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Abstract: We extend knowledge gradient (KG) policy for the multi-objective, multi-armed bandits problem to effi-
ciently explore the Pareto optimal arms. We consider two partial order relationships to order the mean vec-
tors, i.e. Pareto and scalarized functions. Pareto KG finds the optimal arms using Pareto search, while the
scalarizations-KG transform the multi-objective arms into one-objective arm to find the optimal arms. To

measure the performance of the proposed algorithms, we propose three regret measures. We compare the per-

formance of knowledge gradient policy with UCB1 on a multi-objective multi-armed bandits problem, where
KG outperforms UCBL1.

1 INTRODUCTION arm), or selects one of the non-greedy arms in or-
der to be more confident about its estimations (ex-
The single-objective multi-armed bandits (MABs) Ploring one of the available arms). This problem is
problem is a sequential Markov Decision Process known asthe trade-off between exploitation and ex-
(MDP) of an agent that tries to optimize its decisions Ploration(Sutton and Barto, 1998). To overcome this
while improving its knowledge on the arms. At each Problem, (Yahyaa and Manderick, 2012) have com-
time stept, the agent pulls one arm and receives re- pared severgl action selection policies on the multi-
ward as a feedback signal. The reward that the agentarmed bandits problem (MABs) and have shown that
receives is independent from the past implementa- Knowledge Gradient (KG) policy (I.O. Ryzhov and
tions and independent from all other arms. The re- Frazier, 2011) outperforms other MABs techniques.
wards are drawn from a static distribution, e.g. normal  In this paper, we extend knowledge gradient
distributionsN(p, %), wherep is the true mean and ~ KG policy (1.O. Ryzhov and Frazier, 2011) to vec-
o is the variance. We assume that the true mean andtor means, obtaining thelulti-Objective Knowledge
variance parameters are unknown to the agent. ThusGradient (MOKG). In the multi-objective setting,
by drawing each arm, the agent maintains estimationsthere is a set of Pareto optimal arms that are incom-
of the true mean and the variance which are known asparable, i.e. can not be classified using a designed
ftandd?, respectively. partial order relationship. Thus, the agent trades-
The goal of the agent is to minimize thessof not off the conflicting objectives (or dimensions) of the
pulling the best arni that has the maximum mean all mean vectors, the exploration (finding the Pareto front
the time. The loss, dotal expected regrets defined ~ set) and the exploitation (selecting fairly the optimal
for any fixed time stepk as: arms).
The Pareto optimal arm set is found either by us-
L ing: i) the Pareto partial order relationship (Zitzler
Ro—Lw— S @ gt pe ! ip (Zitz
t; and et al., 2002), or ii) the scalarized functions (Eich-
felder, 2008). Pareto partial order finds the Pareto
where " = max_; .. a4 is the true mean of the front set by optimizing directly the multi-objective
greedy (best) arni* and is the true mean of the space. The scalarized functions convert the multi-
selected armat time stef. objective space to a single-objective space, i.e. the
In the multi-armed bandits problem, at each time mean vectors are transformed in scalar values. There
stept, the agent either selects the arm that has are two types of scalarization functions, linear and
the maximum estimated mean (exploiting the greedy non-linear (or Chebyshev) functions. Linear scalar-
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ization function is simple and intuitive but can not vector or true mean vector) of arm&nd j, respec-
find all the optimal arms in a non-convex Pareto front tively:

set. In opposition, Chebyshev scalarization function 1 Armi dominates or is better thani > |, if there
has an extra parameter to be tuned, however can find  qyists at least one dimensiorfor which i¢ = jd
all the optimal arms in a non-convex Pareto front and for all other dimensiorswe have® - j°.
set. Recently, (Drugan and Nowe, 2013) have used -
a multi-objective version of the Upper Confidence
Bound (UCB1) policy to find the Pareto optimal arm

2. Arm i weakly-dominateg, i = j, if and only if
for all dimensiondd, i.e. d =1,---,D we have

set (exploring) and select fairly the optimal arms (ex- i9 = j.

ploiting), i.e. solve the trade-off problem in the Multi- 3. Arm i is incomparable withj, i || j, if and only
Objective, Multi-Armed Bandits (MOMABS) prob- if there exists at least one dimensidrior which
lem. We compare KG policy and UCB1 on the id - j9 and there exists another dimensiofor
MOMABS problem. whichi® < j°.

The rest of the paper is organized as follows. In 4. Armi is not dominated byj, j 3 i, if and only
Section 2 we present background information on the  if there exists at least one dimensidrior which
algorithms and the used notation. In Section 3 we in- j9 <id. This means that either— j ori | j.
troduce multi-objective, multi-armed bandits frame-
work and upper confidence bound policy UCBL1 in
multi-objective normal distributions bandits. In Sec-
tion 4 we introduce knowldge gradient (KG) pol-
icy and we propose Pareto knowldge gradient algo-
rithm, linear scalarized knowledge gradient across Var € A*, andV, ¢ A" (Vo € A),  we haveo / a*
arms algorithm, linear scalarized knowledge gradient  \oreover, the Pareto optimal armé are incom-
across dimensions algorithm, and Chebyshev scalar-paraple with each other. Then:
ized knowledge gradient algorithm. In Section 5 we
present scalarized multi-objective bandits. In Sec-
tion 6, we describe the experiments set up followed . . .
by experimental results. Finally, we conclude and dis- 2.2 The Scalarized Functions Partial

cuss future work. Order Relationships

Using the above relationships, the Pareto optimal arm
A* set, A* C A be the set of arms that are not domi-
nated by all other arms. Then:

Varpr € A",  we havea® || b*

In general, scalarization functions convert the multi-

objective into single-objective optimization (Eich-
2 BACKGROUND felder, 2008). However, solving a multi-objective op-

timization problem means finding the Pareto front set.
In this section, we introduce the Pareto partial or- Thus, we need a set of scalarized functits gener-
der relationship, order relationships for scalarization ate a variety of elements belonging to the Pareto front
functions and regret performance measures of theset. There are two types of scalarization functions that

multi-objective, multi-armed bandits problem. weigh the mean vector, linear and non-linear (Cheby-
Let us consider the multi-objective, multi-armed shev) scalarization functions.
bandits (MOMABs) problem witHA|, |A| > 2 arms The linear scalarizatiorassigns to each value of

and withD objectives (or dimensions). Each objective the mean vector of an arna weightwd and the result
has a specific value and the objectives are conflicting is the sum of these weighted mean values. The linear
with each other. This means that the value of acan scalarized across mean vector is:
be better than the value of arnin one dimension and -

nmn () =wh + - +wPpP 2)

worse than the value of arinin other dimension.
where (W, --- wP) is a set of predefined weights

; for the linear scalarized functiop j € S, such that
21 The F,)areto, Partial Order y2_,wd = 1 andy is the mean vector of arin The
Relationship linear scalarization is very popular because of its sim-

plicity. However, it can not find all the arms in the
Pareto partial order finds the Pareto optimal arm set Pareto optimal seA* if the corresponding mean set is
directly in the multi-objective space (Zitzler and etal., a non-convex set.
2002). Pareto partial order uses the following rela- The Chebyshev scalarizatiobeside weights,
tionships between the mean vectors of two arms. We Chebyshev scalarization hasbDadimensional refer-
usei andj to refer to the mean vector (estimated mean ence point, i.e.z= [Z',---,Z°]T. The Chebyshev
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scalarized can find all the arms in a non-convex Pareto
mean front set by moving the reference point (Mietti-

nen, 1999). For maximization multi-objective multi-

armed bandits problem, the Chebyshev scalarization

is (Drugan and Nowe, 2013):
) = min Wil —2), v

1<d<D (3)

4 d
A= min W@ —¢v v
1§igAu' » Vd

wheree is a small valueg > 0. The reference poirt

is dominated by all the optimal mean vectors. Thus,

it is the minimum of the current mean vector miraus
value.
After transforming the multi-objective problem to

single-objective problem, the scalarized functions se-

lect the arm that has the maximum function value:

pulled at time step. Scalarized regret is the dif-
ference between the maximum value for a scalar-
ized functionf! which is either Chebyshev or lin-
ear on the set of arm& and the scalarized value
for an armk that is pulled by the scalarized at
time step,

Rscatarized (t) = lrgé)'&fj(“i) — fl () (1)

(5)

. The unfairness regret metris related to the vari-

ance in drawing all the optimal arms. The unfair-
ness regret of multi-objective, multi-armed ban-
dits problem is the variance of the times the arms
in A* are pulled:

1

Runfairnesét) = W _*%*(Ni* (t) - N\A*\ (t))z (6)

whereRynfairmesdt) is the unfairness regret at time

2.3 TheRegret Metrics

To

stept, |A*| is the number of optimal arms«(t)
is the number of times an optimal aiifnhas been
selected at time stepandNja+|(t) is the number
of times the optimal armg;” = 1,--- | |A*| have
been selected at time step

[ g@gf ()

measure the performance of the Pareto, scalar-

ized functions partial order relationships, (Drugan and 3 MOMABsFRAMEWORK

Nowe, 2013) have proposed three regret metric crite-

ra.

1.

76

At each time stept, the agent selects one arm
and receives a reward vector. The reward vector is
drawn from a normal distributioN(,0?), where

W = i, ,uP]T is the true mean vector argl =
[of,---,uP]T is the standard deviation vector of arm
i, andT is the transpose.

The true mean and standard deviation vectors of
armsi are unknown to the agent. Thus, by drawing
each arm, the agent estimates the mean vegt@rid
the standard deviation vect6f. The agent updates
the estimated megn and the estimated varianég
in each dimensiod as follows (Powell, 2007):

Pareto regret metric Byreto measures the distance
between a mean vector of an arrthat is pulled

at time stept and the Pareto optimal mean set.
Rerareto IS calculated by finding firstly the virtual
distancedis*. The virtual distancéis* is defined

as the minimum distance that is added to the mean
vector of the pulled arnpy at time steg in each
dimension to create a virtual mean vecrthat

is incomparable with all the arms in Pareto A&t
whereyy || Vieas as follows:

* E*
o HemheE | Nii1 = Ni+1 @)
wheree* is a vector,e* = [dis"!, .-, dis"P]T. 1 1
Then, the Pareto regrBparetos: iy =1-——)p+—rfy (8)
Ni+1 Ni+1
R = dis(, § ) = dis(e*,0 4 2, Nij1—2 .2 1 N
Pareto (Mes 1) (€",0) (4) i2+d1: & 2d : (rtd+1_H'd)2 (9)
Nij1—1 Nit1

wheredis, dis(b, 1) = \/Sa-1 (K —H)? is the  whereN; is the number of times arihas been se-
Euclidean distance between the mean vector of lected, |, ; is the updated estimated mean of arm

the virtual armpy’ and the mean vector of the  for dimensiond, 627 is the updated estimated vari-

gulle;j a;rrrp; .atct;;ne st?_p. 'I;hus, the retg;]ret ofthe ; ance of arni for dimensiond andrd., , is the collected
areto frontis O for optimal arms, i.e. the mean of |\~ ¢.000 - oiin the dimensiord.

the optimal arm coincides itselfl{s* = 0 for the
arms in the Pareto front set).

3.1 UCBlin Normal MOMABSs

. The scalarized regret metrimeasures the dis-

tance between the maximum value of a scalarized In the single-obtimization bandits problem, upper
function and the scalarized value of an arm that is confidence bound UCBL1 policy (P. Auer and Fischer,
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2002) plays firstly each arm, then adds to the esti- (N
mated meanu of each arm an exploration bound. i* = max fi(m+ n(_ )
The exploration bound is an upper confidence bound 1<i<A NiJ

which depends on the number of times arnas been

. ) ; where f1 is either linear scalarized function, Equa-
selected. UCB1 selects ;?(et)opnmal armthat maxi-  tjon 2, or Chebyshev scalarized function, Equation 3
n|

mizes the functiom; %+ = as follows: with a predefined set of weights apds the estimated
mean vector of arm
- 2In(t)

i" = max | [
1<i<A W N;

4 MULTI OBJECTIVE
whereN; is the number of times arirthas been pulled. KNOWLEDGE GRADIENT

In the multi-objective multi-armed bandits prob-

lem MOMABSs with Bernoulli distributions, (.Drugan Knowledge gradient (KG) policy (1.O. Ryzhov and
and Nowe, 2013) have extended UCB1 policy to find r57ier 2011) is an index policy that determines for
the Pareto optimal arm set either by using UCB1 in 5mi the indexV.XC as follows:

, :

Pareto order relationship or in scalarized functions. In

this paper, we use UCBL1 in the multi-objective multi- (i — max [
armed bandits problem with normal distributions. VKG = & xx [ —| ﬂ|
Oi

3.1.1 Pareto-UCBlin Normal MOMABSs N

where g; = /N is the Root Mean Square Er-
Pareto-UCB1 plays initially each arnonce. Ateach - for (RMSE) of the estimated mean 'of ‘an aim
time stept, it estimates the mean vector of each of The functionx(Q) = {®(Z) + ¢(Z) where @({) =
the multi-objective arms i.e. [ = [{&!,---,(P]T and 1/yznexp( —¢/2) is the standard normal density and its
adds to each dimension an upper confidence bound.cumulative distribution isp({) = fEm @(")d'. KG
Pareto-UCB1 uses a Pareto partial order relationships,chooses the ariwith the larges¥/C and it prefers
Section 2.1 to find the Pareto optimal arm Agf__ - those arms about which comparatively little is known.
Thus, for all the non-optimal armis¢ Ay, there These arms are the ones whose distributions around
exists a Pareto optimal arjfe A, thatis notdom-  the estimate mean have larger estimated standard

inated by the armk: deviationsG;. Thus, KG prefers an artinover its al-
ternatives if its confidence in the estimate meais”
. 2In(ty/DIAS) , . 2In(ty/DI|A*|) low. This policy trades-off between exploration and
M + TN 71+ N exploitation by selecting its ariij 5 as follows:
Pareto-UCB1 selects uniformly, randomly one of ike = argmax(f + (L —t)V®) (10)
the arms in the sed; . The idea is to select most I<lA

of the times one of the optimal arm in the Pareto front wheret is a time step and is the horizon of experi-
set,i € A*. Anarmj ¢ A* that is closer to the Pareto ment which is the total number of plays that the agent
front set according to metric measure is more selectedhas. In (Yahyaa and Manderick, 2012), KG policy is

than the arnk ¢ A* that is far fromA*. the competitive policy for the single-objective multi-
. _ armed bandits problem according to the collected cu-
3.1.2 Scalarized-UCB1in Normal MOMABs mulated average reward and average frequency of op-

timal selection performances. Moreover, KG policy
scalarized UCB1 adds an upper confidence bound todoes not have any parameter to be tuned. Therefore,
the pulled arm under the scalarized functiorEach we used KG policy in the MOMABS problem.
scalarized functiorj has associated a predefined set
of weights, (w",--- ,wP)l, 59 ;w? = 1. The upper 4.1 Pareto-KG Algorithm
bound depends on the number of times the scalarized
function j has been selecteN! and on the numberof  Pareto order knowledge gradient (Pareto-KG) uses
times the arm has been pullewiJ under the scalar-  the pareto partial order relationship (Zitzler and et al.,
ized functionj. Firstly, the scalarized UCB1 plays 2002) to order arms. The pseudocode of Pareto-KG
each arm once and estimates the mean vector of eaclis given in Figure 1. At each time stepPareto-KG
arm,|i,i=1,--- |A]. At each time step, it pulls the calculates an exploration bound ExpB for each arm
optimal armi* as follows: a, (ExpB, = [ExpBL,--- ExpBY]"). The exploration
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bound of arma depends on the estimated mean of all dimension MABs and make use of the estimated mean
arms and on the estimated standard deviation of theand estimated variance.
arma. The exploration bound of arafor dimension

d (ExpBY) is calculated as follows: 4.2.1 Linear Scalarized-KG AcrossArms
ExpB] = (L—t) #|AD *\§ Linear scalarized-KG across arms (LS1-KG) con-
09— max ﬁckj verts immediately the multi-objective estimated mean

ksa, keA v (s and estimated standard deviationof each arm
5g ]+ Vaeo to one-dimension, then computes the correspond-
ing exploration bound ExpB At each time step

whereVd is the index of an arna for dimensiond, L t, LS1-KG weighs both the estimated mean vector,
is the horizon of experiment which is the total num- i.e. ({f',---,fP]") and estimated variance vector,
ber of time steps|A| is the total number of arm&) ie. (67,---,67°]T) of each armi, converts the
is the number of dimensions a is the root mean  multi-dimension vectors to one-dimension by sum-
square error of an arm for dimensidrwhich equals  ming the elements of each vector. Thus, we have
8 /vNa.. Na is the number of times arm has been  one-dimension multiarmed bandits problem. KG cal-
pulled. After computing the exploration bound for culates for each arm, an exploration bounds which
each arm, Pareto-KG sums the exploration bound of depends on all other arms and selects the arm that
arma with the corresponding estimated mean. Thus, has the maximum estimated mean plus exploration
Pareto-KG selects the optimal armbat are notdom- = pounds. LS1-KG is as follows:
inated by all other armis k € |A| (step: 4). Pareto-KG .
chooses uniformly, randomly one of the optimal arms - = f1(f) = Wi + - + WP Vi . (11)
in Ap . (step: 5). Wherdy, | is a set that contains of = t1(67) =wt6> + - +wPe?® v (12)
Pareto optimal arms using KG policy. After pulling

- atx (|

. . ,¥2 =2
the chosen army, Pareto-KG algorithm, updates the ~ G; = /N Vi (13)
estimated meap,; vector, the estimated standard de- F —  max [
viation 62 vector, the number of times arinis chosen Vi =0 X _|%| Vi (14)
Ni and computes the Pareto and the unfairness regrets. Oi
1. Input: length of trajectory L;time step t; where fl is a linear scalarization function that has
nunber of arns |A|; nunber of dinensions D; a predefined set of weighn!,--- ,wP), [, 6?7 are
reward distribution r~ N(uo?). the modified estimated mean and variance of an arm
. . i, respectively which are one-dimension values and
2. Initialize: plays each arm Initial steps to ~2 . o ) o
estimte nean vectors {y = [, ---, (P|"; o, is the modified RMSE of an arm which is a
standard deviation vectors G;=[6%, ---, 6P]". one-dimension valuey; is the KG index of an arm
i. X(Q) ={P(Q)+ ¢(¢) whered and @ are the cu-
3. Fort=1tol mulative distribution and the density of the standard

4. Find the Pareto optinmal arms set Ag

such that Vi ¢ Ay and V; ¢ As, normal density, respectively. Linear scalarized-KG

across arms selects the optimal atmaccording to:
A + ExpB; ¥ P + EXxpB

il ke = argmax(fi + ExpB) (15)
5. Select i unifornly, randomy from As =LA
6. Cbserve: reward vector r, ri=[rt, ---, rP]" = argmax(f + (L —t) «[A[Dxvi)  (16)
7. Update: f; Gi; Ni <« N+1 i=1,|Al
g: CEJggp?:)?. the unfairness regret;Pareto regret where ExpBis the exploration bound of arm|A| is
the number of arm$) is the number of dimensioh,
10. Qutput: Unfairness regret, Pareto regret, N. is the horizon of an experiments, i.e. length of trajec-

Figure 1: Algorithm: (Pareto-KG). tories and is the time step.

4.2.2 Linear Scalarized-K G across Dimensions
4.2 Scalarized-KG Algorithm

Linear scalarized-KG across dimensions (LS2-KG)
Scalarized knowledge gradient (scalarized-KG) func- computes the exploration bound ExgBr each arm,
tions convert the multi-dimensions MABs to one- i.e. ExpB = [ExpB!,--- ,ExpBP], adds the ExpBto
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the corresponding estimated mean vepfpitien con- 2= min ¥—¢, Yy
verts the multi-objective problem to one dimension. 1<i<|A|

At each time steft, LS2-KG computes exploration  cheh.KG selects the optimal arh that has maxi-

bounds for all dimensions of each arm, sums the esti- mum f]( /) as follows:

mated mean in each dimension with its corresponding _
exploration bound, weighs each dimension, then con- icheb kg = argmaxf!(fy)
verts the multi-dimension to one-dimension value by i=1, |A]

taking the summation over each vector of each arm.
Linear scalarized-KG across dimensions is as follows:

f(05) = wH(p! + ExpBl) + - - +wP (PP + ExpBP )V 5 THE SCALARIZED

(17) MULTI-OBJECTIEVE BANDITS
where
. The pseudocode of the scalarized MOMABSs prob-
Expad t *|A|D*Vd Vden lem (Drugan and Nowe, 2013) is given in Fig-
pd — max uJ ure 2. Given the type of the scalarized function
W= [ ) — 292 ) v f, (f is either linear-scalarized-UCB1, Chebyshev-

Oid scalarized-UCB1, linear scalarized-KG across arms,
linear scalarized-KG across dimensions or Cheby-

Al is _the m\;/dm_be;]of. adrmsL fis th_ef ho(;i_zon Of ?S‘Ch shev scalarized-KG) and the scalarized function set
experimenty;” Is the index of arm for dimensiond, (1 .. 'tS) \where each scalarized functicit has

E,f:j |-s the estimated mgan fo.r d|m§n5|dmf arm.|, different weight sety® = (Wl,s’ L ’WD,S).

ot is the RMSE of armi for dimensiond, ExpH! is

the exploration bound of arinfor dimensiond and 1. Input: length of trajectory L;reward vector
X(Q) = {P(C) + ¢(¢) whered and @ are the cumu- r~ N(Wo?); type of scalarized function f;set
lative distribution and the density of the standard nor- of scal arized function S=(f!, ..., f9).

mal density, respectively. LS2-KG selects the optimal

armi* that has maximuni! (fy) as follows: 2 Ngpalial | ZggFor s=11t0 S

pl ays each arm Initial steps;

i* = ar maxf! observe (rj)%;
LSKG g N () update: NS <« NS+1;N° < N°+1; ()5 (6)°
End
4.2.3 Chebyshev Scalarized-KG 3. Repeat
4. Select a function suniformy, randonly
5. Select the optimal armi* that nmaximzes the

Chebyshev scalarized-KG (Cheb-KG) computes the
exploration bound of each arm in each dimension,
i.e. ExpB = [ExpB!,---,ExpBP], then converts the
multi-objective problem to one-dimension problem.
Cheb-KG is as follows:

scal ari zed function fS

oserve: reward vector ri-, ri.=[rk, ..., rR]T
Update: fi-; i NS « NS+1L NS « N°+1
Conpute: unfairness regret;scalarized regret
Until L

©o~No

fj(A ) = mln Wd +EXD§ Zd Vi (18) 10. Qutput: Unfairness regret; Scal arized regret.
where fi is a Chebyshev scalarization function that Figure 2: Algorithm: (Scalarized multi-objective funatip
has a predefined set of weighg',--- ,wP), ExpB
is the exploration bound of armfor dimensiond
which is calculated as follows:

The algorithm in Figure 2 plays each arm of each
scalarized functionfs, Initial plays (step: 2). N®
is the number of times the scalarized functibhis
ExpB! = )% |[AD %V, Vgep pulled andN? is the number of times the arimun-

pid — max @ der the scalarized functiof is pulled. (r;)S is the
V=5x| | j#i. jen ) | v reward of the pulled arrwhich is drawn from a nor-
P ad v VdeD mal distributionN (., 0?) wherepis the true mean and

' o? is the true variance of the rewar({y)° and (G;)°

And,z=[Z,---,2°] is a reference point. For each are the estimated mean and standard deviation vectors
dimensiond, the corresponding reference is the min- of the armi under the scalarized functi®) respec-
imum of the current estimated means of all arms mi- tively. After initial playing, the algorithm chooses
nus a small positive valug® > 0. The referenced randomly at uniform one of the scalarized function
for dimensiord is calculated as follows: (step: 4), selects the optimal aiifnthat maximizes
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the type of this scalarized function (step: 5) and sim- that is element in the Pareto optimal mean set, i.e.
ulates the selected arih The estimated mean vector |y = ¢ +dis* and check ifyfis a virtual vector that
(fy+)3, estimated standard deviation vect6r- )3, and is incomparable with the Pareto front set.yfis in-

the numbeN3 of the selected arm and the number of comparable with the mean vectors of Pareto front set,
the pulled scalarized function are updated (step: 7).thendis* is the virtual distance, calculate the regret.
This procedure is repeated until the end of playing Otherwise, reduce the added distance to fisi as
steps which is the horizon of an experiment. follows:

dis* = (disy — w)—dis(ut,O)
6 EXPERIMENTS o
whereD is the number of dimensions. And, check if
In this section, we experimentally compare Pareto- dis* createqy that is incomparable with the Pareto
UCB1, and Pareto-KG and we compare linear- front set. If not reduce again tais® by usingdisg
scalarized-UCB1, Chebyshev-scalarized-UCB1, lin- instead ofdis, and so on.
ear scalarized-KG across arms, linear scalarized-KG ~ The number of experimenid is 1000. The hori-

across dimensions, and Chebyshev scalarized-KG.zon of each experimerit is 1000. The rewards
The performance measures are: of each armi in each dimensiord, d= 1,--- 7D

. - . 1 2
1. The percentage of time optimal arms are pulled, are drawn from normal distributioN(p, gi.r) where

' . ) S DIT Y
i.e. the average ofl experiments that optimal - M = (M-~ }]" IS the true mean andi, =
arms are pulled. [ol,---,0P] is the true standard deviation of the re-

ward. The true means and the true standard deviations

2. The percentage of time each of the optimal arms of arms are unknown parameters to the agent.

is drawn, i.e. the average &M experiments that First of all, we used the same example in (Dru-

each one of the optimal arms is pulled. gan and Nowe, 2013) because it contains non-convex
3. The average regret at each time step which is themean vector set. The number of aridg equals 6,

average oM experiments. the number of dimension® equals 2. The stan-
4. The average unfairness regret at each time stepdard deviation for arms in each dimension is either
which is the average ¥ experiments. equal and set to 1,.0, or 001 or different and gen-

d the algorithm in Fi for th | erated from a uniform distribution over the closed
We used the algorithm in Figure 2 for the scalar- interyq| [0,1], ie. taken from a normal distribu-

ized functions, and the algorithm in Figure 1 for the 4, N(0.5,1/12). The true mean set vector gy —
Pareto-KG. To compute the Pareto regret, we need (0.55 0_5]T’ o = [0.53,051T, pg = [0.52,0.54]T
to calculate the virtual distance. The virtual distance | = i0_5 0_757]T U — [0’51 0_5’1]T o= [0.5’ 0_5]T)’
dis* that is added to the mean vectgrof the pulled ’ j i ' X '
arm at time step (the pulled arm is not element in the
Pareto front (Pareto optimal arm) £€f) can be calcu-
lated by firstly ranking all the Euclidean distantis
between the mean vectors of the Pareto optimal arm
set and 0 as follows:

Note that the Pareto optimal arm set (Pareto front set)
is |A*| = (a3,a5,85,a;) wherea' refers to the op-
timal armi*. The suboptimabs is not dominated

by the two optimal arms;] and a;, but a5 and aj
dominatesas while ag is dominated by all the other
mean vectors. For upper confidence bounce UCB1,
) . . each arm is played initially one time, i.énitial =1
dis(py,0) < dis(p,0) < -+ < dis(k-|,0) as (Drugan and Nowe, 2013) (for Pareto-, linear-,
Chebyshev-UCB1), then the estimated mean of arms

disy <dis; <+ <disa are calculated and the scalarized or Pareto selection

where 0 is a vector, & [0',---,0°]T. Secondly, find-  is computed. Knowledge gradient KG needs the esti-
ing the minimum added distandés* which is calcu- mated standard deviation for each adn,therefore,
lated as follows: each arm is either played initially 2 timdsitial = 2

dis' — dis — di 0 19 which is the minimum number to estimate the stan-
is” = dis; — dis(j, 0) (19) dard deviation or each arm is considered unknown

wheredis; is the Euclidean distance between 0 vector until it is visitedInitial times. If the arm is unknown,
and the Pareto optimal mean vectgr anddis(j,0) then the estimated mean of that arm has a maximum
is the Euclidean distance between the mean vectorvalue, i.ef = maxicp i, Vj jc/a and the estimated

of the pulled arm that is not element in the Pareto standard deviation, i.efxid = MaXyep 0?, Vi,jelal tO
front set and vector 0. Then, adfis* to the mean increase the exploration of arms. We compare the
vector of the pulled arnp; to create a mean vector different setting for KG and found out that play-
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ing each arm initially 2 times, KG performance is 008 —_—
increased, therefore, we used this to compare with ] v PoreloteR
UCBL1. The number of Pareto optimal armg| is un- |
known to the agent, therefor@*| = 6. We consider
11 weight sets for the linear-, and Chebyshev-UCB1
and linear scalarized-KG across arms (LS1-KG),
linear scalarized-KG across dimensions (LS2-KG),
and Chebyshev-KG (Cheb-KG) functions, i.et =
{(1,0)7,(0.9,0.1)7,---,(0.1,0.9)7,(0,1)T}. For
Chebyshev-UCB1 and Chebyshev-K&was gener-

ated uniformly, randomly € [0,0.1]. Time step
(a) Average Pareto regret performance

Average Regret
g
&

Table 1 gives the average numbethe upper and -
lower bounds of the confidence interval that the opti-
mal arms are selected in colurA#, the average num-
ber+ the upper and lower bounds of the confidence
interval that one of the optimal ar@® is pulled in
columnsaj, &5, a3, anda; using the scalarized func-
tions in column Functions.

002 = ©— Linear scalarization-KG across anms
=L KG across di

Linear scalarization1-UCB1
==%-= Chebyshev-scalarization-KG
""" Chebyshev-scalarization-UCB1

Average Regret

Table 1 shows the number of selecting the op- S S, =
H [P H . onos & h O,
timal arms is increased by using knowledge gradi- ; e
ent. Pareto-KG plays fairly the optimal arms. Al- ; ,'_‘,,ﬁ, b = W
thoughe set to a fixed value for all the scalarized Time step
functions set { = 1,---,11), Chebyshev-KG per- (b) Average scalarized regret performance

forms better than the linear scalarization-KG across Figure 3: Average regret performance on bi-objective, 6-
arms (LS1-KG) and linear scalarization-KG across armed bandit problems.

dimensions (LS2-KG ) in playing fairly the optimal

arms. While, the performance of linear scalarized- mensions performs better than linear scalarized-KG
KG across arms (LS1-KG) in playing fairly the opti- across arms and Chebyshev scalarized-KG.

mal arms is as same as linear scalarized-KG across Secondly, we added another 14 arms to the previ-
dimensions (LS2-KG). Moreover, LS1-KG prefers ous example as (Drugan and Nowe, 2013). The added
the optimal armsaj and a3 then a; and a5 and arms are dominated by all other i and have equal
LS2-KG prefers the optimal armes andaj thena; ~ mMean vectors, i.efy = ---lpo = [0.48,0.48 . Fig-

and a. Pareto-UCBL performs better than linear- ure 4 gives the average regret and the average un-
and Chebyshev-scalarization-UCB1, (LS-UCB1 and fairness regret performances of the Pareto-KG and
Cheb-UCB1, respectively) according to the number Pareto-UCB1. The x-axis is the horizon of each ex-
of selecting optimal arms. This is the same result periments and the y-axis is the average of 1000 ex-
in (Drugan and Nowe, 2013) when the rewards are periments. Figure 4 shows the average regret perfor-
drawn form Bernoulli distributions. Cheb-UCB1 per- mance is improved by using Pareto-KG in subfigure
forms better than LS-UCB1 in selecting the optimal (&), while, the average unfairness performance in sub-
arms. We also see that LS-UCB1 performs better figure (b) is improved using Pareto-UCB1.

than LS1-KG and LS2-KG in playing fairly the op- Thirdly, we added extra dimension to the previ-
timal arms. And, Cheb-UCB1 performs better than ous example. The Pareto front s&t contains 7
Cheb-KG in playing fairly the optimal arms. Figure 3 arms. Figure 5 gives the average regret performance
shows the average regret performances. The x-axis isusing o = 0.01. The y-axis is the average regret
the horizon of each experiments and the y-axis is the performance and the x-axis is the horizon of exper-
average of 1000 experiments. From Figure 3, we seeiments. Figure 5 shows how the performance is im-
that how the regret performance is improved by us- proved using KG policy in the MOMABs. Subfigure
ing KG policy. Minimum Pareto regretis achieved by a shows Pareto-KG performs Pareto UCB1. Subfig-
using Pareto-KG in subfigure). Minimum scalar- ure b shows best performance (the average regret is
ized regret is achieved by using LS2-KG in subfig- decreased)for Chebyshev-KG and worst performance
ure ) and maximum regret is achieved by using for linear-UCB1. Chebyshev-UCB1 performs bet-
linear-scalarized-UCB1. From subfigut®,(we also ter than linear-scalarized-KG across dimensions and
see Chebyshev-UCB1 performs better than linear- worse than linear-scalarized-KG across arms. And,
scalarized-UCB1 and linear-scalarized-KG across di- the Chebyshev scalarized- (KG and UCB1) is better
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Table 1: Percentage of times optimal arfsare pulled and percentage of times each one of the optimalisapulled
performances on bi-objective MABs with number of arpAs= 6 and the standard deviation of rewards are equal for each
armi,i € Aoj; =0.01.

Functions A a; a, EH ay
LS2-KG 999+ .33 | 368+17.6 | 303+182 96+9.3 232+85
Pareto-KG | 998+.02 | 250+ .85 249+ .87 250+ .83 249+ .82
LS1-KG 998+ .04 | 222+9.7 122+7.4 | 301+144 | 353+122
Cheb-KG 998+ .25 279+6 228+7 264+6 227+4.3
Pareto-UCB | 714+ .41 180+.3 163+ .21 173+ .23 198+ .54
Cheb-UCB | 677+.07 | 168+.08 166+ .06 170+ .06 173+ .07
LS-UCB; 669+.08 | 167+.06 168+ .06 168+ .06 166+ .06
008 —=— Pareto-KG 0 —E—Pareto KG
‘\ —— Patelo-UCE, ons —w—Pareto-UCH,
§ 04 f = ;l
g g
g 003 g, 008
g 0.02 g 008
0.01 :
% 700 00 500 w00 1000 o o T Ce00 T ag0 o Teob - - Ceob - 1000
Time step Time step

(a) Average regret performance. (a) Average Pareto regret performance

x10°

—&—Parelo KG
—sp—Pateto-UCE,
3.5

—©— Linear scalatization-K G actoss arms
— — =Linear scalatization-KG actoss dimensions

Linear scalarization-UCB1
=== Chehyshev scalarization-UCB1
==)&= Chebyshev scalarization-KG

Average Regret
g

Average Fairness

——
——

200 400

Time step
(b) Average scalarized regret performance
Figure 5: Average regret performance on triple-objective,
Figure 4: Performance comparison of Pareto-KG and 20-armed bandit problems.
Pareto-UCB1lon bi-objective MABs with 20 arms using
standard deviation of reward, = 0.1 for all arms. Sub- ~ mal arms is increased by using KG policy. Pareto-KG
figure (a) is the average regret performance and subfigureoutperforms Pareto-UCB1 in selecting and playing
(b) is the average unfairness regret performance. fairly the optimal arms. Scalarized functions-KG out-
) ] ~ perform scalarized functions-UCBL1 in selecting the

than the linear scalarized- (KG and UCB1) according optimal arms, while scalarized functions-UCB1 out-
to the regret performance. perform scalarized functions-KG in playing fairly the

Finally, we added extra 2 objectives in the previ- optimal arms. LS1-KG (linear scalarized-KG across
ous triple-objective in order to compare the KG and arms) performs better than LS2-KG and Cheb-KG in
UCB1 performances on a more complex MOMABs selecting the optimal arms. Cheb-KG performs bet-
problem. Table 2 gives the average numiethe up- ter than LS2-KG and worse than LS1-KG in select-
per and lower bounds of the confidence interval that ing the optimal arms. LS2-KG performs better than
the optimal arms are selected in coluih the av- LS1-KG and Cheb-KG in playing fairly the optimal
erage numbett the upper and lower bounds of the arms and prefers playina,, aj, a3, ag, ag, a; thenay.
confidence interval that one of the optimal aainis LS1-KG performs better than Cheb-KG and worse
pulled in columnsaj,a;, a3, ay,a;, a5, andaj using than LS2-KG in playing fairly the optimal arms and
the scalarized functions in column Functions. prefersay,ag, a3, a7, ag,al thenaj. Cheb-KG prefers

Table 2 shows the number of selecting the opti- the optimal armsa;, a5, a3, as, a5, &, thenaj. LS-

600 800 1000

200 400 600 800

Time step

1000

(b) Average unfairness regret performance.
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Table 2: Percentage of times optimal arfsare pulled and percentage of times each one of the optimalisapulled
performances on 5-objective MABs with number of arjAs= 20 and the standard deviation of rewards are equal for each

armi,i € Aoj; =0.01.

Functions

A

a

al

as

*

e

*

at

il 2 3 7
LS1-KG 1000+0 14314+6.273 | 766+4.566 | 1541+7.459 | 195+7.633 | 1358+7.25 | 1648+8.353 | 1306+ 6.336
Cheb-KG 9997+.023 | 507.3+4.111 | 63.64+4.263 | 1117+4.043 | 292+3.076 | 739+4.752 | 19354+4.883 | 205+2.574
LS2-KG 6011+8.993 | 1092+6.439 | 1218+6.827 | 57.94+4.454 | 57.1+4.093 | 79345668 | 791+5536 | 96.7+6.271
Pareto-KG 5713+3.54 814+.723 817+.738 816+.72 8L7+.72 81.9+.688 816+.72 81L4+.72
Pareto-UCB 4551+ .21 64.2+.095 60.3+.066 62.7+.073 69.1+.116 | 651+.076 65.1+.077 68.6+.114
LS-UCB, 3797+.278 539+ .061 537+.063 545+ .064 547+.064 | 5444 .066 54.6+.068 539+.066
Cheb-UCB 367.9+.219 534+.073 54.1+.075 529+.073 52.7+.075 | 519+.074 51.6+.077 51.3+.077

UCB1 and Cheb-UCB1 play fairly the optimal arms,
while LS-UCBL1 performs better than Cheb-UCB1 in
selecting the optimal arms.
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7 CONCLUSIONSAND FUTURE
WORK

We presented multi-objective, multi-armed bandits
problem MOMABs, the regret measures in the
MOMABs and Pareto-UCB1, linear-UCB1, and
Chebyshev-UCB1. We also presented knowledge
gradient policy KG. We proposed Pareto-KG. We
also proposed two types of linear scalarized-KG (lin- Computational Intelligence and Machine Learning
ear scalarized-KG across arms (LS1-KG) and lin- (ESANN) ESANN.

ear scalarized-KG across dimensions (LS2-KG) and Zitzler, E. and et al. (2002). Performance assessment
Chebyshev-scalarized-KG. Finally we compared KG of multiobjective optimizers: An analysis and re-
and UCB1 and concluded that the average regret is ;’ifr‘]N .#EEE_I;;nsacﬂons on Evolutionary Compuita-
improved using KG policy in the MOMABs. Fu- T '

ture work must provide theoretical analysis for the

KG in MOMABs and must compare the family of up-

per confidence bound UCB1, and UCB1-Tuned poli-

cies (P. Auer and Fischer, 2002), and knowledge gra-

dient KG policy on the correlated MOMABs. and

must compare KG, UCB1, and UCB1-Tuned policies

in sequential ranking and selection (P.I. Frazier and
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