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Abstract: The biorefineries of the future will critically depend on efficient supply chains to guarantee continuous 
flows of biomass while minimizing logistic costs and environmental impacts. OR techniques can be very 
useful to help decision makers to model, evaluate and optimize such complex and large-scale supply chains 
at the design stage. This paper provides an overview of the OR models for this recent research domain and 
proposes a core-model (mathematical program) for the tactical decision level. 

1 INTRODUCTION 

The actual biorefineries designed for first-generation 
biofuels (like bioethanol from wheat, maize or sugar 
cane, or biodiesel from rapeseed or sunflower) raise 
criticisms concerning possible pressures on other 
crop usages like human food or animal feed 
production. This is why the biorefineries of the 
future will try to combine various types of biomass, 
by valorizing discarded fractions of current crops, 
like cotton straw, and using the enormous potential 
of plants, like switchgrass and short rotation woods, 
to produce non-food crops. Moreover, beyond 
biofuels, all these agricultural and forestry resources 
will provide renewable raw materials for a broad 
range of other products, such as chemicals, fibers, 
lubricants, construction materials, etc. 

The European Commission has put forward a 
proposal for a Directive to achieve by 2020 a 20% 
share of renewable energy and a biofuels’ usage 
with a target of 10% in transport (European 
Commission, 2008). 

While research on interesting vegetal species and 
biorefinery processes is well developed, the actors 
concerned realized only recently that the Achilles' 
heel of the planned systems could be the logistic 
part. For instance, each type of biomass is produced 
during a short period in the year while biorefineries 
have a more regular activity. Hence, an efficient 
supply chain must be implemented to play the role 
of a buffer in between and supply the biorefineries 
without shortage. Moreover, as the biomass itself is 
relatively cheap, the economic equilibrium of the 
whole system critically relies on logistic costs. OR is 

an adequate tool to derive quantitative models for 
these biomass supply chains, evaluate their 
performance and optimize criteria like the total cost 
of the chain, the energy consumption and the GHG 
(greenhouse gas) emissions. 

The goal of this contribution is to depict the OR 
models proposed for biomass supply chains, for 
readers having a general OR culture but not 
specialists in biomass issues. This work is extracted 
from a preliminary study conducted by the same 
authors in the GENESYS French national project on 
the lipids biorefinery of the future. This study has 
surveyed more than 150 research articles on biomass 
logistics but, due to limited space, only some 
representative papers will be cited here, to provide 
the interested readers with good entry points. The 
papers are selected among recent research papers 
considering different decision time frames (i.e., 
strategic, tactical, operational, and integrated) and 
proposing some general approaches to model 
biomass supply chains. 

2 BIOMASS SUPPLY CHAINS 

A complete biomass supply chain includes various 
activities like cultivation, harvesting, pre-processing 
(e.g., drying, baling, granulation), transportation, 
handling, storage, conversion processes in the 
biorefineries, and distribution to end-users. Figure 1 
from Zhang et al., (2013) shows a nice example for a 
single biorefinery producing ethanol from a plant 
called switchgrass. Although a few authors have 
tried to model the whole chain (for instance Feng et 
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Figure 1: Example of supply chain to produce bioethanol from switchgrass (Zhang et al., 2013). 

al., (2010) for forest products), a global optimization 
is still extremely difficult because very different 
actors intervene in the two main parts of the chain, 
before and after the biorefineries. Therefore, like in 
the vast majority of studies, we consider in the 
sequel a supply chain that goes from the fields to the 
doors of biorefineries. It is assumed that this chain is 
driven by demands issued by refineries for several 
types of biomass and that these needs must be 
satisfied, if possible. 

The structure of the chain in Figure 1 suggests a 
network model with the following node types (recall 
that from now on we stop at the biorefineries): 

 Input nodes or production nodes, where biomass 
is produced and harvested; 

 Output nodes or consumption nodes, where 
biomass is consumed (biorefineries); 

 Intermediate nodes, the main ones being storage 
sites, pre-processing facilities, transshipment 
nodes (railway stations for instance) and simple 
transit nodes (villages traversed).  

Compared to an industrial supply chain, several 
differences must be underlined: 

 Biomass supply chains cover a vast collection 
territory, with many scattered cultivation areas;  

 Long planning horizons are involved, because 
most crops have a one-year cultivation cycle; 

 Inputs (biomass productions) and outputs 
(biorefinery activities) are desynchronized; 

 Because of degradations, the crops cannot wait 
and must be harvested quickly when ready. 

Pre-processing activities lead to a longer preser-
vation (dry forms, granulates, pellets) and/or easier 
and cheaper transportation (increase in density). For 
instance, harvested switchgrass has a density of 60-
80 kg/m3, which becomes 140-180 for a bale and 
700-800 for granulates (Sokhansanj et al., 2009). 
Simple preprocessing like baling is often done 
directly on the field by harvesters, like in Figure 1. 

Biomass supply chains can also be described in 
terms of activities that involve various resources: 

 Harvesting Activities. They are possible in a 
limited period at input nodes, when the crop is 
ready, and they compete for a limited fleet of 
machines like harvesters or balers. The yield is 
not perfect, with a typical 10 to 20% loss. 
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 Storage. Storage is required in practice to 
synchronize the biomass production calendar 
with the production planning of the biorefineries. 
It can take place in the fields or forests as simple 
stacks, in intermediate storage sites or at the 
entry of biorefineries. 

 Pre-processing. Baling is a simple form of pre-
processing, which can be done directly on the 
field by a quader-baler. Stronger compressions 
and other transformations are possible, but using 
heavier equipments and/or dedicated sites. 

 Transport. Road transport is often preferred, due 
to limited accessibility of some production sites 
like forests. However, other modes like trains 
can be used. In many cases, the fleet of vehicles 
is limited and the number of travels per period is 
restricted by various constraints like vehicle 
range or driving time regulations. 

A real biomass supply chain can be much more 
complex than the simple example of Figure 1 : other 
activities can be distinguished (e.g., material 
handling); several types of biomass and a multi-
period horizon can be added; the locations of some 
facilities can be left as decision variables, etc.  

Hence, biomass supply chain designers need 
modeling tools to cope with this complexity. Before 
coming to a total cost, they must understand the 
dynamics of the chain and fix many variables, like 
the amounts harvested (which type of biomass, 
where, when, in which amount), the flows in the 
network (amounts transported), the advisable stock 
levels, the resources consumed (machines, vehicles, 
energy, manpower). Subtle tradeoffs must be found: 
for instance, deciding either to densify on the field, 
using light equipment, or to get a higher density at a 
remote dedicated facility, at the expense of an 
additional transportation step. 

Like in production management and industrial 
logistics, the decisions can be classified into three 
levels, according to the time horizon concerned: 

 Strategic decisions include for instance the 
selection of accepted biomass types, the location 
and size of biorefineries, storage sites and pre-
processing plants, the transportation modes, the 
long-term supply contracts. In general, a single-
period horizon of one year or a multi-period 
horizon of a few years is considered.  

 Tactical decisions correspond to production 
planning in industry. A multiperiod horizon of a 
few months is involved, with a time period 
varying from one day to one month. Examples: 
amount of each type of biomass harvested in 
each period at each production node, vehicle 

fleet size, definition of safety stock levels, etc. 
 Operational decisions correspond to scheduling 

in industry. Contrary to the tactical level, the 
order and starting times of tasks are specified. 
Examples: vehicle routing and scheduling, 
detailed harvesting operations, idle times. 

Even if some studies address the operational level 
(e.g., truck scheduling in Han and Murphy, 2012), 
research on biomass supply chains focuses on the 
strategic and tactical decision levels. Indeed, the 
goal is to provide decision makers with tools to 
model a chain before its implementation, and not to 
develop software for day-to-day operations. 
Anyway, the data for detailed operations are never 
known at the design stage.  

Three main approaches presented in the sequel 
are used to model biomass supply chains: simple 
decision support systems, performance evaluation 
tools, and optimization techniques. 

3 SIMPLE SYSTEMS 

The simplest decision support systems rely on 
spreadsheets and geographical information systems 
(GIS). Their apparent simplicity must not hide the 
underlying need for many accurate data, e.g., 
biomass production statistics, cost estimates for all 
steps and (for the GIS) geographical maps.  

A good example of spreadsheet-based system is 
described by Delivand et al., (2011) to assess the 
supply of rice straw in Thailand. A detailed cost 
analysis of a typical rice straw logistic process for 
two baling options (small or large rectangular bales) 
in three regions shows that the difference in logistic 
costs is finally marginal, due to the higher ownership 
and operating costs of the equipment for using large 
rectangular bales. However, the fuel consumption is 
substantially lower for large bales, which induces a 
significant reduction of transport costs. 

GIS are more powerful and perform non-trivial 
calculations for the user. The centroid of a polygon 
describing a cultivation area can be easily computed, 
e.g., to estimate the Euclidean distance between this 
area and a plant. In case of accessibility problem in a 
forest, the GIS can find the closest road. 

Brechbill et al., (2011) determine up-to-date 
biomass production costs using recent prices for all 
important cost components including seed, fertilizer, 
herbicide, mowing/shredding, raking, baling, 
storage, handling, and transportation, from the fields 
to the plant gate. The role of the GIS used (ArcMap) 
is to map production and supply data over selected 
geographical locations. 
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GIS are also used as nice visualization tools on 
top of simulation or optimization software. For 
instance, Frombo et al., (2009) present a GIS-based 
Environmental Decision Support System (EDSS) to 
define planning and management strategies for the 
optimal logistics for energy production from woody 
biomass. The EDSS is organized in three modules 
(GIS, data management system, optimization). In 
particular, through a GIS-based graphic interface, a 
decision maker can visualize the forest parcels of the 
territory under concern, select those parcels that can 
be used, calculate the distance from each parcel to 
the first available road and to the conversion plant 
location, and set the parameters related to costs and 
technical issues. Then, the optimization module can 
be run and the results stored in the database and 
displayed on a map.  

4 PERFORMANCE VALUATION 

The aim of performance evaluation techniques is to 
compute performance indicators for real systems 
characterized by a complex structure, dynamic 
aspects, random variables and/or objective functions 
whose each computation is time-consuming (for 
instance when these functions have no analytical 
formula). The main performance evaluations tools 
are simulation methods, stochastic processes like 
Markov chains and queuing systems, and Petri nets. 

The ones used for biomass logistics are mainly 
simulation models. In general, a network-like model 
composed of graphical objects (workstations, 
queues, random event generators) is defined using 
the modelling language of a commercial simulation 
software like Arena, then the software simulates in a 
few minutes a long period of activity of the real 
system.  

Sokhansanj et al., (2006) developed a dynamic 
Integrated Biomass Supply Analysis and Logistics 
model (IBSAL) to simulate the collection, transport 
and storage operations and the flow of biomass (corn 
stover) from fields to a biorefinery daily throughout 
the year. The model includes weather conditions 
such as rain and snow which influence the moisture 
content and the dry matter loss of biomass through 
the supply chain. IBSAL predicts the number and 
size of equipment to meet the rate of harvest and 
biorefinery demand schedule for feedstock, and also 
calculates the costs, energy input and emissions. 

IBSAL is very popular as one of the most 
sophisticated simulation models, reproducing a 
multi-period supply chain with hundreds of 
production areas, but with one type of biomass only. 

Kumar et al., (2007) applied it to study the logistics 
of switchgrass and compare several options for the 
collection and transport. IBSAL was also used to 
analyze the logistics of different cultures in different 
regions (Mani et al., 2006) and (Stephen et al., 
2010). An extended simulation model, called 
IBSALMC (IBSAL Multi Crop) was derived from 
IBSAL by Ebadian et al., (2011). This model was 
developed to evaluate a chain supplying multi-
agricultural raw materials for a proposed cellulosic 
ethanol production in Canada. 

Ravula et al., (2008) designed a simulation 
model to study transport in the logistic network of 
cotton, as a possible model for more general biomass 
transportation systems. In general, cotton is 
collected and compressed into large blocks, known 
as modules of cotton transport. Then the cotton 
modules built by several farmers are transported to a 
gin for processing. Considering a continuous supply 
of cotton modules, the originality of this study is to 
solve a zero-one knapsack sub-problem which is 
solved to optimality to estimate the number of trucks 
required in each period. In fact, this work belongs to 
the rare publications combining simulation and 
optimization. 

Zhang et al., (2012) also selected a simulation 
approach to take into account the main activities of 
the supply chain of biomass, including harvesting, 
processing, transportation and storage. Their model 
considers the cost of raw materials delivered, energy 
consumption and GHG emissions as criteria for 
measuring system performance. Compared to the 
authors previously cited, this work includes the 
distribution sub-network, i.e., beyond the refinery. 

Compared to mathematical programming 
models, the main advantages of simulation 
approaches are the following: 

 A fine-grain modelling is possible, tackling for 
instance resource conflicts, queues of vehicles 
waiting for loading in the fields, biomass 
production variations or delays due to 
unexpected climatic conditions, etc. 

 System dynamics can be appraised. 
 Stochastic events are possible. 
 The operational level can be handled. 
 Large and complex chains can be modelled. 
 Practitioners like this kind of models, that they 

can easily understand and even modify. 
However, simulation models have also some limits: 
 The running time can be huge for large supply 

chains or long time horizons. 
 No optimization is possible: the user defines the 

input parameters and obtains the corresponding 

An�Overview�of�OR�Models�for�Biomass�Supply�Chains

177



 

performance indicators. 
 In practice, it is possible to evaluate only a few 

scenarios to select the best one. For instance, if a 
biorefinery is not yet located, a simulation model 
can be used to compare a few possible locations, 
while ad-hoc variables in a mathematical 
program can lead to an optimal location.  

5 OPTIMIZATION MODELS 

5.1 Principles and Main Works 

The formalism used in optimization models is quite 
different. The decisions must be described in terms 
of variables while the constraints to satisfy are 
expressed as equations which link these variables. 
Most works consider mixed integer linear programs 
(MILP) with a single objective function. 

Tembo et al., (2003) are worth citing as one of 
the first complete models. They developed a multi-
region, multi-period MILP handling alternative 
feedstock, feedstock production, field losses, 
harvests, storage, storage losses, transport, bio-
refinery size, and biorefinery location. To take into 
account the fluctuations in biomass availability, one-
month time slots are considered. The solution 
minimizing logistic costs indicates the best locations 
and sizes of warehouses, the storage policies, the 
flow of biomass in the logistic network, the planning 
of annual crops, the required vehicle fleet, and the 
optimal location of the biorefinery. 

More recently, Ekşioğlu et al., (2009) proposed 
another MILP model that uses agricultural and 
woody biomass to produce ethanol. Their multi-
period model prescribes strategic decisions such as 
the location, number and size of refineries and 
collection sites, and tactical decisions like material 
flows. The objective is to minimize over one year a 
sum of costs concerning biomass (harvest, storage, 
transport, conversion) and the distribution of 
ethanol. Ekşioğlu et al., (2010) extended this study 
to different modes of transport. The objective was to 
identify locations for refineries, transportation 
modes to use, transport planning and biofuel 
production scheduling to minimize the total cost for 
delivering the fuels to end-customers. 

Zhu et al., (2011) designed also a MILP for a 
single product (switchgrass) supply chain, involving 
strategic decisions about the design of the supply 
chain and tactical decisions over an annual schedule. 
The planning horizon is discretized into one-month 
time slots. The MILP takes into account biomass 
seasonality, harvesting and transport operations, 

energy consumption, and residue handling. The 
model determines the best location and capacity for 
new warehouses, an effective policy for storage, the 
flows of switchgrass transported in the logistic 
network, the timing of annual harvest and the best 
configuration from a set of candidates bio-refineries. 
Zhu and Yao (2011) extended the previous work to a 
biorefinery accepting three types of biomass 
(switchgrass, corn stover and wheat straw). An 
original aspect of their study is that additional 
biomass can be purchased from external sources. 

The previous papers consider as objective 
function a linear combination of various costs, 
which is not considered as a true multi-objective 
optimization. Multi-objective approaches in Pareto's 
sense are all very recent. For instance, Santibañez-
Aguilar et al., (2011) investigated a multi-objective 
optimization model for the optimal planning of a 
biorefinery, considering various types of production 
technologies, raw materials and products. The model 
was applied to a case study of a refinery in Mexico. 
It simultaneously maximizes the profit and 
minimizes the environmental impact. 

A few authors have studied non-linear 
programming formulations, although they can be 
quite hard, computationally speaking. A good 
example can be found in Shabani and Sowlati 
(2013), who designed a nonlinear mixed integer 
program (MINLP) to optimize the supply chain of a 
biomass power plant in Canada. Biomass 
procurement, storage, energy production and ash 
management are considered at the tactical level to 
maximize the profit. The model provides estimates 
of the amount of biomass to be purchased, stored 
and consumed in each month, over a one-year 
planning horizon. 

The mathematical models solved by commercial 
solvers are still limited to small networks in terms of 
nodes, contrary to simulation models for instance. 
However, still very few authors have proposed 
metaheuristics to tackle larger problems. For 
instance, Vera et al., (2010) compared a Binary 
Particle Swarm Optimization (BPSO) metaheuristic 
and a genetic algorithm (GA) to efficiently 
determine the optimal location of a biomass power 
plant, avoiding a greedy exhaustive search which 
would be too time-consuming. The proposed 
approach allows to get the location, plant size and 
supply area that offer the best profitability from the 
investor's perspective.  

Optimization models offer the following 
advantages compared to simulation: 

 Optimal decisions can be taken; 

 Tactical and strategic levels are easily tackled; 
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 Commercial solvers with a high-level modelling 
language are available. 

But they have still some drawbacks: 

 The model is difficult to modify for end-users. 

 The running time may be excessive when integer 
variables or non-linearity are involved. 

 Commercial solvers fail on large instances and 
dedicated algorithms must be designed, e.g. 
metaheuristics or decomposition approaches. 

 Handling stochasticity and multiple objectives is 
not obvious, although ad hoc extensions exist. 

5.2 A Detailed Example 

To fix ideas, we propose a tactical model of biomass 
supply chain, inspired by the different models from 
the literature but more general and flexible. We 
allow both a multi-period planning horizon ܪ, a set 
of biomass types ܤ (e.g., corn straw, switchgrass), a 
set of biomass forms or "products" ܲ (e.g., straw 
bales, straw pellets, switchgrass briquettes), a set of 
production zones ܼ, a set of storage sites ܵ, a set of 
transformation (pre-processing) sites ܶ and a set of  
biorefineries ܴ. 

The supply chain structure is described by a 
digraph ܩ with a node-set ܰ ൌ ܼ ∪ ܵ ∪ ܶ ∪ ܴ and 
an arc-set ܩ  .ܣ models the real road network but 
simple transit nodes are removed and each arc ሺ݅, ݆ሻ 
stands for a path from node ݅ to node ݆ in the actual 
network, with a length ݀ pre-computed by a 
shortest path algorithm. The chain considered covers 
a biomass basin corresponding to one French 
department, so any implicated arc is traversed in a 
single period. It is assumed that each production 
node, storage node and preprocessing node is 
dedicated to a single product (several products are 
easily handled by placing several nodes at the same 
location). Our model involves the following data. 

For each type of biomass ݇ ∈  :ܤ

 ܾݏሺ݇ሻ set of products for this biomass, e.g., 
bales and pellets from wheat straw. 

For each product  ∈ ܲ: 

 ܾݐ type of biomass of origin, e.g. wheat straw 
for straw bales and straw pellets; 

 ݀݁݊ݏ density in tons/m3; 
 ݀ݕݎ dry fraction, e.g. 0.8 for 20% humidity. 

For each production zone ݅ ∈ ܼ: 

 ݀݀ݎሺ݅ሻ delivered product; 

 ܹ harvest window (set of consecutive periods); 

 ݈ܽ݅ܽݒ amount available in tons; 

 ݄ܿܽ harvesting capacity in tons/period; 

 ݄ܿݐݏ harvesting cost in €/ton. 

For each storage site ݅ ∈ ܵ: 

 ݀ݎݏ stored product; 

 ܽܿݏ storage capacity in tons; 

 ݐݏܿݏ storage cost in € per ton and per period. 

For each preprocessing site ݅ ∈ ܶ: 

 ݅݀ݎ input product; 

 ݀ݎ output product (same biomass of origin); 

 ݒ݊ܿݓ weight conversion factor (e.g., 0.9 if 10 
tons on input yield 9 tons on output); 

 ܽܿݐ transformation capacity in tons/period; 

 ݐݏܿݐ transformation cost per ton. 

For each refinery ݅ ∈ ܴ: 

 ܾܽݐ set of accepted biomass types in ܤ; 

 ݀݁݉௧ demand for biomass type ݇ in period ݐ, 
in dry tons. 

For each arc ሺ݅, ݆ሻ ∈  :ܣ

 ݀ arc length in km; 

 ܿ transportation cost in € per ton of product .  

Variables (amounts in tons) 

 ݄௧  0, ∀݅ ∈ ܼ, ݐ∀ ∈ ܹ ∶	 amount harvested per 
zone and period; 

 ݏ௧  0, ∀݅ ∈ ܵ, ݐ∀ ∈  stock level for each :ܪ
storage node and period; 

 ݍ௧  0, ∀݅ ∈ ܶ, ݐ∀ ∈  amount of input product :ܪ
treated for each transformation node and period; 

 ݔ௧  0, ∀ሺ݅, ݆ሻ ∈ ,ܣ ∀ ∈ ܲ, ݐ∀ ∈  flow for :ܪ
each arc, product and period. 

The minimization of the different costs of the chain 
can be modeled by the linear program given on next 
page, in fact a kind of multi-commodity, minimum 
cost flow problem (declarations of variables are not 
recalled).  

The objective function (1), to be minimized, is 
the total cost of operations, composed of four terms: 
harvesting costs, storage costs, preprocessing costs 
and transportation costs. Constraints (2) to (4) 
concern production zones: equations (2) mean that 
the sum of product flows leaving the zone is equal to 
the amount harvested, equations (3) ensure that this 
amount does not exceed harvesting capacity, while 
equations (4) state that the total amount harvested 
while the crop is ready cannot exceed crop 
availability. Constraints (5) guarantee the inventory 
balance at each storage site while constraints (6) 
prevent storage capacity overflows. Constraints (7) 
mean that the amount processed at each 
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preprocessing plant corresponds to the sum of 
incoming flows. Constraints (8) say that this amount 
is equal to the sum of outgoing flows after 
preprocessing.  The capacity of preprocessing plants 
is respected via constraints (9). Finally, biorefineries 
are handled by constraints (10), which state that the 
demands expressed in dry weight for each accepted 
biomass type and each period are satisfied. 

This model is very flexible because the user may 
interleave freely storage nodes and transformation 
nodes between the input layer (production zones) 
and the output layer (refineries). 

 

Figure 2: Example of supply chain tackled by our model. 

Figure 2 shows an example of possible network 
with seven sites: three production zones, two 

preprocessing plants and two biorefineries (BR), 
respectively symbolized by circles, inverted 
triangles and squares. All these sites have local 
stocks depicted by triangles. 

Production zones PZ1 and PZ2 supply straw 
already packed into bales while PZ3 yields loose 
switchgrass. Refinery BR1 accepts straw and 
switchgrass, but refinery BR2 switchgrass only. 
Straw bales can be sent directly to BR1, or to the 
first preprocessing plant for pelletization. 
Switchgrass can be shipped to BR1 and BR2, or to 
the other preprocessing plant to give briquettes. Both 
plants have local stocks on input and output. 

The core-model has been tested on such 
examples, using the OPL-STUDIO modeling 
environment from IBM (based on CPLEX) and 
providing some preliminary results. 

6 CONCLUSIONS 

This short review indicates that interesting 
optimization problems are raised by the design of 
biomass supply chains. Compared to industrial 
logistics, many input nodes scattered over vast 
territories have to continuously supply output nodes 
with biomass produced by slow-growing crops, 
which leads to large-scale models. 

min  ݐݏ݄ܿ ∙ ݄௧
௧∈ௐ∈

ݐݏܿݏ ∙ ௧ݏ
௧∈ு∈ௌ

ݐݏܿݐ ∙ ௧ݍ
௧∈ு∈்

  ܿ ∙ ݀ ∙ ௧ݔ
∈ሺ,ሻ∈

 (1)

∀݅ ∈ ܼ, ݐ∀ ∈ ܹ :  ,,ௗௗሺሻ,௧ݔ
∈

ൌ ݄௧ (2)

∀݅ ∈ ܼ, ݐ∀ ∈ ܹ: ݄௧   (3)݄ܽܿ

∀݅ ∈ ܼ:  ݄௧
௧∈ௐ

  (4)݈݅ܽݒܽ

∀݅ ∈ ܵ, ݐ∀ ∈ ିଵ,௧ݏ	:ܪ   ,,௦ௗሺሻ,௧ݔ
∈

െ  ,,௦ௗሺሻ,௧ݔ
∈

ൌ ௧ (5)ݏ

∀݅ ∈ ܵ, ݐ∀ ∈ :ܪ ௧ݏ   (6)ܽܿݏ

∀݅ ∈ ܶ, ݐ∀ ∈ :ܪ ௧ݍ ൌ  ,,ௗሺሻ,௧ݔ
∈

 (7)

∀݅ ∈ ܶ, ݐ∀ ∈ :ܪ ݒ݊ܿݓ ∙ ௧ݍ ൌ  ,,ௗሺሻ,௧ݔ
∈

 (8)

∀݅ ∈ ܶ, ݐ∀ ∈ :ܪ ௧ݍ  ܽܿݐ (9)

∀݅ ∈ ܴ, ∀݇ ∈ ,ሺ݅ሻݐܾܽ ݐ∀ ∈ :ܪ   ௧ݔ ∙ ݕݎ݀
∈௦ሺሻ ∈

 ݀݁݉௧ (10)
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Our analysis of literature has shown that the 
genericity of proposed models is still insufficient. 
Very few can cope simultaneously with several 
types of biomass, a multi-period horizon, strategic 
and tactical decisions. We are also surprised by a 
majority of articles that neglect storage nodes, 
contrary to our model. 

Moreover, most authors belong to laboratories of 
agriculture, chemistry or energy. Their models are 
often solved on small instances, using commercial 
software. OR scientists can contribute to the field by 
designing dedicated methods based on relaxation or 
metaheuristics to solve larger instances in acceptable 
running times, and by designing more advanced 
models which could incorporate further criteria such 
as economic, environmental and social measures, 
and further features as uncertainty and sustainability 
issues. The next step of our work is to enrich our 
model to make it more generic and scalable, and to 
study decomposition techniques, relaxation methods, 
and a metaheuristic for large problems. 
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