Understanding the Genesis of Cardiac Signals in Electrical Impedance Tomography

M. Proença, F. Braun, M. Lemay, B. Grychtol, M. Bührer, M. Rapin, P. Krammer, S. Böhm, J. Solà, J.-Ph. Thiran

2014

Abstract

Electrical impedance tomography (EIT) is a safe and low-cost imaging technology allowing the monitoring of ventilation. While most EIT studies have investigated respiration-related events, EIT-based cardiovascular applications have received increasing attention over the last years only. Variations in intra-thoracic blood volume induce impedance changes that can be monitored with EIT and used for the estimation of hemodynamic parameters. There is, however, increasing evidence that variations in blood volume are not the only factors contributing to cardiac impedance changes within the heart. The mechanical action of the myocardium and movement of the heart-lung interface are suspected to generate impedance changes of non-negligible amplitude. To test this hypothesis we designed a dynamic 2D bio-impedance model from segmented human magnetic resonance data. EIT simulations were performed and showed that EIT signals in the heart area might be dominated up to 70% by motion-induced impedance changes.

References

  1. Adler, A., Arnold, J. H., Bayford, R. et al., 2009. GREIT: a unified approach to 2D linear EIT reconstruction of lung images, Physiological Measurement, vol. 30, no. 16, pp. S35-S55.
  2. Barber, D. C., 1990. Quantification in impedance imaging, Clinical Physics and Physiological Measurement, vol. 11 (suppl A), pp. 45-56.
  3. Bayford, R. H., 2006. Bioimpedance tomography (electrical impedance tomography), Annual Review of Biomedical Engineering, vol. 8, pp. 63-91.
  4. Borges, J. B., Suarez-Sipmann, F., Böhm S. H. et al., 2011. Regional lung perfusion estimated by electrical impedance tomography in a piglet model of lung collapse, Journal of Applied Physiology, vol. 112, no. 11, pp. 225-236.
  5. Braun, F., 2013. Systolic Time Intervals Measured by Electrical Impedance Tomography (EIT), Swiss Federal Institute of Technology, Zurich, Switzerland. DOI: http://dx.doi.org/10.3929/ethz-a-009947722.
  6. Brown, B.H., Leathard, A., Sinton, A. et al., 1992. Blood flow imaging using electrical impedance tomography, Clinical Physics and Physiological Measurement, vol. 13 (suppl A), pp. 175-179.
  7. Deibele, J. M., Luepschen H. and S. Leonhardt, 2008. Dynamic separation of pulmonary and cardiac changes in electrical impedance tomography, Physiological Measurement, vol. 29, no. 16, pp. S1- S14.
  8. Denai, M. A., Mahfouf, M., Mohamad-Samuri, S. et al., 2010. Absolute Electrical Impedance Tomography (aEIT) Guided Ventilation Therapy in Critical Care Patients: Simulations and Future Trends, IEEE Transactions on Information Technology in Biomedicine, vol. 14, no. 13, pp. 641-649.
  9. Fagerberg, A., Stenqvist, O. and Åneman, A., 2009. Monitoring pulmonary perfusion by electrical impedance tomography: an evaluation in a pig model, Acta Anaesthesiologica Scandinavica, vol. 53, no. 12, pp. 152-158.
  10. Ferrario, D., Grychtol, B., Solà, J. et al., 2012. Towards morphological thoracic EIT: Major signal sources correspond to respective organ locations in CT, IEEE Transactions on Biomedical Engineering, vol. 59, no. 111, pp. 3000-3008.
  11. Frerichs, I., Hinz, J., Herrmann, P. et al., 2002. Regional lung perfusion as determined by electrical impedance tomography in comparison with electron beam CT imaging, IEEE Transactions on Medical Imaging, vol. 21, no. 16, pp. 646-652.
  12. Frerichs, I., Pulletz, S., Elke, G. et al., 2009. Assessment of changes in distribution of lung perfusion by electrical impedance tomography, Respiration, vol. 77, no. 13, pp. 282-291.
  13. Gabriel, S., Lau, R. W. and Gabriel, C., 1996. The dielectric properties of biological tissues: III. Parametric models for the dielectric spectrum of tissues, Physics in Medicine and Biology, vol. 41, no. 111, pp. 2271-2293.
  14. Grant, C. A., Pham, T., Hough, J. et al., 2011. Measurement of ventilation and cardiac related impedance changes with electrical impedance tomography, Critical Care, vol. 15, no. 11, p. R37.
  15. Grychtol, B., Lionheart, W. R. B., Bodenstein, M. et al., 2012. Impact of Model Shape Mismatch on Reconstruction Quality in Electrical Impedance Tomography, IEEE Transactions on Medical Imaging, vol. 31, no. 19, pp. 1754-1760.
  16. Guha, S. K., Khan, M. R. and Tandon, S. N., 1973. Electrical field distribution in the human body, Physics in Medicine and Biology, vol. 18, no. 5, pp. 712-720.
  17. Hellige, G., Hahn, G., 2011. Cardiac-related impedance changes obtained by electrical impedance tomography: an acceptable parameter for assessment of pulmonary perfusion?, Critical Care, vol. 15, p. 430.
  18. Holder, D. S., 2005. Electrical impedance tomography: methods, history and applications, Institute of Physics Publishing. London.
  19. Kim, D. W., Baker, L. E., Pearce, J. A. and Kim, W. K., 1988. Origins of the impedance change in impedance cardiography by a three-dimensional finite element model, IEEE Transactions on Biomedical Engineering, vol. 35, no. 112, pp. 993-1000.
  20. Kunst, P. W. A., Vonk-Noordegraaf, A., Hoekstra, O. S. et al., 1998. Ventilation and perfusion imaging by electrical impedance tomography: a comparison with radionuclide scanning, Physiological Measurement, vol. 19, no. 14, pp. 481-490.
  21. Leathard, A. D., Brown, B. H., Campbell, J. et al., 1994. A comparison of ventilatory and cardiac related changes in EIT images of normal human lungs and of lungs with pulmonary emboli, Physiological Measurement, vol. 15 (suppl 2A), pp. A137-A146.
  22. Levick, J. R., 2010. An introduction to cardiovascular physiology, Arnold. London, 5th edition.
  23. Malmivuo, J. and Plonsey, R., 1995. 7: Volume source and volume conductor, in Bioelectromagnetism: Principles and Applications of Bioelectric and Biomagnetic Fields, University Press. New York.
  24. McArdle, F. J., Suggett, A. J., Brown, B. H. and Barber, D. C., 1988. An assessment of dynamic images by applied potential tomography for monitoring pulmonary perfusion, Clinical Physics and Physiological Measurement, vol. 9 (suppl A), pp. 87- 91.
  25. Nguyen, D. T., Jin, C., Thiagalingam, A. and McEwan, A. L., 2012. A review on electrical impedance tomography for pulmonary perfusion imaging, Physiological Measurement, vol. 33, no. 5, pp. 695- 706.
  26. Smit, H. J., Vonk-Noordegraaf, A., Marcus, J. T. et al., 2004. Determinants of pulmonary perfusion measured by electrical impedance tomography, European Journal of Applied Physiology, vol. 92, no. 1, pp. 45- 49.
  27. Vonk-Noordegraaf, A., Kunst, P. W. A., Janse, A. et al., 1998. Pulmonary perfusion measured by means of electrical impedance tomography, Physiological Measurement, vol. 19, no. 12, pp. 263-273.
  28. Vonk-Noordegraaf, A., Janse, A., Marcus, J. T. et al., 2000. Determination of stroke volume by means of electrical impedance tomography, Physiological Measurement, vol. 21, no. 12, pp. 285-293.
Download


Paper Citation


in Harvard Style

Proença M., Braun F., Lemay M., Grychtol B., Bührer M., Rapin M., Krammer P., Böhm S., Solà J. and Thiran J. (2014). Understanding the Genesis of Cardiac Signals in Electrical Impedance Tomography . In Proceedings of the International Conference on Bio-inspired Systems and Signal Processing - Volume 1: BIOSIGNALS, (BIOSTEC 2014) ISBN 978-989-758-011-6, pages 27-34. DOI: 10.5220/0004793400270034


in Bibtex Style

@conference{biosignals14,
author={M. Proença and F. Braun and M. Lemay and B. Grychtol and M. Bührer and M. Rapin and P. Krammer and S. Böhm and J. Solà and J.-Ph. Thiran},
title={Understanding the Genesis of Cardiac Signals in Electrical Impedance Tomography},
booktitle={Proceedings of the International Conference on Bio-inspired Systems and Signal Processing - Volume 1: BIOSIGNALS, (BIOSTEC 2014)},
year={2014},
pages={27-34},
publisher={SciTePress},
organization={INSTICC},
doi={10.5220/0004793400270034},
isbn={978-989-758-011-6},
}


in EndNote Style

TY - CONF
JO - Proceedings of the International Conference on Bio-inspired Systems and Signal Processing - Volume 1: BIOSIGNALS, (BIOSTEC 2014)
TI - Understanding the Genesis of Cardiac Signals in Electrical Impedance Tomography
SN - 978-989-758-011-6
AU - Proença M.
AU - Braun F.
AU - Lemay M.
AU - Grychtol B.
AU - Bührer M.
AU - Rapin M.
AU - Krammer P.
AU - Böhm S.
AU - Solà J.
AU - Thiran J.
PY - 2014
SP - 27
EP - 34
DO - 10.5220/0004793400270034