗4 and a∗3 then a∗1 and a∗2 and
LS2-KG prefers the optimal armsa∗1 anda∗2 thena∗4
and a∗3. Pareto-UCB1 performs better than linear-
and Chebyshev-scalarization-UCB1, (LS-UCB1 and
Cheb-UCB1, respectively) according to the number
of selecting optimal arms. This is the same result
in (Drugan and Nowe, 2013) when the rewards are
drawn form Bernoulli distributions. Cheb-UCB1 per-
forms better than LS-UCB1 in selecting the optimal
arms. We also see that LS-UCB1 performs better
than LS1-KG and LS2-KG in playing fairly the op-
timal arms. And, Cheb-UCB1 performs better than
Cheb-KG in playing fairly the optimal arms. Figure 3
shows the average regret performances. The x-axis is
the horizon of each experiments and the y-axis is the
average of 1000 experiments. From Figure 3, we see
that how the regret performance is improved by us-
ing KG policy. Minimum Pareto regret is achieved by
using Pareto-KG in subfigure (a). Minimum scalar-
ized regret is achieved by using LS2-KG in subfig-
ure (b) and maximum regret is achieved by using
linear-scalarized-UCB1. From subfigure (b), we also
see Chebyshev-UCB1 performs better than linear-
scalarized-UCB1 and linear-scalarized-KG across di-

(a) Average Pareto regret performance

(b) Average scalarized regret performance

Figure 3: Average regret performance on bi-objective, 6-
armed bandit problems.

mensions performs better than linear scalarized-KG
across arms and Chebyshev scalarized-KG.

Secondly, we added another 14 arms to the previ-
ous example as (Drugan and Nowe, 2013). The added
arms are dominated by all other inA∗ and have equal
mean vectors, i.e.µ7 = · · ·µ20 = [0.48,0.48]T. Fig-
ure 4 gives the average regret and the average un-
fairness regret performances of the Pareto-KG and
Pareto-UCB1. The x-axis is the horizon of each ex-
periments and the y-axis is the average of 1000 ex-
periments. Figure 4 shows the average regret perfor-
mance is improved by using Pareto-KG in subfigure
(a), while, the average unfairness performance in sub-
figure (b) is improved using Pareto-UCB1.

Thirdly, we added extra dimension to the previ-
ous example. The Pareto front setA∗ contains 7
arms. Figure 5 gives the average regret performance
using σr = 0.01. The y-axis is the average regret
performance and the x-axis is the horizon of exper-
iments. Figure 5 shows how the performance is im-
proved using KG policy in the MOMABs. Subfigure
a shows Pareto-KG performs Pareto UCB1. Subfig-
ure b shows best performance (the average regret is
decreased) for Chebyshev-KG and worst performance
for linear-UCB1. Chebyshev-UCB1 performs bet-
ter than linear-scalarized-KG across dimensions and
worse than linear-scalarized-KG across arms. And,
the Chebyshev scalarized- (KG and UCB1) is better
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Table 1: Percentage of times optimal armsA∗ are pulled and percentage of times each one of the optimal armis pulled
performances on bi-objective MABs with number of arms|A| = 6 and the standard deviation of rewards are equal for each
arm i, i ∈ A σi,r = 0.01.

Functions A∗ a∗1 a∗2 a∗3 a∗4
LS2-KG 999± .33 368±17.6 303±18.2 96±9.3 232±8.5

Pareto-KG 998± .02 250± .85 249± .87 250± .83 249± .82
LS1-KG 998± .04 222±9.7 122±7.4 301±14.4 353±12.2
Cheb-KG 998± .25 279±6 228±7 264±6 227±4.3

Pareto-UCB1 714± .41 180± .3 163± .21 173± .23 198± .54
Cheb-UCB1 677± .07 168± .08 166± .06 170± .06 173± .07
LS-UCB1 669± .08 167± .06 168± .06 168± .06 166± .06

(a) Average regret performance.

(b) Average unfairness regret performance.

Figure 4: Performance comparison of Pareto-KG and
Pareto-UCB1on bi-objective MABs with 20 arms using
standard deviation of rewardσr = 0.1 for all arms. Sub-
figure (a) is the average regret performance and subfigure
(b) is the average unfairness regret performance.

than the linear scalarized- (KG and UCB1) according
to the regret performance.

Finally, we added extra 2 objectives in the previ-
ous triple-objective in order to compare the KG and
UCB1 performances on a more complex MOMABs
problem. Table 2 gives the average number± the up-
per and lower bounds of the confidence interval that
the optimal arms are selected in columnA∗, the av-
erage number± the upper and lower bounds of the
confidence interval that one of the optimal arma∗ is
pulled in columnsa∗1,a

∗
2,a
∗
3,a
∗
4,a
∗
5,a
∗
6, and a∗7 using

the scalarized functions in column Functions.
Table 2 shows the number of selecting the opti-

(a) Average Pareto regret performance

(b) Average scalarized regret performance

Figure 5: Average regret performance on triple-objective,
20-armed bandit problems.

mal arms is increased by using KG policy. Pareto-KG
outperforms Pareto-UCB1 in selecting and playing
fairly the optimal arms. Scalarized functions-KG out-
perform scalarized functions-UCB1 in selecting the
optimal arms, while scalarized functions-UCB1 out-
perform scalarized functions-KG in playing fairly the
optimal arms. LS1-KG (linear scalarized-KG across
arms) performs better than LS2-KG and Cheb-KG in
selecting the optimal arms. Cheb-KG performs bet-
ter than LS2-KG and worse than LS1-KG in select-
ing the optimal arms. LS2-KG performs better than
LS1-KG and Cheb-KG in playing fairly the optimal
arms and prefers playinga∗2,a

∗
1,a
∗
7,a
∗
5,a
∗
6,a
∗
3 thena∗4.

LS1-KG performs better than Cheb-KG and worse
than LS2-KG in playing fairly the optimal arms and
prefersa∗4,a

∗
6,a
∗
3,a
∗
1,a
∗
5,a
∗
7 thena∗2. Cheb-KG prefers

the optimal armsa∗1,a
∗
6,a
∗
3,a
∗
5,a
∗
2,a
∗
4, then a∗7. LS-
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Table 2: Percentage of times optimal armsA∗ are pulled and percentage of times each one of the optimal armis pulled
performances on 5-objective MABs with number of arms|A|= 20 and the standard deviation of rewards are equal for each
arm i, i ∈ A σi,r = 0.01.

Functions A∗ a∗1 a∗2 a∗3 a∗4 a∗5 a∗6 a∗7
LS1-KG 1000±0 143.1±6.273 76.6±4.566 154.1±7.459 195±7.633 135.8±7.25 164.8±8.353 130.6±6.336
Cheb-KG 999.7± .023 507.3±4.111 63.6±4.263 111.7±4.043 29.2±3.076 73.9±4.752 193.5±4.883 20.5±2.574
LS2-KG 601.1±8.993 109.2±6.439 121.8±6.827 57.9±4.454 57.1±4.093 79.3±5.668 79.1±5.536 96.7±6.271

Pareto-KG 571.3±3.54 81.4± .723 81.7± .738 81.6± .72 81.7± .72 81.9± .688 81.6± .72 81.4± .72
Pareto-UCB1 455.1± .21 64.2± .095 60.3± .066 62.7± .073 69.1± .116 65.1± .076 65.1± .077 68.6± .114

LS-UCB1 379.7± .278 53.9± .061 53.7± .063 54.5± .064 54.7± .064 54.4± .066 54.6± .068 53.9± .066
Cheb-UCB1 367.9± .219 53.4± .073 54.1± .075 52.9± .073 52.7± .075 51.9± .074 51.6± .077 51.3± .077

UCB1 and Cheb-UCB1 play fairly the optimal arms,
while LS-UCB1 performs better than Cheb-UCB1 in
selecting the optimal arms.

From the above figures and tables, we conclude
that the average regret is decreased using KG pol-
icy in the MOMABs problem. Pareto-KG outper-
forms Pareto-UCB1 and scalarized functions-KG out-
perform scalarized functions-UCB1 according to the
average regret performance. While Pareto-UCB1 out-
performs Pareto-KG according to the unfairness re-
gret, where the unfairness regret is increased using
knowledge gradient policy. However, when the num-
ber of objective is increased Pareto-KG performs bet-
ter than Pareto-UCB1 in playing fairly the optimal
arms. According to the average regret performance,
Chebyshev scalarized-KG performs better than linear
scalarized-KG across arms and dimensions when the
number of arms is increased, while LS1-KG outper-
forms all other scalarization functions when the num-
ber of objectives is increased to 5.

7 CONCLUSIONS AND FUTURE
WORK

We presented multi-objective, multi-armed bandits
problem MOMABs, the regret measures in the
MOMABs and Pareto-UCB1, linear-UCB1, and
Chebyshev-UCB1. We also presented knowledge
gradient policy KG. We proposed Pareto-KG. We
also proposed two types of linear scalarized-KG (lin-
ear scalarized-KG across arms (LS1-KG) and lin-
ear scalarized-KG across dimensions (LS2-KG) and
Chebyshev-scalarized-KG. Finally we compared KG
and UCB1 and concluded that the average regret is
improved using KG policy in the MOMABs. Fu-
ture work must provide theoretical analysis for the
KG in MOMABs and must compare the family of up-
per confidence bound UCB1, and UCB1-Tuned poli-
cies (P. Auer and Fischer, 2002), and knowledge gra-
dient KG policy on the correlated MOMABs. and
must compare KG, UCB1, and UCB1-Tuned policies
in sequential ranking and selection (P.I. Frazier and

Dayanik, 2008) MOMABs.
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