
Adopting Commercially Inspired Practices Within an Academic
Teaching Course

A Case Study of a Computer Games Engineering Degree

G. Ushaw, W. Blewitt and G. Morgan
School of Computing Science, Newcastle University, Newcastle, U.K.

Keywords: Software Engineering, Project Based Learning, Engineering Education.

Abstract: A case study of a computer games engineering course is presented. The course has been designed with close
input from industry and is achieving a high rate of success in the number of graduates being recruited by
the target industry. The organisers of the course have extensive experience in both the software engineering
industry, and in delivering academic teaching. These experiences are combined so that commercial software
development practices, technologies and philosophies are adopted throughout the delivery of the academic
course. The paper discusses the specifics of how and why this was achieved, and uses the Game Engineering
course as an exemplar for encouraging the adoption of commercially inspired techniques within the teaching
of software engineering and computer science more generally.

1 INTRODUCTION

Learning to program effectively is recognised as one
of the most difficult tasks facing a prospective soft-
ware engineer or computer scientist (?; ?) (it has been
claimed that a novice programmer may take ten years
to become an expert (?)). Teachers must regularly up-
date and redesign courses on this topic to make the
learning process more accessible, and to maintain rel-
evance to the latest developments in the field. Fur-
ther to this, the software industry has high expecta-
tions of specific skills in graduate software engineers.
Some of these expected skills are specifically tech-
nical, while others are related to good working and
engineering practices.

Teaching of the specific technical aspects of pro-
gramming is a challenging prospect, that can be re-
searched, defined and updated to meet both academic
and commercial needs. The aspects related to the
practicalities of working within a larger software en-
gineering environment are more difficult to define and
present interesting challenges to teaching within an
academic environment. It has been widely noted that
there is unease from industry on the practicalities of
what is taught on university courses (?; ?), and a
general acceptance that new graduates need varying
amounts of specific training after joining a software
development company. Anecdotally, academics can
be seen as existing in their ivory towers with little in-

terest in the practicalities of industry, while the com-
mercial sector is at the coal-face with little interest in
seeing what is beyond the most immediate challenges.
Of course, these are wild exaggerations.

The authors of this paper have a combined back-
ground in both the software industry and academia,
specifically in the field of computer game engineer-
ing. We propose that a more fruitful relationship
between academia and industry can be fostered by
adopting and promoting aspects of working method-
ologies and philosophies from industry within the
academic course framework. This, coupled with the
utilisation of technologies, equipment and software
tools which are industry standard, should result in
graduates who are better prepared for a career in soft-
ware engineering, and are perceived as being more
employable by their target industry.

In this paper we present a case study of a Com-
puter Games Engineering Masters course which has
been running for over five years, and enjoys high
levels of support from the games development in-
dustry. This has been achieved by working closely
with prominent members of the industry, and by com-
bining commercial working practices and philosophy
with the pedagogical demands of an advanced course
on software engineering. The use of commercially in-
spired practices within the academic teaching has led
to a success rate of over 70% of graduates gaining
employment in the target industry within six months

95Ushaw G., Blewitt W. and Morgan G..
Adopting Commercially Inspired Practices Within an Academic Teaching Course - A Case Study of a Computer Games Engineering Degree.
DOI: 10.5220/0004765700950102
In Proceedings of the 6th International Conference on Computer Supported Education (CSEDU-2014), pages 95-102
ISBN: 978-989-758-021-5
Copyright c
 2014 SCITEPRESS (Science and Technology Publications, Lda.)



of graduation (this compares to an average success
rate of around 12% from game development courses
across the UK (?)). The Games Engineering course is
used as a case study, but the general points made are
applicable to the wider fields of computer science and
beyond.

2 METHOD

In designing the course in a way that incorporates
commercially inspired practices, while maintaining
pedagogical standards, a number of different elements
were addressed. In this section, each of those ele-
ments is described in turn, focusing on the details of
how and why each aspect was implemented.

2.1 Industrial Involvement

The most important way in which we have ensured
our course incorporates commercially inspired ideas
is to directly involve industry in the course. Industry
involvement with the course is at the core, curriculum
level, and not limited to mere endorsements. These
industrialists are an integral part of the degree. From
helping to identify course content to providing jobs
for graduates, industry is involved at every stage of
the course.

2.1.1 Industrial Advisory Board

The course is guided by an industrial advisory board.
The board consists of experienced software engineers
from industry who meet once a year to review course
content. When inviting a developer to join the board,
we focus on technical people (i.e. lead programmers
and technical directors rather than managers or aca-
demic liaison), as the course content is heavily tech-
nical.

Commercial software developers are very busy
people. When dealing with our board members, and
especially when approaching a potential new mem-
ber, a great deal of care is taken in respecting their
crammed timetables and priorities. In the short term,
the industrial advisers are providing a favour for the
course; any benefit for them is much longer term (i.e.
more employable graduates). Keeping commercial
representatives from industry involved in the course
is time consuming and requires significant effort, but
the long term benefits for the course justify the effort
required.

The presence of the industrial advisory board
clearly states two things about the course. Firstly, it
states to potential students that this is a course which

is taken seriously by the target industry, increasing the
chance of employment on graduation, and therefore
encourages them to engage with the academic con-
tent. Secondly it states to members of that indus-
try that the directors of the course take their advice
and opinions seriously, crafting graduates in a man-
ner which is beneficial to them.

2.1.2 Industrial Seminar Series

A series of seminars are presented by the members
of the industrial advisory board to the student class
(the seminar is optional for the industrialists, but most
contribute). These seminars are typically on either a
technical subject or an organisational one, and are de-
signed to allow representatives of industry direct in-
teraction with the student cohort. The speakers can
use the seminars as a window to directly inform the
students about an aspect of the subject which they feel
is especially relevant.

Further to this, a session immediately after each
seminar provides a more informal feedback opportu-
nity between the speaker (often a potential employer)
and the students. This session is used for further
Q&A, and for the industry speaker to see the stu-
dents’ work and provide comment and feedback on
it. One cannot overstate the impact that leading video
game developers have on students. Video games is a
creative industry and many developers are ”famous”.
A faculty member indicating that a piece of work is
good is nothing compared to an industry expert prais-
ing a student’s work.

2.1.3 Industrial Placement

Credit for the second half of the Masters course is
achieved from an individual project and dissertation.
It is strongly encouraged that this project work takes
place within a commercial software development stu-
dio if possible and practical. We have found that
our industrial partners are very likely to take on one
or more student to work on a project within their
organisation. The combination of showing that we
can evolve the course content in light of their input
through the industrial advisory board, and the face-to-
face interaction that we provide through the industrial
seminar series, leads to an increased level of trust and
interest in taking on our project students.

We decided early in constructing the course that
any paperwork associated with an industrial place-
ment should be kept to an absolute minimum for the
industrial partner. This applies equally to any bureau-
cracy pertaining to the logistics of the student work-
ing away from the faculty, and to any assessment of
the student’s work from an academic perspective. In

CSEDU�2014�-�6th�International�Conference�on�Computer�Supported�Education

96



our experience, reassuring a potential provider of a
student placement that there is minimal red tape in-
volved yields more interest in providing a placement.
The student project must be subject to scrutiny and as-
sessment for academic purposes, but this is achieved
through direct dialogue with the industrial supervisor
rather than supplying forms to be completed.

Building fruitful two-way relationships with in-
dustrial parties is not an easy task. The authors have
many years of experience working within the target
industry and, consequently, a wide network of con-
tacts which can provide a rich source of collaboration.
However these contacts are not taken for granted, and
we are constantly aware that our relationships now, as
academics, are different to what they were as indus-
trialists. It should be apparent from this section that
we take great care to treat industrialists with respect
and to demonstrate that we understand their priorities,
while ensuring the provision of an academically rig-
orous programme of study.

2.2 Hardware and Tools

A key feature of the case study course is that the
hardware and software tools employed by the students
during practical sessions are equivalent to those used
by the industry. A further key feature is that the use of
these tools is focussed on education rather than train-
ing - ii.e. the students are taught why the tool is use-
ful and how it provides that utility, rather than a more
straightforward guide to how to use a particular tool.
The intention is that this approach results in gradu-
ates who can take on a new tool with confidence as
they understand what it is for, and how it relates to
the tools with which they are already familiar.

A simple example is the use of source control for
all practical work. Any commercial software devel-
oper employs a source control system, and there are
many professional packages available. From the first
day of our course we issue each student with a source
control account, and instruction on how and, more im-
portantly, why to use it. This focus on the benefits of
using source control, and the mechanism by which it
is achieved, ensures that the choice of which profes-
sional source control package to use during the mod-
ules is almost irrelevant. When entering industry, the
graduate will expect to use source control as part of
the daily programming routine, and will understand
and appreciate the reasons for doing so; the specifics
of the particular solution will then be picked up within
a few hours of use.

Combining the use of industry-standard tools with
discussion of why they are useful, and how they work
for the developer (rather than focussing on how the

developer interacts with the specific tool) extends to
all aspects of programming during our course. This
includes the hardware itself (in our case games con-
soles, high-end PCs, tablets and smart-phones), and
the development environment (compilers, debuggers,
SDKs, IDEs, etc). The intention is that, by educat-
ing the student about why a tool is useful, and how it
works, the resulting graduate will be much more com-
fortable moving onto new development environments
or hardware, due to a better understanding of what the
new technology is actually doing.

2.3 Collaboration Not Competition

Working within a commercial enterprise is a collabo-
rative process, often involving work with developers
elsewhere on the planet (?). In the authors’ experi-
ence, the majority of students regard coursework and
practical sessions as a competition with their class-
mates. In designing our case study M.Sc. course we
have encouraged a collaborative atmosphere through-
out. This applies to the nature and openness of the
discussion and tutorial sessions, and the layout of the
desks in the practical teaching environment (desks
should face each other, rather than face a wall, to
encourage student interaction). Each student has a
workstation within the lab, which is where the en-
tire day is spent, as would be the case in a com-
mercial software development organisation. Lectures
take place within this space (i.e. the teachers come
to the students, rather than the students go to each
lecturer’s theatre). Students are encouraged to carry
out all practical work in the lab, rather than taking
it home. This approach is intended to imbue the class
with a sense of belonging (i.e. it is their lab), and give
the environment the feeling of a shared workplace.

It is important to note that the collaborative ex-
perience is not limited to the aspects of the course
which include a team project. We encourage discus-
sion and problem solving between students during in-
dividual coursework and practical sessions. While
working within a commercial software development
enterprise, one of the main tools available to a soft-
ware engineer is the developer at the next desk: many
problems can be resolved by a brief discussion with a
colleague.

Team projects are a feature of most computer sci-
ence degree courses, and are regarded as a crucial
step toward becoming a fully-developed software en-
gineer (?). While working in the software indus-
try, the authors interviewed over one hundred grad-
uate programmers from many educational institutions
over a number of years. Almost without exception,
when questioned about a team project, the response

Adopting�Commercially�Inspired�Practices�Within�an�Academic�Teaching�Course�-�A�Case�Study�of�a�Computer�Games
Engineering�Degree

97



involved a claim that the interviewee did almost all of
the work, and the rest of the team did almost noth-
ing (indeed, the author stopped asking about team
projects in interviews as this repeated response ren-
dered it pointless). By encouraging a collaborative at-
mosphere throughout the course, we hope to achieve
a better group dynamic during the parts of the course
involving teamwork, and a more positive experience
of how teams should work together toward a common
goal, which should then be apparent in subsequent job
interviews.

Encouraging collaboration may also encourage
plagiarism. Careful design of coursework, and clar-
ity on which aspects gain marks, mitigates this issue.
As discussed later in this paper, coursework is defined
in a purposefully open-ended way so that each stu-
dent can make decisions which test their own individ-
ual ability. The coursework does not have a right or
wrong set of results, but consists of a framework in
which to develop many related ideas. Consequently
no two pieces of student coursework should be simi-
lar; if similarities are apparent then a code inspection
and comparison should help resolve any potential pla-
giarism issues.

When the team project commences, the students
are already familiar with source control. Using a
shared code-base for the team project provides ad-
ditional experience with standard working practices,
while also inculcating effective teamwork and intra-
team learning. A less gifted student may learn from
changes made to the project by more gifted students.
Conversely the more advanced student may realise
that code generated for a team must be straightfor-
ward to interface with, and clearly structured and
commented for other team members to understand
and debug.

2.4 Increasing Autonomy for Students

Many studies show that encouraging student auton-
omy leads to greater engagement with the subject (?;
?; ?). Our case study course has been designed in
such a way that the student cohort is given increased
autonomy in the nature and direction of their study
and coursework as the modules progress. Preparing
a student for the workplace entails instilling a degree
of self-reliance and the ability to move forward from
one task to another without direct instruction. Note
that encouraging both autonomy and collaboration is
not contradictory; a well-rounded software engineer
knows when other members of a team can be useful
in progressing a problem or decision (i.e. the engineer
can autonomously decide to collaborate).

Our case study course in Computer Game Engi-

neering consists of three phases, each allowing the
students more autonomy than the last. The first phase
consists of sequences of lectures stripped daily across
each week of the modules, combined with practical
sessions and tutorials directly related to the lecture
topics. These modules provide the basis of knowledge
and ability hat is required across the remainder of
the course. The tutorial and practical work is heavily
prescribed, with direct instruction on how to achieve
success (further exercises and suggestions are sup-
plied, to push the more gifted or committed students).
The modules are assessed by a combination of written
closed-book examinations, and practical coursework.
The coursework definitions become more open-ended
as the modules in the first phase progress, allowing
for more varied features to be added, and individ-
ual research to be rewarded, but the work required to
achieve a pass mark is clearly prescribed.

The major element of the second phase of the
course is the team project. The teams are allocated
by the course supervisor so that each includes stu-
dents with a full range of ability. The definition of
the team project provides a specific set of goals, but
is not specific on how they are attained; it also pro-
vides a high-level design for the product which is to
be developed, but instructs the team to design the de-
tail themselves. This approach encourages a combi-
nation of teamwork and autonomy. The course super-
visor is available throughout the week on an informal
basis, and reviews progress more formally (offering
advice where required) on a weekly basis. The assess-
ment of this phase involves no written examinations,
but includes a demonstration of the finished product,
technical reviews of the implementation, and evalua-
tion of how the team interacted. There is also an indi-
vidual research paper required during this phase - the
subject is prescribed in the definition, and training is
provided in researching a subject and presenting the
work in the form of a conference paper.

The final term of the course consists of an indi-
vidual project and dissertation for each student who
has successfully progressed from the first semester.
This work is self-led research over a period of five
months. By this stage, the students are working com-
pletely autonomously, with a fairly informal review
once a week with the course supervisor. The project
topic is chosen from a list of possibilities provided by
the course supervisor (many are generated by indus-
trial or academic partners). Assessment is split evenly
between implementation and dissertation.

In the authors’ experience, this course structure
successfully introduces, and increases, the autonomy
of each student to the point where they can work
independently and reliably, while having the confi-

CSEDU�2014�-�6th�International�Conference�on�Computer�Supported�Education

98



dence and self-knowledge to ask for advice or dis-
cussion (whether from academic staff or fellow stu-
dents) when it is useful. An interesting observation is
that, while the individual project work could at be car-
ried out elsewhere, almost all students not engaged in
industrial placement work in the teaching laboratory,
treating it as their workplace for eight hours a day, five
days a week. This professional attitude impresses our
industrial guests to the laboratory.

2.5 Focussed Module Content

A core philosophy in constructing and updating our
case study course is to ensure that the subject matter
of each module is focussed on the course’s overall ob-
jectives and learning outcomes. The aim of our case
study course is to educate potential software engi-
neers on the core technologies utilised in developing
high quality video games. It would be relatively easy
to consider the various aspects of that topic, and to
amalgamate some existing modules from other mas-
ters level courses into a new course with a little tailor-
ing. However the focus of these modules would not
be sufficiently relevant to be accepted by our indus-
trial advisory board.

Consider an example: artificial intelligence is a
topic to which many university modules are devoted,
and is also a technology utilised in modern video
games. However, our industrial contacts (and the au-
thors’ own industrial experience) would agree that
most of the content of a more generalised artificial in-
telligence module is not relevant to developing video
games, due to practicalities of either performance,
memory requirement or reliability (?; ?). An artifi-
cial intelligence module for a video games engineer-
ing course must be created bespoke with that applica-
tion in mind. This approach to module construction
applies to other aspects of the course and, the authors
would argue, to any course which is to maintain good
relationships with a target industry.

Although broad subject study is encouraged in
laying foundations (e.g., learning to program is a key
skill to become a video game programmer), when fo-
cusing on video games the subject material is con-
structed solely with video games in mind. For exam-
ple, building a physics engine for a fast-paced first
person shooter is not the same as building a physics
simulation. Physics engines are primarily concerned
with an illusion of reality for real-time game-play
whereas simulation is concerned with an illusion of
reality for off-line analysis. The products arising from
two such programmes of study will be distinct; al-
though related, their focus is different and the output
(learning outcome) is not compatible.

When developing the course structure, we could
have included some ”easier” subjects and avoided the
more challenging aspects of the core technologies
used in video game engineering. This approach may
well have attracted more students, and therefore in-
creased the revenue for the faculty. However such
an approach would not provide potential employers
with sufficiently skilled graduates, which would lead
to a poor relationship with industry, and ill-equipped
graduates attempting to enter the careers market.

2.6 Coursework as Portfolio

We have mentioned coursework throughout this paper
as it is a vital aspect of assessing students ability on
an industry-led engineering course. The coursework
is designed so as to have a dual purpose: firstly to
provide practice and to measure student ability, and
secondly to furnish the students with a set of demon-
strations and experiences for discussion during a job
selection process.

Potential employers in the engineering and pro-
gramming sectors want to know whether a graduate
applicant is capable of understanding and exploring a
technical topic in depth. In the authors’ experience
a major part of a graduate’s interview is focussed on
the final year project. The projects we offer on our
course are designed so as to involve in-depth explo-
ration of a subject; further to this, as many as possible
are designed in partnership with either an industrial-
ist or an academic from another department. Conse-
quently, projects usually have an interested party who
is considered as the customer. This approach imparts
the project with a sense of professionalism, with a tar-
get standard to be met to an agreed deadline.

The pieces of coursework attached to each module
are also designed to form part of a portfolio, for use
by the student at interview. Each coursework defini-
tion includes aspects which will appeal to the target
industry (admittedly this is easier to define for games
engineering than many topics), and students are en-
couraged to provide videos of their work online, so
that potential employers can see their work and dis-
cuss it at interview. Feedback from industry has been
very positive toward the quality of the coursework and
its accessibility.

Adopting�Commercially�Inspired�Practices�Within�an�Academic�Teaching�Course�-�A�Case�Study�of�a�Computer�Games
Engineering�Degree

99



Table 1: The number of students known to have gained employment in target industries or academia within 6 months of
graduation for each year of the course. (*)In the case of 2012-13 less than 6 months have elapsed since graduation.

Year Total Known Total Lost Known
Graduates Employed Percentage Contact Percentage

2008-09 11 8 72.7 3 100
2009-10 4 4 100 0 100
2010-11 20 14 70 6 100
2011-12 29 22 75.9 5 91.6
2012-13* 12 8 66.7 0 66.7
Total 76 56 73.7 14 90.3

3 RESULTS AND DISCUSSION

In this section we present the success rate of gradu-
ates from our case study course who enter full-time
employment in the target industry, followed by some
anecdotal feedback from representatives of that indus-
try. We then discuss the successful elements of the
course and consider possible improvements alongside
some words of advice for course designers looking for
inspiration from industrial practices.

3.1 Graduate Recruitment

Table ?? shows, for each year the course has run, the
number of students that graduated from the course,
the number of those students that are known to have
achieved employment within the target industry or
academia within six months of graduation, and that
figure expressed as a percentage of the total number of
graduating students. The total over the five years that
the course has ran represents a percentage success rate
of more than 70%. This compares very favourably to
the UK national average from computer games devel-
opment courses of around 12% (?).

The figures in the ”known employed” column of
Table ?? only account for the students with whom
we have maintained contact, whereas the ”total grad-
uates” column includes all graduating students, so
the actual success rate is likely to be even higher
than stated. Indeed if we only consider students with
whom we have maintained contact, then the percent-
age success rate is close to 100% (as seen in columns
4 and 5). Furthermore the 2012-13 cohort has only
recently graduated (i.e. less than six months prior to
the time of writing), so this figure is expected to rise
somewhat. The course is at Masters level, and en-
trance requirements are high; consequently the intake
numbers vary somewhat over the years. We maintain
a high entrance requirement because the work on the
course is difficult, and it would be unfair to accept the
registration of a less able student who is very likely to

fail.
We endeavour to remain in contact with students

after graduation, usually through a professional net-
working website. There are three reasons for doing
so. Firstly this allows us to keep track of the success
rate from our course, as illustrated above. Secondly,
software development companies regularly approach
us looking for potential employees; by maintaining
contact with graduates we can match suitable candi-
dates even after they have left the university. Thirdly,
and with much longer term effect, when our graduates
succeed in the industry the hope is that they will be-
come involved in the course, presenting seminars and
eventually recruiting graduates.

3.2 Industrial Feedback

Feedback received from industry is overwhelmingly
positive on the quality of the graduates from our case
study course. The high percentage of graduates gain-
ing employment is evidence that the industry is im-
pressed with the results of our approach. Many of the
members of the industrial advisory board take on one
or more student project during the course, which then
invariably leads to an offer of full time employment
after graduation. Furthermore, those employers re-
turn the following year, often looking to increase the
graduate intake from our course.

The authors make a point of engaging with com-
merce at all levels, from multinational software pub-
lishers to local SMEs and start-ups. As we have a
long career in the target industry, we have many con-
tacts who may be interested in getting involved in
our course, or employing graduates. Maintaining a
presence at industry events is important, but we elect
to keep contact informal and friendly. We have also
found that word-of-mouth between developers, espe-
cially SMEs and start-ups, is very important and pos-
itive. In the words of one CEO of a local SME, the
authors are ”helping keep local game development
alive, due to the number of high calibre graduates pro-

CSEDU�2014�-�6th�International�Conference�on�Computer�Supported�Education

100



duced”.

3.3 Discussion

It should be apparent from this paper that the authors
have designed a coherent course consisting of a series
of inter-related modules which combine pedagogic
demands with commercially inspired practices. Care
has been taken throughout the course to ensure that
the students’ core skills are gradually built up, and
that an understanding of why those skills are impor-
tant pervades both the taught subject matter and the
coursework and practical sessions.

Our use of projects involving incremental auton-
omy is intended to motivate students, and to build up
high-level programming skills throughout the course.
During each module on the course students are en-
gaged in activities that complete a scaffold of the
overall pedagogic program. It has been noted (?) that
care should be taken that the scaffolds and activities
needed to complete the exercises are arranged care-
fully in order to stress the relevant content, and also
to help those students acquire programming skills ef-
fectively.

The authors have found that industrial involve-
ment and feedback should not always be taken at face
value. We are wary of crafting module elements to-
ward specific needs of a particular industrialist. In
particular, we are regularly asked to provide some
training and knowledge of specific tools, engines, or
SDKs (not coincidentally the technology which that
industrialist is currently using for a project). We are
open to integrating such tools into individual projects
where they are relevant, but our module content must
focus on the science and engineering which is the
basis for those tools, rather than providing hands-on
training with them.

Perhaps the key factor which we have employed
in building this course is maintaining a good under-
standing of what the targeted industry expects of grad-
uates, in terms of their longer term prospects. We
focus on core technologies and underpinning theory,
rather than specific implementations. This approach
puts an onus on the teaching staff to not only remain
au f ait with developments in the field, but to recog-
nise which developments stem from underlying con-
ceptual ideas. The course is entirely delivered by in-
structors who are actively involved in research in the
core technologies which drive the industry; without
that research backbone, we believe the course would
be significantly less successful.

4 CONCLUSIONS

We have discussed how commercially inspired prac-
tices and philosophies can be integrated into an aca-
demic teaching course, in a manner which supports
the pedagogic needs of the teaching institution and
student cohort. We have used our own M.Sc. course
in Computer Game Engineering as a case study, and
have attempted to present our experiences in a way
which is applicable more generally to computer sci-
ence degrees and other subjects.

We have achieved a very high success rate of stu-
dents gaining employment within an industry which is
notoriously difficult to enter. Coupled to this, we have
built up a strong relationship with industry incorporat-
ing technically minded representatives into the plan-
ning and execution of the course. The authors’ own
experience has influenced the style of teaching, and
has resulted in successfully inculcating a professional
work ethic in the students, achieved through treating
some aspects of the teaching lab in a comparable way
to a commercial development studio. This is coupled
with our philosophy of teaching the more difficult and
challenging aspects of game engineering, and having
a high entrance requirement for students.

Student satisfaction is measured by the University
via a series of module feedback questionnaires. This
feedback is anonymous and is optional. The scores
attained by the course and the teaching staff are con-
sistently high over the five years that the course has
ran. Invariably the highest student feedback scores in
the school of computing science are attributed to the
teachers on this course. Perhaps more importantly,
the informal feedback received from students after a
few months in their first job is consistently positive
in terms of how well they were prepared by our com-
mercially inspired teaching methods.

REFERENCES

Baekkelund, C. (2006). Academic ai research and relations
with the games industry. AI Game Programming Wis-
dom, 3:77–88.

Blewitt, W., Ushaw, G., and Morgan, G. (2013). Applica-
bility of gpgpu computing to real-time ai solutions in
games. IEEE Transactions on Computational Intelli-
gence and AI in Games, 5(3):265–275.

Boud, D. (1988). Developing student autonomy in learning.
Psychology Press.

Corney, M., Teague, D., and Thomas, R. N. (2010). En-
gaging students in programming. In Proceedings
of the Twelfth Australasian Conference on Comput-
ing Education-Volume 103, pages 63–72. Australian
Computer Society, Inc.

Adopting�Commercially�Inspired�Practices�Within�an�Academic�Teaching�Course�-�A�Case�Study�of�a�Computer�Games
Engineering�Degree

101



Hilburn, T. B. and Humphrey, W. S. (2002). Teaching team-
work. Software, IEEE, 19(5):72–77.

Jiménez, C. and Villalobos, J. (2010). Learning/teaching a
computer programming course. Analysis of State-of-
the-Art Solutions for Personalised Learning Support,
page 3.

Livingstone, I. and Hope, A. (2011). Next gen.: Transform-
ing the uk into the worlds leading talent hub for the
video games and visual effects industries. nesta.

Matthes, F., Neubert, C., Schulz, C., Lescher, C., Contreras,
J., Laurini, R., Rumpler, B., Sol, D., and Warendorf,
K. (2011). Teaching global software engineering and
international project management. In Third Interna-
tional Conference on Computer Supported Education.

Perkmann, M., King, Z., and Pavelin, S. (2011). Engaging
excellence? effects of faculty quality on university en-
gagement with industry. Research Policy, 40(4):539–
552.

Reeve, J., Bolt, E., and Cai, Y. (1999). Autonomy-
supportive teachers: How they teach and motivate stu-
dents. Journal of Educational Psychology, 91(3):537.

Reeve, J., Jang, H., Carrell, D., Jeon, S., and Barch, J.
(2004). Enhancing students’ engagement by increas-
ing teachers’ autonomy support. Motivation and emo-
tion, 28(2):147–169.

Vega, C., Jiménez, C., and Villalobos, J. (2012). Imple-
menting an incremental project-based learning solu-
tion for cs1/cs2 courses. In Second International Con-
ference on Computer Supported Education, pages 15–
27.

Winslow, L. E. (1996). Programming pedagogya psycho-
logical overview. ACM SIGCSE Bulletin, 28(3):17–
22.

CSEDU�2014�-�6th�International�Conference�on�Computer�Supported�Education

102


