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Abstract: In this paper, experiments to assess agent behavior learning are conducted to demonstrate the performance 
of genetic programming (GP) with multiple trees. Using the methods, each has a chromosome representing 
agent behavior as several trees. We have proposed two variants using the conditional probability and the 
island model to improve the methods’ performance. In GP using the conditional probability, individuals 
with high fitness values are used to produce conditional probability tables to generate individuals in the next 
generation. In GP using the island model, the population is divided into two islands of individuals: one 
island maintains diversity of individuals. The other emphasizes the accuracy of the solution. Moreover, this 
paper improves methods to seek the optimal number of executions of each tree in an individual. Those 
methods are applied to a garbage collection problem and a Santa Fe Trail problem. They are compared with 
traditional GP, GP with control nodes, and genetic network programming (GNP) with control nodes. 
Experimental results show that our methods are effective for improving the fitness. 

1 INTRODUCTION 

In the field of artificial intelligence, which aims at 
modeling human intelligence, many researchers 
have studied search algorithms to obtain agent 
decisions and action rules to reach a goal. 
Reinforcement learning and evolutionary learning 
are representative means to learn agent behavior. 
Evolutionary methods are known to be able to obtain 
optimum rules for agent action in a broad search 
space. Among evolutionary methods, genetic 
programming (GP) and genetic network 
programming (GNP) have been investigated eagerly 
and widely (Koza, 1992; Hirasawa et al., 2001; Iba, 
2002; Mesot et al., 2002; Tanji and Iba, 2010). 
Genetic network programming (GNP) is also known 
to able to find better solutions than genetic 
programming (GP) can (Hirasawa et al., 2001; Iba, 
2002). As an extensional method of GNP, GNP with 
multi-start nodes and GNP with control nodes 
(GNPCN) have been proposed (Murata and 
Nakamura, 2006; Eto et al., 2007). Although GNPCN 
can search for better solutions than GNP can, GNPCN 
has some shortcomings. For example, the readability 
of GNPCN is low because obtained rules are 
expressed as a network. Moreover, the network 

structure of GNPCN corresponding to agent rules 
tends not to be fully used. As a method to improve 
readability, GP with control nodes (GPCN) has been 
proposed. In GPCN, an individual consists of several 
trees that express action rules (Minesaki, Ueda, and 
Takahashi, 2009). Each tree is constructed with a 
part of a network where the tree root node 
corresponds to a control node of GNPCN. The 
GNPCN network structure is divided into several 
trees. Therefore, the GPCN readability becomes 
higher than that of GNPCN. However, the GNPCN 
ability is higher than that of GPCN. 

To improve the GPCN ability, we have proposed 
GPCN using conditional probabilities (GPCN_CP) 
(Morioka, Ueda, and Takahashi, 2011) and the 
island model (GPCN_IL) (Ito, Takahashi, and Inaba, 
2013). We introduced conditional probabilities 
between nodes to use their relations in individuals 
with high fitness values. As a similar and more 
general idea, frequent trees, i.e., subtrees that 
frequently appear in the population, have been 
proposed. Chunks of strongly related nodes are 
regarded as frequent subtrees (Ono et al., 2012; Ono 
et al., 2013). In GPCN_CP, individuals in the next 
generation are generated using either genetic 
operations or conditional probability tables, where 
the conditional probability tables are updated using 
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individuals with high fitness values. Thereby, 
GPCN_CP can maintain the diversity of individuals 
and can inherit the structures of excellent individuals 
to the next generation with a high probability, where 
the excellent individuals are the individuals that 
have obtained appropriate rules for agent behavior in 
the environment. 

Additionally, we have used the island model to 
promote diversity for overcoming local optima and 
for improving the fitness because GPCN has a 
shortcoming: it tends to be trapped by local optima 
(Iwashita and Iba, 2002). We designate GPCN using 
the island model GPCN_IL. In GPCN_IL, the population 
is divided into two islands of individuals: One island 
emphasizes maintenance of the diversity of 
individuals. The other emphasizes improving fitness. 
We designate the former as the diversity-oriented 
island. The latter is the performance-oriented island. 
The island model can be expected to prevent the 
solution by GPCN_IL from reaching a local optimum 
because GPCN_IL can emphasize two points such as 
maintaining diversity and improving the fitness.  

In this paper, we improve the method to seek the 
optimal number of processing nodes activated per 
tree (P) by gradually updating the value of P as 
evolution proceeds. We designate GPCN_CP and 
GPCN_IL with the improved search method for P 
GPCN_CP (e) and GPCN_IL(e). We apply traditional 
GNPCN and GPCN and our methods, GPCN_CP, 
GPCN_IL, GPCN_CP (e), and GPCN_IL(e) to a garbage 
collection problem and Santa Fe Trail problem to 
compare the performance. We use these problems 
because the garbage collection problem and the 
Santa Fe Trail are used to show the ability of GNP 
and GP (Koza, 1992; Mesot et al., 2002; Eto et al., 
2007; Ono et al., 2013; Iwashita and Iba, 2002). 
Although the symbolic regression problem exists as 
another type of benchmark problem for GP and GNP, 
we chose the garbage collection problem and the 
Santa Fe Trail problem because the objective of this 
paper is to obtain rules for agent actions. The former 
is relatively easy, but the latter is difficult. 
Experimentally obtained results are presented to 
confirm the effectiveness of those methods. 

2 GNP WITH CONTROL NODES 
(GNPCN) 

GNP with control nodes (GNPCN) has been proposed 
as an extensional method of GNP; GNPCN can 
search for better solutions than GNP. Each 
individual of GNPCN has a network structure in 

which nodes of three kinds are connected: control 
nodes, branch nodes, and action nodes. Nodes of the 
latter two kinds are also used in GNP. An example 
of an individual of GNPCN is presented in Figure 1. 
The control node in GNPCN controls the transition of 
nodes that an agent refers to. Each control node has 
a number representing the order of its execution. An 
agent starts to refer to the node indicated by the 
control node 1 and continues referring to nodes 
according to the network connection until the 
designated number of action nodes is executed. 
Subsequently the agent refers to the control node 
with the next number and carries out the node 
designated by the control node. The agent refers to 
the control node with the smallest number after the 
control node with the largest number is processed. 
Genetic operations of GNPCN are only crossover and 
change of node connection. The connection of 
control nodes is not changed by genetic operations. 

3 GENETIC PROGRAMMING 
WITH CONTROL NODES 
(GPCN) 

3.1 Genetic Programming with Control 
Nodes (GPCN) 

To improve the readability of GNPCN and to 
maintain its efficiency, GPCN has been proposed. An 
example of an individual of GPCN is depicted in 
Figure 2. Individuals of GPCN comprise several trees 
which correspond to rules. The trees have numbers 
corresponding to numbers of control nodes. The 
number indicates the order in which an agent refers 
to a tree. The trees correspond to networks starting 
from control nodes of GNPCN. The number of trees 
in one individual, M (i.e. the number of control 
nodes), is determined in advance. In the action phase 
of autonomous agents, agents receive perceptual 
information from the environment and determine 
actions by referring to trees according to the tree 
numbers. 

A tree comprises terminal nodes and non- 
terminal nodes. A terminal node denotes an action 
that an agent can execute. A non-terminal node 
denotes branch information by the perceptual 
information. An agent refers to a tree with the 
smallest number and carries out an action according 
to the tree. When the number of actions that an agent 
carries out using the tree exceeds a designated 
number P, the agent refers to a tree with the next 
number. The number P represents the number of 
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Figure 1: Example of an individual of GNPCN. 

 

Figure 2: Example of an individual of GPCN where the 
number of trees is 4. 

executions. After the tree with the largest number is 
processed, the agent refers to the tree with the 
smallest number. 

The algorithm of GPCN is the same as that of the 
traditional GP. First, GPCN performs the initial 
generation of the population of individuals. Then, it 
evaluates the fitness of each that has been generated. 
If the condition to terminate processing is not met, 
then it performs reproduction of the population of 
individuals and genetic operations. It then generates 
a population of individuals in the next generation. 
Here, the condition to terminate processing is that 
the number of generation becomes the designated 
number of generations. Although the GPCN 
individuals have several trees, the fitness is 
evaluated for each individual, not for each tree. 
Details of the genetic operations for GPCN are 
described in the next subsection. 

3.2 Genetic Operations 

Because one individual has several trees unlike 
normal GP in GP with control nodes (GPCN), for 
each genetic operation an individual is selected at 

random. then one tree is selected at random from the 
selected individual. Each genetic operation is 
applied to the selected tree. 

3.2.1 Crossover 

Crossover is the operation that exchanges subtrees in 
trees of two parent individuals. First, two trees are 
selected from two parent individuals respectively, 
and nodes are selected at random for crossover from 
all nodes of each tree. Second, subtrees whose root 
nodes are the selected nodes are exchanged. 
However, no crossover is executed when a tree 
consists only of a root node. 

3.2.2 Mutation 

We use mutation of two kinds: a mutation-tree and a 
mutation-node. A mutation-tree is an operation that 
randomly selects one node from all nodes in a tree of 
a parent individual and then replaces the subtree 
subsequent to the selected node with a randomly 
generated subtree. The mutation-node is the 
operation that changes the content of the selected 
node after selecting a node in a tree of a parent 
individual. In mutation-node, if the selected node is 
a non-terminal (terminal) node, then the node 
content is replaced with another content of a non-
terminal (terminal) node. When any content of a 
non-terminal node is changed, the edge number 
might change. If the number of edges of a new 
content becomes smaller, then the extra edges and 
the succeeding subtrees are removed. However, if 
the number of edges becomes larger, then randomly 
generated subtrees are connected to the increased 
edges. 

3.2.3 Inversion 

The inversion operation selects only a non-terminal 
node at random from all nodes of a tree in a selected 
individual, selects at random two child nodes. Then 
it exchanges the subtrees that have the two child 
nodes as the root nodes. 

3.3 GPCN using Conditional 
Probabilities (GPCN_CP) 

In GPCN, a problem that the search ability is 
insufficient exists. In order to utilize connections 
among nodes of trees in individuals with high fitness 
values, GPCN using conditional probabilities 
(GPCN_CP) has been proposed. The GPCN_CP 
algorithm is the following. 
 

 
Individual(M=4) 

C1 C2 C3 C4

Identifier Non-terminal node Terminal node 
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1: BEGIN 
2: Generate initial population; 
3: WHILE(i < Ng) DO  
4:  Evaluate fitness; 
5:  WHILE(j < Ni) DO 
6:   IF(Fit[j] >= Tf) THEN 
7:    Add node counts to frequency  

tables; 
8:   END IF 
9:   j++; 
10:  END DO 
11:  Build conditional probability  

tables; 
12:  j=0; 
13:  WHILE(j < Ni) DO  
14:   IF(j < Ncp) THEN 
15:    Generate an individual using  

conditional probability tables; 
16:   ELSE 
17:    Generate an individual with 

 genetic operations; 
18:   END IF 
19:   j++; 
20:  END DO 
21:  i++; 
22: END DO 
23: END. 

In the GPCN_CP algorithm, i and j respectively 
denote the generation number and the individual 
number. Ng and Ni respectively represent the 
maximum generation number and the maximum 
individual number. Moreover, Fit[j] is the fitness 
value of individual j. Tf stands for the fitness 
threshold to build conditional probability tables, and 
Ncp signifies the maximum number of individuals 
generated using conditional probability tables. 

GPCN_CP differs from GPCN in the way of 
generating individuals for the next generation. In 
GPCN_CP, trees of individuals in the next generation 
are generated using conditional probabilities in 
addition to genetic operations. The conditional 
probabilities are calculated from individuals with 
high fitness values and are stored into conditional 
probability tables for nodes. 

Conditional probability tables are produced per 
tree number using frequency tables that are produced 
using individuals with high fitness values. We 
expect to obtain action rules corresponding to roles. 
First, frequency tables are made by counting the 
frequency of child nodes attached to branching 
edges for perceptual information of each 
nonterminal node in trees of which the numbers are 
the same over individuals. Additionally, we maintain 
the diversity of individuals by inheriting frequency 
tables of the previous generation at a constant rate to 
the next generation. We update the values in the 
frequency tables as follows. 

௧ሺ݅ሻܨ ൌ ௧௣ሺ݅ሻܨ ൈ ሺ1 െ αሻ ൅ ௧௖ሺ݅ሻܨ ൈ α (1)

Therein, Ft(i) is the next frequency table for tree i, 
Ftp(i) is the frequency table used in the previous 
generation, and Ftc(i) is the frequency table 
evaluated using only individuals of the current 
generation. We designate ሺ1 െ αሻ as the inheritance 
probability, where α ∈ ሾ0,1ሿ. The frequency table for 
tree i in the current generation is calculated from 
trees whose number is i in the individuals with high 
fitness values in the current generation. We 
designate the individuals with high fitness values as 
elite individuals. We produce conditional probability 
tables from the frequency tables. 

We generate individuals using conditional 
probabilities. In generating individuals using 
conditional probabilities, the root node of a tree is 
determined with the occurrence probability of each 
node. Then, we determine child nodes of the root 
node using the conditional probability table for the 
root node. The decisions of child nodes using 
conditional probabilities are repeated until a terminal 
node is selected for the child node or until the depth 
of the child node reaches the maximum depth 
determined in advance. When the child node depth is 
the maximum depth, a terminal node is selected for 
the child node. 

3.4 GPCN using the Island Model 
(GPCN_IL) 

A shortcoming of traditional GPCN is that it tends to 
end the search with local optima when evolution 
proceeds. We propose GPCN using the island model 
(GPCN_IL) as a method to improve the performance. 
The objective of GPCN_IL is to increase the fitness 
while maintaining the diversity. The island model is 
a parallel distributed processing method which has 
been proposed as an extension of the genetic 
algorithm. In GPCN_IL in this study, individuals are 
divided into two islands of individuals: the diversity-
oriented island and the performance-oriented island. 

A flowchart of GPCN_IL is presented in Figure 3, 
where Ng represents the maximum generation 
number. First, we generate an initial population. 
Second, we evaluate the population of individuals 
and perform migration, which is one feature of the 
island model. Subsequently if the termination 
condition is not satisfied, then we perform selection 
and generate individuals of the next generation. The 
termination condition is the same as GPCN:  when 
the number of generations reaches the designated 
number, the algorithm stops. 

We preserve elite individuals and generate 
individuals of the next generation by crossover in 
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the performance-oriented island. However, in the 
diversity-oriented island, we generate individuals of 
the next generation by replacing some individuals 
with randomly generated individuals and using 
genet ic  operat ions .  Crossover  used in  the 
performance-oriented island is the depth-dependent 
crossover (Ono et al., 2012). Unlike the normal 
crossover, the depth-dependent crossover determines 
a depth in the selected tree at random and then 
selects a node for the crossover from nodes at that 
depth. Consequently, a destructive crossover is 
unlikely to occur. Individuals with high fitness 
values are preserved (Iwashita and Iba, 2002). 

 

Figure 3: Flowchart of GPCN_IL. 

3.5 Search for the Optimal Value of P 

We think that optimal values of the number of 
control nodes (C) and the number of executions (P), 
which is the number of action nodes repeatedly 

processed in a tree differ according to the problem to 
be solved and the size of action rules. Therefore, we 
propose GPCN(e), GPCN_CP(e), and GPCN_IL(e), which 
are extensions of GPCN, GPCN_CP, and GPCN_IL 
respectively, to obtain optimal values of P by 
evolution. Let Pi denote the value of P at generation 
i. Then P is updated as follows. 

௜ܲ ൌ ௜ܲିଵ ൅ (2) ߙ

In (2),  is the range for updating the value of P, and 
P0=TotalSteps/C, where TotalSteps and C 
respectively represent the maximum simulation steps 
and the number of trees. For example, when 
TotalSteps is 250, and an individual has two trees, 
i.e. C=2, then the value of P0 is selected as 125. The 
value of  is chosen randomly between [-,+]. The 
initial value of  is 12 for a garbage collection 
problem and 16 for the Santa Fe Trail problem. The 
values of  are decreased respectively to 1 at every 
100 and 1,000 generations for the garbage collection 
problem and the Santa Fe Trail problem. The value 
is selected independently for each tree. 

4 EXPERIMENTS 

4.1 Garbage Collection Problem  

The objective of a garbage collection problem is that 
an agent picks up all pieces of trash scattered in the 
field and carries them to a garbage dump site. An 
example of the field of the garbage collection 
problem is depicted in Figure 4. Field comprises a 
two-dimensional lattice plane of the size 11×11 cells, 
and the outermost cells are walls. The garbage 
collection problem has one agent, ten pieces of trash, 
and one dump site on the field. The agent can move 
forward, turn left or right, or stay at each step. The 
agent can also pick up a piece of trash by reaching 
the cell where it exists and then can carry it to the 
dump site. The maximum number of pieces of trash 
that the agent can carry is assumed as two. We 
prepare 10 environments generated by placing the 
agent, trash, and the dump site at randomly selected 
cells in advance. We define the fitness as the number 
of total pieces of trash carried to the dump sites in 
the 10 environments in 250 steps per environment. 
Let Ni denote the number of collected pieces of trash 
in environment i. Then, the fitness value is 
calculated as shown below. 

 
 

Generate initial population 

Selection 

Genetic 
operations 

Start 

Yes 

No 

Evaluation 
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Migration Migration 
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Figure 4: Example of the field of a garbage collection 
problem. 

ݏݏ݁݊ݐ݅ܨ ൌ෍ ௜ܰ

ଵ଴

௜ୀଵ

 (3)

The maximum value of Fitness is 100. In 
experiments, we measure the highest fitness value 
obtained in a simulation run at each generation and 
calculate the average of those fitness values obtained 
through 30 simulation runs. 

Table 1 presents the functions of non-terminal 
nodes and terminal nodes in the garbage collection 
problem. We have nodes of two kinds: 0 denotes 
non-terminal nodes (branch nodes), and 1 denotes 
terminal nodes (action nodes). Table 2, Table 3, and 
Table 4 respectively show parameters of GNPCN, 
GPCN, GPCN_CP, and GPCN_IL used for experiments. 
Figure 5 shows the change of the average fitness of 
the garbage collection problem obtained for 1,000 
generations. Therein, the vertical axis expresses the 
fitness values; the horizontal axis expresses the 
generation number. Figure 5 shows that GPCN_CP(e) 
and GPCN_IL(e) show good performance in both the 
maximum fitness and the evolution rate. GPCN_CP(e) 
and GPCN_IL(e) are methods in which the optimal 
value of P is sought. Consequently, the method to 
obtain the optimal value of P is effective for 
improving the performance. 

Comparison of GP with GNPCN shows that 
GNPCN has better capability than GPCN. Comparison 
of GPCN with GPCN_CP shows the effectiveness of the 
conditional probabilities. Moreover, comparison of 
GPCN with GPCN_IL shows that the island model is 
effective for improving the fitness, and that the 
island model gives higher improvement than the 
conditional probability tables do. 

The experiments of the garbage collection 
problem    confirmed      that       using     conditional 

Table 1: Function of non-terminal nodes and terminal 
nodes. 

kind function (number of edges) 

0 
check the distance from the agent to the dump 

site (3) 
0 how many pieces of trash the agent has (3) 

0 
check the direction of the agent to the dump 

site (8) 

0 
check the direction of the agent to the nearest 

trash (9) 

0 
check the direction of the agent to the second 

nearest trash (9) 
1 move forward (1) 
1 turn right (1) 
1 turn left (1) 
1 stay (1) 

Table 2: Parameters of GNPCN. 

Maximum number of 
generations 

1,000 

Population size 300 
Number of nodes 18 

Crossover probability of 
nodes, Pc 

0.1 

Probability of changing 
connection of nodes, Pm 

0.01 

Number of control nodes 10 

Table 3: Parameters of GPCN and GPCN_CP. 

Maximum number of 
generations 

1,000 

Population size 300 
Tournament size 2 

Elite number 1 
Probability of mutation-

node, Pmn
0.05 

Probability of mutation-
tree, Pmt 

0.1 

Crossover probability, Pc 0.8 
Inversion probability, Pi 0.2 
Number of population 

generated by conditional 
probability 

75 

Maximum depth of trees 6 
Probability of changing 

value of P, PP
0.05 

probabilities and the island models is effective. We 
also ascertained that the readability of GPCN is 
higher than GNPCN by examining the obtained trees 
and the network. 

4.2 Santa Fe Trail Problem 

In the Santa Fe Trail problem, an agent must obtain 
action rules to pick up all  pieces  of food in the field 

agent collection 
 place 

trash 
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Table 4: Parameters of GPCN_IL. 

 
Performance-
oriented island 

Diversity- 
oriented island 

Maximum 
number of 
generations 

1,000 

Population size 150 150 
Tournament 

size 
4 2 

Number of 
elites 

1 0 

Probability of 
mutation-node, 

Pmn 

0 0.2 

Probability of 
mutation-tree, 

Pmt 
0 0.1 

Crossover 
probability, Pc 

1.0 0.8 

Inversion 
probability, Pi 

0 0.1 

Migration size 100 
Maximum 

depth of trees 
6 

Probability of 
changing value 

of P, PP 
0.05 

 

Figure 5: Change of fitness of the garbage collection 
problem obtained for 1,000 generations. 

efficiently. The Santa Fe Trail problem field is 
depicted in Figure 6. A two-dimensional lattice 
plane comprises 32×32 cells. The Santa Fe Trail 
problem has one  agent and  89  pieces of food in the 
field. The agent and the food are placed in 
determined cells. The agent can move forward, turn 
left or right, and stay in each step. Additionally, the 
agent  can  pick  up  a   piece of food by reaching the 

 

Figure 6: Field of Santa Fe Trail problem. 

Table 5: Function of non-terminal nodes and terminal 
nodes. 

kind function (number of edges) 
0 if there is food ahead (2) 
0 act X; then Y (2) 
0 act X, then Y; then Z (3) 
1 move forward (1) 
1 turn right (1) 
1 turn left (1) 

cell in which it exists. We define the fitness as the 
total number of pieces of food picked up in 400 
steps. The maximum number of fitness is 89. The 
population size is 500, and the maximum generation 
number is 10,000. In experiments, we measure the 
highest fitness value obtained in a simulation run at 
each generation and calculate the average of those 
fitness values obtained through 30 simulation runs. 

Table 5 presents the functions of non-terminal 
nodes and terminal nodes in the Santa Fe Trail 
problem. We have nodes of two kinds: 0 denotes 
non-terminal nodes (branch nodes), and 1 denotes 
terminal nodes (action nodes). 

Figure 7 shows the change of the average fitness 
of the Santa Fe Trail problem obtained for 10,000 
generations. Therein, the vertical axis expresses the 
fitness values; the horizontal axis expresses the 
generation number. Figure 7 shows that GPCN_CP and 
GPCN_IL show better performance than GPCN in terms 
of the maximum fitness and the evolution rate, 
which indicates that the conditional probability 
tables and the island model are effective to improve 
the fitness. However, the fitness values of 
GPCN_CP(e) and GPCN_IL(e) are lower than those of 
GPCN_CP and GPCN_IL. The search method for the 
optimum number of execution P does not work well 
in this problem. We must examine the cause further. 

In the experiment, the GNPCN performance is 
low because the PROG function is not implemented. 

For the Santa Fe Trail problem, introducing the 
conditional probability for generation of individuals 
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Figure 7: Change of fitness of Santa Fe Trail obtained for 
10,000 generations. 

and the island model also shows their effectiveness 
to improve the fitness. 

5 CONCLUSIONS 

We applied our methods, GPCN_CP, GPCN_IL, 
GPCN_CP(e), and GPCN_IL(e) to a garbage collection 
problem and the Santa Fe Trail problem, to assess 
their performance. In those problems, our methods 
show good performance in both the maximum 
fitness and the evolution rate. The authors consider 
that using conditional probabilities and the island 
model prevented the solution from reaching a local 
optimum. Additionally, results show that the method 
to obtain the optimal value of P improves the fitness. 

To improve the fitness of the sub-population of 
GPCN_IL, our future work will integrate the 
conditional probability shown to be effective into 
GPCN_IL.  

This research was in part supported by a 
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Academic Research (General). 
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