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Abstract: We investigate the role of communication in the coordination of cooperative robot teams and its impact on
performance in search and retrieval tasks. We first discuss a baseline without communication and analyse
various kinds of coordination strategies for exploration and exploitation. We then discuss how the robots
construct a shared mental model by communicatingbeliefsand/orgoals with one another, as well as the
coordination protocols with regard to subtask allocation and destination selection. Moreover, we also study
the influence of various factors on performance including the size of robot teams, the size of the environment
that needs to be explored and ordering constraints on the team goal. We use the Blocks World for Teams as an
abstract testbed for simulating such tasks, where the team goal of the robots is to search and retrieve a number
of target blocks in an initially unknown environment. In our experiments we have studied two main variations:
a variant where all blocks to be retrieved have the same color (no ordering constraints on the team goal) and
a variant where blocks of various colors need to be retrieved in a particular order (with ordering constraints).
Our findings show that communication increases performance but significantly more so for the second variant
and that exchanging more messages does not always yield a better team performance.

1 INTRODUCTION

In many practical applications, robots are seldom
stand-alone systems but need to cooperate and col-
laborate with one another. In this work, we focus on
search and retrieval tasks, which have also been stud-
ied in the foraging robot domain (Cao et al., 1997;
Campo and Dorigo, 2007; Krannich and Maehle,
2009). Foraging is a canonical task in studying multi-
robot teamwork, in which the robots need to search
targets of interest in the environment and then deliver
them back to a home base. The use of multiple robots
may yield significant performance gains compared to
the performance of a single robot (Cao et al., 1997;
Farinelli et al., 2004). But multiple robots may also
lead to interference between teammates, which can
decrease team performance Therefore, it poses a chal-
lenge for a robot teams to develop effective coordina-
tion protocols for realising such performance gains.

We are in particular interested in the role of com-
munication in coordination protocols and its impact
on team performance. In previous work, e.g., (Balch
and Arkin, 1994; Ulam and Balch, 2004), it has been
reported that more complex communication strate-
gies offer little benefit over more basic strategies.

The messages exchanged in (Balch and Arkin, 1994)
among robots, however, are very simple, and they
only studied a simple foraging task without ordering
constraints on the targets to be collected. As no clear
conclusion has been drawn on what kind of commu-
nication is most suitable for robot teams (Mohan and
Ponnambalam, 2009), it is our aim to gain a better un-
derstanding of the impact of more advanced commu-
nication strategies where multiple robots can coordi-
nate their behavior by exchanging theirbeliefsand/or
goals. Here beliefs keep track of the current state of
the environment, and goals keep track of the desired
state of the environment of other robots. By commu-
nicating beliefs and/or goals, the robots can create a
shared mental model to enhance team awareness. We
are in particular interested in the multi-robot teams in
which the robots can cooperate with each other with-
out a central manager or any shared database, and they
are fully autonomous and have their own decentral-
ized decision making processes.

In this paper, we want to gain in particular a bet-
ter understanding of the role of communication in the
search and retrieval taskswith and without ordering
constraintson the team goal. The first task with-
out ordering constraints on the team goal is a sim-

28 Wei C., Hindriks K. and M. Jonker C..
The Role of Communication in Coordination Protocols for Cooperative Robot Teams.
DOI: 10.5220/0004758700280039
In Proceedings of the 6th International Conference on Agents and Artificial Intelligence (ICAART-2014), pages 28-39
ISBN: 978-989-758-016-1
Copyright c
 2014 SCITEPRESS (Science and Technology Publications, Lda.)



ple foraging task that requires the robots to retrieve
target blocks all of the same color, whereas the sec-
ond task with ordering constraints on the team goal
is a cooperative foraging task that requires the robots
to retrieve blocks of various color in a particular or-
der. In order to do so, we first analyse a baseline
without communication and then proceed to analyse
three different communication conditions where the
robots exchange only beliefs, only goals, and both
beliefs and goals. We use a simulation environment
called the Blocks World for Teams (BW4T) intro-
duced in (Johnson et al., 2009) as our testbed. In our
experimental study, we analyse various performance
measures such as time-to-complete, interference, du-
plication of effort, and number of messages and vary
the size of the robot team and size of the environment.

The paper is organized as follows. Related work
is discussed in Section 2. Section 3 introduces the
search and retrieval tasks and the Blocks World for
Teams simulator. In Section 4, we discuss the coordi-
nation protocols for the baseline without communica-
tion and for three communication cases. The experi-
mental setup is presented in Section 5 and the results
are discussed in Section 6. Section 7 concludes the
paper and presents directions for future work.

2 RELATED WORK

Robot foraging tasks have been extensively studied
and have in particular resulted in various bio-inspired,
swarm-based approaches (Campo and Dorigo, 2007;
Campo and Dorigo, 2007; Krannich and Maehle,
2009). In these approaches, typically, robots min-
imally interact with one another as in (Campo and
Dorigo, 2007), and if they communicate explicitly,
only basic information such as the locations of targets
or their own locations are exchanged (Parker, 2008).
Most of this work has studied the simple foraging task
where the targets to be collected are not distinguished,
so the team goal of the robots does not have order-
ing constraints. Another feature that distinguishes our
setup from most related work on foraging tasks is that
we use an office-like environment instead of the more
usual open area with obstacles. Targets are randomly
dispersed in the rooms of the environment, and the
robots initially do not know which room has what
kinds of targets. Our interest is to evaluate the con-
tribution that explicit communication between robots
can make on the time to complete foraging tasks, and
to identify the role of communication in coordinating
the more complicated foraging task in which the team
goal has ordering constraints.

In order to enhance team awareness, we follow the

work of (Cannon-Bowers et al., 1993; Jonker et al.,
2012), in which it is claimed that shared mental mod-
els can improve team performance, but it needs ex-
plicit communication among team members. Most
of the current research, however, only has implicit
communication for robot teams (Mohan and Ponnam-
balam, 2009). The work in (Balch and Arkin, 1994;
Krannich and Maehle, 2009) studies communication
in the simple foraging task without ordering con-
straints on the team goal and its impact on the com-
pletion time of the task. (Balch and Arkin, 1994)
compares different communication conditions where
robots do not communicate, communicate the main
behavior that they are executing, and communicate
their target locations. Roughly these conditions map
with our no communication, communicating only be-
liefs, and communicating only goals, whereas we also
study the case where both beliefs and goals are ex-
changed. A key task-related difference is that hav-
ing multiple robots process the same targets speeds
up completion of the task in (Balch and Arkin, 1994),
whereas this is not so in our case. As a result, the
use of communicated information is quite different as
it makes sense to follow a robot or move directly to
the same target location in (Balch and Arkin, 1994),
whereas this is not true in our setting.

(Krannich and Maehle, 2009) studies the condi-
tions where the robots can only exchange messages
within certain communication ranges or in nest areas
(i.e., the rooms in our case), whereas we do not study
the constraints on the communication range; instead,
we focus on the communication content. In this work,
we assume that a robot can send messages to any of
its teammates in the environment, and once a sender
robot broadcasts a message, the receiver robots can
receive the message without communication failures.
By communicating beliefs and/or goals, decentralized
robot teams can construct a shared mental model to
keep track of the progress of their teamwork and other
robots’ intentions so as to execute significantly more
complicated coordination protocols.

Several coordination strategies without explicit
communication in foraging tasks have been studied
in (Rosenfeld et al., 2008), which takes into ac-
count the avoidance of interference in scalable robot
teams. Apart from the size of robot teams, the authors
in (Rybski et al., 2008) consider the size of the en-
vironment. In our work, we also use scalable robot
teams to perform foraging tasks in scalable environ-
ments in our experimental study. We consider a base-
line in which the robots do not explicitly communi-
cate with one another, but they can still apply vari-
ous combinational strategies for exploration and ex-
ploitation in performing the foraging tasks. As robots
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may easily interfere with each other without commu-
nication, these combinational coordination strategies
in particular take account of the interference in multi-
robot teams, and we carry out experiments to study
which combinational strategy is the best one for the
baseline case.

In this work, we assume that the robots only col-
lide with each other when they want to occupy the
same room at the same time in BW4T, and the robots
can pass through each other in all the hallways. Once
a robot has made a decision to move to a particular
room, it can directly calculate the shortest path to that
room. Thus, the multi-robot path planning problem is
beyond the scope of this paper.

3 MULTI-ROBOT TEAMWORK

General multi-robot teamwork usually consists of
multiple subtasks that need to be accomplished con-
currently or in sequence. If a robot wants to achieve a
specific subtask, it may first need to move to the right
place where the subtask can be performed. An ex-
ample of such teamwork is search and retrieval tasks,
which are motivated by many piratical multi-robot
applications such as large-scale search and rescue
robots (Davids, 2002), deep-sea mining robots (Yuh,
2000), etc.

3.1 Search and Retrieval Tasks

Search and retrieval tasks have also been studied in
the robot foraging domain, where the team goal of
the robots is to search targets of interest in the envi-
ronment and then deliver them to a home base. At
the beginning of the entire task, the environment may
be known, unknown or partially-known to the robots.
Here the targets of interest correspond to the subtasks
of general multi-robot teamwork, and if they can be
delivered to the home base concurrently, then the team
goal does not have ordering constraints; otherwise, all
the needed targets must be collected in the right order.

In this work, the robots work in an initially un-
known environment, so they do not know the loca-
tions of the targets at the beginning of the tasks. The
robots have the map of the rough areas where the tar-
gets might be, but they have to explore these areas
in order to find the exact dispersed targets. For in-
stance, in the context of searching for and rescuing
survivals in a village after an earthquake, even though
the robots may have the map information of the vil-
lage, they are hardly likely know the precise locations
of the survivals when starting their work. Moreover,
due to the limited carrying capability of robots, we

assume that a robot can only carry one target at one
time in this work.

3.2 The Blocks World for Teams

We simulate the search and retrieval tasks using the
Blocks World for Teams (BW4T1) simulator, which
is an extension of the classic single agent Blocks
World problem. The BW4T has office-like environ-
ments consisting ofroomsin which coloredblocksare
randomly distritbuted for each simulation (see Fig-
ure 1). One or more robots are supposed to search,
locate, and retrieve the required blocks from rooms
and return them to a so-calleddrop-zone.

The sequence list of 

required blocks

Robot teams

Colored blocks in rooms

Delivered blocks

Figure 1: The Blocks World for Teams Simulator.

As indicated at the bottom of the simulator in Fig-
ure 1, required blocks need to be returned in a spe-
cific order. If all the required blocks have the same
color, then the team goal of the task does not have
ordering constraints. Access to rooms is limited in
the BW4T, and at any time at most one robot can be
present in a room or the drop-zone. Robots, moreover,
can only carry one block at a time. The robots have
the information about the locations of the rooms, but
they do not initially know which blocks are present in
which rooms. This knowledge is obtained for a par-
ticular room by a robot when it visits that room. Each
robot, moreover, is informed of the complete required
blocks and its teammates at the start of a simulation.

Robots in BW4T can be controlled by agents writ-
ten in GOAL (Hindriks, 2013), the agent program-
ming language that we have used for implementing
and evaluating the team coordination strategies dis-

1BW4T has been integrated into the agent environments
in GOAL (Hindriks, 2013), which can be downloaded from
http://ii.tudelft.nl/trac/goal.

ICAART�2014�-�International�Conference�on�Agents�and�Artificial�Intelligence

30



cussed in this paper. GOAL also facilitates communi-
cation among the agents.

While interacting with the BW4T environment,
each robot gets various percepts that allow it to keep
track of the current environment state. Whenever
a robot arrives at a place, in a room, or near a
block, it will receive a corresponding percept, i.e.,
at(PlaceID), in(RoomID) or atBlock(BlockID).
A robot also receives percepts about its state of move-
ment (traveling, arrived, or collided), and, if so, which
block the robot is holding. Blocks are identified by a
unique ID and a robot in a room can perceive which
blocks of what color are in that room by receiving
percepts of the formcolor(BlockID,ColorID). In
BW4T, whenever the currently needed block is put
down at the drop-zone, all the robots get a percept
from the environment informing them about the color
of the next needed block.

4 COORDINATION PROTOCOLS

A coordination protocol for search and retrieval tasks
consists of three main strategies: deployment, subtask
allocation and destination selection strategies. The
deploymentstrategy determines the starting positions
of the robots. In our settings, all robots start in front
of the drop-zone, so we will not further discuss this
strategy in our coordination protocols. Thesubtask
allocationstrategy determines which target blocks the
robots should aim for. As a decentralized robot has its
own decision making process, it allocates itself a tar-
get based on its current mental states of the world.
Once a robot has decided to retrieve a particular tar-
get, it needs to choose a room to move towards so
that it can get such a target. Thedestination selection
strategy determines which rooms the robots should
move towards, consisting ofexplorationandexploita-
tionsub-strategies that are used for exploring the envi-
ronment and exploiting the knowledge obtained dur-
ing the execution of the entire task.

We will first investigate a baseline without any
communication and set it as the performance standard
that we want to improve upon by adding various com-
munication strategies. And then we are particularly
interested in whether, and, if so, how much, perfor-
mance gain can be realised by communicating only
beliefs, only goals, and both beliefs and goals.

4.1 Baseline: No Communication

In the baseline, although the robots do not explicitly
communicate with one another, they can still obtain
some information about their teamwork because the

robots may interfere with each other in their shared
workspace. Without communication, for the subtask
allocation all the robots will aim for the currently
needed block until it is delivered to the drop-zone.
But for destination selection, the exploration and ex-
ploitation sub-strategies can ensure that they will not
visit rooms more often than needed (as far as possi-
ble), and basically that knowledge is exploited when-
ever the opportunity arises (i.e., a robot is greedy and
will start collecting a known block that is the closest
one and has the needed color).

In the baseline, we have identified four dimen-
sions of variation:

1. which room a robot initially selects to visit,

2. how a robot will use knowledge obtained about
another robot through interference,

3. how it selects a (next) room to visit, and

4. what a robot will do when holding a block that is
not needed now but is needed later.

4.1.1 Initial Room Selection

At the beginning of the task, a robot has to choose a
room to explore since it does not have any informa-
tion about the dispersed blocks in the environment.
One possible option labeled (1a) is to choose aran-
domroom without considering any distance informa-
tion. Assuming thatk robots initially select a room
to visit from n available rooms, the probability that
each robot chooses a different room to visit isP, and
the probability that collisions may occur in the team
is Pc = 1−P. Then we can know:

P=

{ n!
(n−k)!·nk ,k≤ n,

0 ,k> n.
(1)

This gives, for instance, a probability of 9.38% that 4
robots select different initial rooms from 4 available
rooms, which drops to only 1.81% for 8 robots per-
forming in the environment with 10 rooms. Working
as a team, robots are expected to have as few colli-
sions as possible, and we usePc to reduce the likeli-
hood that robots may collide with each other. For ex-
ample, suppose we want the likelihood of collisions
for k = 4 robots to be less than 5%, then we need
n> 119. This tells us that it is virtually impossible to
avoid collisions without communication in large-scale
robot teams as a very large number of rooms would be
required then.

A second option labeled (1b) is to choose thenear-
est room, which means that the robot will take ac-
count of the distance from its current location to the
room’s location. In this case, almost all robots will
choose the same initial room given that they all start
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exploring from more or less the same location accord-
ing to the deployment strategy in our settings.

4.1.2 Visited by Teammates

Another issue concerns how a robot should use the
knowledge about a collision with its teammates. A
collision occurs when a robot is trying to enter a room
but fails to do so because the room is already occupied
by one of its teammates. The first option labeled (2a)
is to ignore this information. That simply means that
the fact that the room is currently being visited by the
teammate has no effect on the behavior of the robot.

The second option labeled (2b) is to take this in-
formation into account. The idea is to exploit the fact
that the robot, even though it still does not know what
blocks are in the room, believes that the team knows
what is inside the room. Intuitively, there is no urgent
need anymore to visit this room therefore. The robot
thus will delay visiting this particular room and as-
sign a higher priority to visiting other rooms. Only if
there is nothing more useful to do, a robot then would
consider visiting this room again.

4.1.3 Next Room Selection

If a robot does not find a block it needs in a room, it
has to decide which room to explore next. The avail-
able options for this problem are very similar to those
for the initial room selection but the situation may ac-
tually be quite different as the robots will have moved
and most of the time will not locate at more or less
the same position anymore. In addition, some rooms
have already been visited, which means there are less
options available to a robot to select from in this case.

One option labeled (3a) is torandomlychoose a
room from the rooms that have not yet been visited,
and a second one labeled (3b) is to visit the room
nearestto the robot’s current position. It is not up-
front clear which strategy will perform better. If the
robots very systematically visit rooms, because they
all start from the same location, this will most likely
increase interference. The issue is somewhat similar
to the initial room selection problem as it is not clear
whether it is best to minimize distance traveled (i.e,,
choose the nearest room) or to minimize interference
(i.e., choose a random room).

4.1.4 Holding a Block Needed Later

When the robots are required to collect blocks of var-
ious color with ordering constraints, this issue con-
cerns what to do when a robot is holding a block
that is not needed now but is needed later. For in-
stance, robot Alice is delivering a red block to the

drop-zone because it believes that the current needed
target should be a red one. If robot Bob completes the
subtask of retrieving a red block before Alice moves
to the drop-zone, and the remaining required targets
still need a red block in the future, then Alice comes
to this situation.

One option labeled (4a) is towait in front of the
drop-zone, and then enter the drop-zone and drop the
block when it is needed. The waiting time depends on
how long it will take before the block that the robot is
holding will be needed. A second option labeled (4b)
is to drop the block in the nearest room. Since the
waiting time in the first option is uncertain, it might
be better to store the block in a room where it can be
picked up again later if needed and invest time now
rather in retrieving blocks that are needed now.

In the baseline case, each dimension discussed
above has two options, so we can at most have 16
combinational strategies, some of which can be elim-
inated for the experimental study (see Section 5). We
will investigate the best combinational strategy of the
baseline, and then we take it as the performance stan-
dard to compare with the communication cases.

4.2 Communicating Robot Teams

In decentralized robot teams, there are no central
manager or any shared database, for example, in dis-
tributed robot teams, so the robots have to explic-
itly exchange messages to keep track of the progress
of their teamwork. In the communication cases,
we mainly focus on the communication content in
terms of beliefs and goals, and the robots use those
shared information enhance team awareness. Since
the robots can be better informed about their team-
mates in comparison with the baseline case, they can
have more sophisticated coordination protocols con-
cerning subtask allocation and destination selection.

4.2.1 Constructing Shared Mental Models

By communicating beliefs with one another, robots
can be informed aboutwhat other robots have ob-
served in the environment and where they are. Mes-
sages about beliefs are differentiated by the indicative
operator “:” from those about goals, whose type is in-
dicated by the imperative operator “!” in GOAL agent
programming language. In this work, the robots ex-
change the following messages in respect of beliefs
with associated meaning listed:

• :block(BlockID, ColorID, RoomID) means
block BlockID of color ColorID is in room
RoomID,
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• :holding(BlockID) means the message sender
robot is holding blockBlockID,

• :in(RoomID) means the message sender robot is
in roomRoomID, and

• :at(’DropZone’) means the message sender
robot is at the drop-zone.

Each of the messages listed above can also be negated
to represent. For example, when a robot leaves a
room, it will inform the other robots that it is not in the
room using the negated message:not(in(RoomID)).
Upon receiving a negated message, a robot will re-
move the corresponding belief from its belief base. A
robot sends the first message to its teammates when
entering roomRoomID and getting the percept of
color(BlockID,ColorID). Note that only this mes-
sage does not implicitly refer to the sending robot,
and therefore except for the first message type, a robot
who receives a message will also associate the name
of the sender with the message. For instance, if robot
Chris receives a messagein(’RoomC1’) from robot
Bob, Chris will insertin(’Bob’,’RoomC1’) into its
belief base (see Figure 2).

Mental States

of Robot Chris

Belief Base Belief Base

Goal Base Goal Base

in(`Chris`,`RoomB4`)

in(`Bob`,`RoomC1`)

in(`Bob`,`RoomC1`)

in(`Chris`,`RoomB4`)

in(`Bob`,`RoomC2`)

in(`Chris`,`RoomB3`)

in(`Chris`,`RoomB3`)

in(`Bob`,`RoomC2`)

Communicating beliefs

Communicating goals

Mental States

of Robot Bob

Figure 2: Constructing a shared mental model via commu-
nicating beliefs and/or goals.

By communicating goals with one another, robots
can be informed aboutwhat other robots are planning
to do. Robots exchange the following messages in
respect of goals with associated meaning listed:

• !holding(BlockID) means the message sender
robot wants to hold blockBlockID,

• !in(RoomID) means the message sender robot
wants to be in roomRoomID, and

• !at(’DropZone’) means the message sender
robot wants to be at the drop-zone.

Negated versions of goal messages indicate that previ-
ously communicated goals are no longer pursued and
have been dropped by the sender. All goal messages
received are associated with the sender who sent the
message and stored or removed as expected (e.g., see
Figure 2).

As we assume that the robots are cooperative, and
they communicate with each other truthfully, the re-
ceived messages can be used to update their own be-
liefs and goals. Algorithm 1 shows the main deci-
sion making process of an individual robot: how the
robot updates its own mental states and at the same
time shares them with its teammates for constructing
a shared mental model. In its decision making pro-
cess, the robot first handles new environmental per-
cepts (line 2-5), and then uses received messages to
update its own mental states (line 6-8). Based on the
updated mental states, the robot can decide whether
some dated goals should be dropped (line 9-12) and
whether, and, if so, what, new goals can be adopted
to execute (line 13-16). When the robot has obtained
new percepts about its environment and itself or has
adopted or dropped a goal, it will also inform its team-
mates (line 4, 11 and 15).

Algorithm 1: Main decision making process of an individ-
ual robot.

1: while entire task has not been finisheddo
2: if newperceptsthen
3: update ownbelief base, and
4: send message“:percepts”.
5: end if
6: if receive newmessagesthen
7: update ownbelief baseandgoal base.
8: end if
9: if somegoalsare dated and uselessthen

10: drop them from owngoal base, and
11: send messages “!not(goals)”.
12: end if
13: if newgoalsare applicablethen
14: adopt them in owngoal base, and
15: send messages “!(goals)”.
16: end if
17: executeactions.
18: end while

As shown in Figure 2, when decentralized robot
teams construct such a shared mental model via com-
municating belief and goal messages discussed above,
even though they do not have any shared database or
centralised manager, they could fully know each other
like what they can know in a centralised robot team.
Therefore, such a shared mental model can enable the
robots to have more sophisticated coordination proto-
cols.

4.2.2 Subtask Allocation and Destination
Selection Strategies

By just communicating belief messages, there is quite
a bit of potential to avoid interference since a robot
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will inform its teammates when entering a room.
More interestingly, it is even possible to avoid dupli-
cation of effort because a robot can also obtain what
block should be picked up next from the information
about the blocks that are being delivered by team-
mates. Robot use the shared beliefs to coordinate their
activities for subtask allocation (see item 3 and 4) and
destination selection (see item 1 and 2) as follows:

1. A robot will not visit a room for exploration pur-
poses anymore if it has already been explored by
a team member;

2. A robot will not adopt a goal to go to a room (or
the drop-zone) that is currently occupied by an-
other robot;

3. A robot will not adopt a goal to hold a block if
another robot is already holding that block (which
may occur when another robot beats the first robot
to it);

4. A robot will infer which of the blocks that are
required are already being delivered from the in-
formation about the blocks that its teammates are
holding and will use this to adopt a goal to collect
the next block that is not yet picked up and is still
to be delivered.

By just communicating goal messages, the robots
can also coordinate the activities to avoid, as in the
case of sharing only beliefs, interference and duplica-
tion of effort. Whereas it is clear that a robot should
not want to hold a block that is being held by another
robot, it is not clear per se that a robot should not
want to hold a block if another already wants to hold
it. The focus of our work reported here, however, is
not on negotiating options between robots. Instead,
we have used a “first-come first-serve” policy here,
and the shared goals can be used for subtask alloca-
tion (see item 2 and 3) and destination selection (see
item 1) as follows:

1. A robot will not adopt a goal to go to a room (or
the drop-zone) that another robot already wants to
be in,

2. A robot will not adopt a goal to hold a block that
another robot already wants to hold, and

3. A robot will infer which of the blocks that are
required will be delivered from the information
about goals to hold a block from its teammates
and will use this to adopt a goal to collect the next
block that is not yet planned to be picked up and
is still to be delivered.

It should be noted that the difference between item
3 listed above for the use of goal messages and that of
item 4 listed above for the use of belief messages is
rather subtle. Whereas the information about goals is

an indication of what is planned to happen in the near
future, the information about beliefs represents what
is going on right now. It will turn out that the po-
tential additional gain that can be achieved from the
third rule for goals above, because the information is
available before the actual fact takes place, is rather
limited. Still, we have found that because the infor-
mation about what is planned to happen in the future
precedes the information about what actually is hap-
pening, it is possible to almost completely remove in-
terferences between robots.

As the robots are decentralized and have their own
decision processes, even though they use first-come
first-serve policy to compete for subtasks and desti-
nations, it may happen that they make decisions in a
synchronous manner. For instance, both robot Alice
and Bob may adopt a goal to explore the same room
at the same time, which indeed does not violate the
first protocol of shared goals when they make such a
decision but may actually lead to an interference sit-
uation. In order to prevent such inefficiency, in our
coordination protocols the robots can also drop goals
that have already been adopted so that they can stop
corresponding actions that are being executed. For
example, a robot can drop a goal to enter a room if it
finds that another robot also wants to enter that room.
Apart from this reason, some dated goals should also
be removed from the goal base. For example, a robot
should drop a goal of retrieving a block if it does not
have the currently needed color any more. As can be
seen in Algorithm 1, a robot will check dated and use-
less goals and then drop them (see see line 9-12) in its
decision making process.

When robots communicate both beliefs and goals,
the coordination protocol combines the rules listed
above for belief and goal messages. For example,
a robot will not adopt a goal of going to a room if
the room is occupied now or another robot already
wants to enter it. Similarly, a robot will not adopt
a goal to hold a block if the block is already being
held by another robot or another robot already wants
to hold it. In the case of communicating both beliefs
and goals, as the robots should have more complete
information about each other, in comparison with the
cases of communicating only beliefs and only goals,
so they are expected to achieve more additional gains
with regard to interference and duplication of effort.
But it should be noted that since all the robots have
much knowledge to avoid interference, they may need
to frequently change their selected destinations or to
choose farther rooms, which may result in an increase
in the walking time. In our experiments, we will in-
vestigate how much performance gain can be realised
in these three communication cases.
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5 EXPERIMENTAL DESIGN

5.1 Data Collection

All the experiments are performed in the BW4T simu-
lator in GOAL. We have collected data on a number of
different items in our experiments. The main perfor-
mance measure, i.e.,time-to-complete, has been mea-
sured for all runs. In order to gain more detailed in-
sight into the effort needed to finish the task, we have
collected data onduplicated effortthat gives some in-
sight into both the effectiveness of the strategy as well
as in the complexity of the tasks. Duplication can be
obtained by keeping track of the number of blocks
that are dropped by the robots without contributing to
the team goal.

Each time when two robots collide, i.e., one robot
tries to enter a room occupied by another, is also
logged. Thetotal number of interferenceprovides an
indication of the level of coordination within the team.
Finally, to obtain a measure of the cost involved in
communication in multi-robot teams, thenumber of
exchanged messagesis also counted. A distinction is
made between messages about the beliefs and mes-
sages about goals.

5.2 Experimental Setup

There are many variations in setup that one would like
to run in order to gain as much insight as possible into
the impact of various factors on the performance of a
team. Since we want to understand the relative speed
up of teams compared to a single robot to measure the
effectiveness of various of our coordination protocols,
we need to run simulations with a single robot. For
multiple robots, we have used team sizes of 5 and 10.
We also consider the factor of robots’ environmental
size, and we use maps of 12 rooms and 24 rooms.

In our experiments, the robots are required to re-
trieve 10 blocks from their environments where there
are total 30 blocks that are randomly distributed for
each simulation, but there are two different tasks. Re-
call that the first task does not have ordering con-
straints on the team goal and the robots retrieve block
of the same color, which is relatively simple and sim-
ilar to the tasks that many researchers have addressed
in the robot foraging domain. Comparatively, the sec-
ond task is more complicated and is a cooperative for-
aging task that has ordering constraints on the team
goal, requiring the robots to retrieve blocks of various
colors. In order to so so, in each run, BW4T simula-
tor randomly generates a sequence of blocks of vari-
ous colors, so the team goal is to collected blocks of
random colors in the right order.

We list the baseline instances in Table 1 based on
the combinational strategies used by the robots. A
single robot’s behavior is relatively simple because
it does not need to consider interference with other
robots, and duplicated effort will never occur. Al-
though there are 4 dimensions in baseline strategies,
a single robot only needs to consider the first and the
third dimension with regards to initial room selection
and next room selection, respectively. Accordantly,
the single robot case has 4 setups in each environmen-
tal condition. For instance, we useS(iii) in Section 6
to indicate the strategy combining (1b, 3a).

When multiple robots participate in the tasks,
there are more combinations based on the strategies
that the robots may use. As baseline has four dimen-
sions, each of which has two options, we can get at
most 16 combinational strategies. Although we can-
not directly figure out which combinational strategy
is the best one without experiments, we can still elim-
inate several choices that are apparently inferior to the
other ones.

One issue occurs when the strategy combines (2a)
and (3b). In case a robot wants to go to roomA but
one of its teammates arrives earlier, the robot will
then reconsider but select the same room again be-
cause it will select the nearest room based on the strat-
egy. This behavior will result in very inefficient per-
formance, so we can eliminate those choices combin-
ing (2a) and (3b). Another issue arises when a choice
combines (1b) and (3b), which will make robots clus-
ter together as they more or less start from the same
location, and then they always try to visit the near-
est rooms. A cluster of robots will cause inefficiency
and interference, so we can further eliminate those
choices combining (1b) and (3b). As a result, for the
second task, we have 10 setups as shown in Table 1
and, for example, we useMR(iii) in Section 6 to indi-
cate the strategy combining (1a,2b,3a,4a).

When the robots perform the first task, as all the
required blocks have the same color, the fourth di-
mension does not make sense because any holding
block can contribute to the team goal until the task
is finished. Therefore, we can eliminate this dimen-
sion and finally have 5 setups left for this task, and we
useMS(iii) in Section 6 to indicate the strategy com-
bining (1a,2b,3b). For the communication cases, we
have three setups, communicating only beliefs, only
goals, and both beliefs and goals, in each environmen-
tal condition. Each setup has been run for 50 times to
reduce variance and filter out random effects in our
experiments.
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Table 1: Baseline instances based on coordination protocols.

Team Size Single Robot Multiple Robots
Team Goal Either Blocks of Same Color Blocks of Random Color

Instances

i (1a,3a) i (1a,2a,3a) i (1a,2a,3a,4a) vi (1a,2b,3b,4b)
ii (1a,3b) ii (1a,2b,3a) ii (1a,2a,3a,4b) vii (1b,2a,3a,4a)
iii (1b,3a) iii (1a,2b,3b) iii (1a,2b,3a,4a) viii (1b,2a,3a,4b)
iv (1b,3b) iv (1b,2a,3a) iv (1a,2b,3a,4b) ix (1b,2b,3a,4a)

v (1b,2b,3a) v (1a,2b,3b,4a) x (1b,2b,3a,4b)

6 RESULTS

6.1 Baseline Performance

Figure 3 and 4 show the performance of the various
strategies for the baseline on the horizontal axis and
the four different conditions related to team size and
room numbers on the vertical axis. This results show
that the relation between team size and environment
size has an important effect on the team performance
that also relies on which combinational coordination
strategy is used.

Statistically, the performance of the combina-
tional strategies does not significantly differ from any
of the others. Even so, from Figure 3 we can see that
the strategyMS(iii) on average performs better than
any of the other ones and has minimal variance which
is why we choose this strategy as our baseline to com-
pare with the communication cases. This strategy
combines options (1a) which initially selects a room
randomly, option (2b) which uses information from
collisions with other robots to avoid duplication of ef-
fort, and option (3b) which selects the nearest room to
go to next. Interestingly, this strategy does not mini-
mize interference. This is because if the robots do not
communicate with one another, using the option to go
to the nearest rooms for the next room selection, i.e.,
option (3b), increases the likelihood of selecting the
same room at the same time and causes interference.

Similarly, from the data shown in Figure 4, it fol-
lows that strategyMR(v) on average takes the mini-
mum time-to-complete the second task and again its
variance is also less than those of the other strategies.
This strategy combines options (1a), (2b), (3b) and
(4a). It thus is an extension of the best strategyMS(iii)
for the first task in Figure 3 with option (4a) which
means that robots wait in front of the drop-zone if
they hold a block that is needed later. We can con-
clude that even though sometimes option (4a) makes
the robots idle away and stop in front of the drop-zone
with a block that is needed later, it is more econom-
ical than the idea of storing the block in the nearest
room so that it can be picked up again later.

6.2 Speedup with Multiple Robots

Balch (Balch and Arkin, 1994) introduced a speedup
measurement, which is used to investigate to what ex-
tent multiple robots in comparison with a single robot
can speed up a task. We have plotted the performance
of the best strategies for single and multiple robot
cases to analyse the speedup of various team sizes in
Figure 4(d). The results show that doubling a robot
team does not double its performance. For example,
5 robots take 27.26 seconds on average to complete
the second task in 12 rooms, but 10 robots on aver-
age need 26.88 seconds. We therefore conclude that
speedup obtained by using more robots is sub-linear,
which is consistent with the results reported in (Balch
and Arkin, 1994).

In order to better understand the relation between
speedup and the strategies we have proposed, we can
inspect Figure 4(a) again. We can see that speedup
depends on the strategy that is used. One particular
fact that stands out is that the time-to-complete for
the odd numbered strategies in Figure 4(a) is similar
for 5 and 10 robots that are exploring 12 rooms (we
find no statistically significant difference). We can
conclude that adding more robots does not necessarily
increase team performance because more robots may
also bring about more interference among the robots.
We can also see in Figure 4(b) that it is quite clear that
the average numbers of interference in 5 and 10 robots
exploring 12 rooms are significantly different. Thus,
more interference makes the robots take more time to
complete the task, but it also depends on the strate-
gies. It follows that using more robots only increases
the performance of a team if the right team strategy is
used. It is more difficult to explain the fact that both
interference and duplication of effort are lower for the
odd-numbered strategies than for the even-numbered
ones. It turns out that the difference relates to option
4 where robots in all odd-numbered strategies wait in
front of the drop-zone if a block is needed later. In
a smaller sized environment, adding more robots in
the second task means also adding more waiting time
which in this particular case cancels out any speedup
that one might have expected.
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(b) Interference

Figure 3: Baseline performance for the first task (i.e., teamgoal without ordering constraints).
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(c) Duplication of effort
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(d) Speedup with multiple robots

Figure 4: Baseline performance for the second task (i.e., team goal with ordering constraints) & Speedup.

6.3 Communication Performance

Figure 5 shows the results that we obtained for the
performance measures for the communication condi-
tions we study here. First, we can see in Figure 5(a)
that communication is much more useful in the sec-
ond task than the first one. When 5 robots operate
in the 12 rooms environment, communicating beliefs
yields a 34.15% gain compared to the no communica-
tion case for the first task whereas it yields a 44.5%
gain in the second task. It is also clear from Fig-
ure 5(a) that communication yields more predictable

performance as the variance in each of the communi-
cation conditions is significantly less than that without
communication. Recall that the second task requires
robots to retrieve blocks in a particular order, and thus
we can conclude that when a multi-robot task consists
of multiple subtask that need to be achieved with or-
dering constraints, communication will be particulary
helpful to enhance team performance.

Second, though communicating beliefs is more
costly than communicating goals in terms of mes-
sages, the resulting performance of time-to-complete
is significantly better when communicating only be-
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(d) Messages sent

Figure 5: Performance measures for different communication conditions.

liefs compared to the performance when only goals
are communicated. For example, Figure 5(a) and 5(d)
show that when 5 robots only communicate beliefs,
the team takes 15.13 seconds and sends 318 mes-
sages on average to complete the second task in the 12
rooms environment while only communicating goals
takes the same team 22.23 seconds and 288 messages.
This is because communicating beliefs can inform
robots about what blocks have been found by team-
mates, and the environment can become known for
all the robots sooner than the case of communicating
goals, which can save the exploration time.

Third, the communication of goals yields a signif-
icantly higher decrease in interference compared to
communicating beliefs. For instance, communicating
goals eliminated 91.56% of the interference present
in the no communication condition compared to only
61.6% when communicating beliefs for 10 robots that
perform the second task in 12 rooms. This is because
communicating goals can inform a robot about what
its teammates want to go, so it can choose a differ-
ent room as its destination. Comparatively, a robot
only inform its teammates when entering a room in
the case of communicating beliefs, which cannot ef-
fectively prevent other teammates clustering together
in front of this room. On the other hand, the com-
munication of goals does not significantly decrease

duplication of effort as shown in Figure 5(c). There
is a simple explanation of this fact: even though a
robot knows which blocks its teammates want to han-
dle in this case, it does not know what color these
blocks have if it did not observe the block itself be-
fore. This lack of information about the color of the
blocks makes it impossible to avoid duplication of ef-
fort in that case.

A somewhat surprising observation is that though
communicating only beliefs or only goals would
never negatively impact performance, communicating
both of them does not always yield a better perfor-
mance than just communicating beliefs. T-tests show
that there is no significant difference between com-
municating only beliefs and communicating both be-
liefs and goals with regards to time-to-complete. The
reason is that when the robots share both beliefs and
goals, they are even better informed about what their
teammates are doing, which allows them to reduce in-
terference even more. We can see in Figure 5(b) that
communicating both beliefs and goals can ensure that
the robots do not collide with each other anymore.
However, this more careful behavior though not often
but still sometimes results in a robot choosing rooms
that are farther away on average in order to avoid col-
lisions with teammates, which may increases the time
to complete the entire task.
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7 CONCLUSIONS AND FUTURE
WORK

In this paper, we presented various coordination pro-
tocols for cooperative multi-robot teams performing
search and retrieval tasks, and we compared the per-
formance of a baseline case without communication
with the cases with various communication strategies.
We performed extensive experiments using the BW4T
simulator to investigate how various factors, but most
importantly how the content of communication, im-
pacts the performance of robot teams in such tasks
with or without ordering constraints on the team goal.
A key insight from our work is that communication is
able to improve performance more in the task with
ordering constraints on the team goal than the one
without ordering constraints. At the same time, how-
ever, we also found that communicating more does
not always yield better team performance in multi-
robot teams because more robots will increase the
likelihood of interference that depends on what coor-
dination strategy the robots have used. This suggests
that we need to further improve our understanding of
factors that influence team performance in order to be
able to design appropriate coordination protocols.

In future work, we aim to study the impact of var-
ious other aspects on coordination and team perfor-
mance. We are planning to do a follow-up study in
which communication range is limited and it is pos-
sible that messages get lost. We also want to study
resource consumption issues where robots, for exam-
ple, need to recharge their batteries. The fact that
the BW4T environment abstracts from various more
practical issues allows one to focus on aspects that we
believe they are most relevant and related to team co-
ordination. At the same time we believe that it is both
interesting and necessary to increase the realism of
this environment in order to be able to take account of
various aspects that real robots have to deal with. One
particular example that we are currently implement-
ing is to allow for collisions of robots in the environ-
ment, i.e., the robots cannot pass through each other
in hallways in our case. Thus, cooperative forag-
ing tasks also involve multi-robot path planning prob-
lems, in which, given respective destinations, multi-
ple robots have to move to their destinations while
avoiding stationary obstacles as well as teammates.
Finally, we are working on an implementation of our
coordination protocols on real robots, which will al-
low us to compare the results found by means of sim-
ulation with those we obtain by having a team of real
robots to complete the tasks.
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