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Abstract: In this paper a novel parallel algorithm for the tensor based classifiers for object recognition in digital 
images is presented. Classification is performed with an ensemble of base classifiers, each operating in the 
orthogonal subspaces obtained with the Higher-Order Singular Value Decomposition (HOSVD) of the 
prototype pattern tensors. Parallelism of the system is realized through the functional and data 
decompositions on different levels of computations. First, the parallel implementation of the HOSVD is 
presented. Then, the second level of parallelism is gained by partitioning the input dataset. Each of the 
partitions is used to train a separate tensor classifiers of the ensemble. Despite the computational speed-up 
and lower memory requirements, also accuracy of the ensemble showed to be higher compared to a single 
classifier. The method was tested in the context of object recognition in computer vision. The experiments 
show high accuracy and accelerated performance both in the training and classification stages. 

1 INTRODUCTION 

Tensor based methods found great interest in pattern 
recognition domain. In computer vision these were 
also shown to provide excellent results in object 
recognition (Vasillescu and Terzopoulos, 2002; 
Savas, 2007; Cyganek, 2010). Tensor based methods 
account for multidimensional nature of processed 
data. However, the price for tensor processing and 
decomposition, necessary for object recognition, is 
high memory and computation time. Thus, important 
is development of new parallel algorithms for tensor 
processing which allow full exploitation of the 
contemporary multi-core microprocessor. In this 
paper we propose such a new parallel algorithm, as 
will be discussed.  

For different object recognition problems there 
are many examples of classifiers which can achieve 
either high accuracy or fast response (Duda, 2000). 
However, the goal of reaching high accuracy and 
response factors is easier with classifiers which 
architecture naturally allows parallel processing. For 
many real data classification tasks such requirements 
can be accomplished with ensembles of classifiers, 
which recently gained much attention (Kuncheva, 

2005; Polikar, 2006; Cyganek, 2010). Such 
ensembles usually rely on operation of a group of 
cooperating classifiers. When cooperating in an 
ensemble, despite their moderate individual 
classification abilities, such a group frequently 
shows superior accuracy compared to the more 
complex but single classifiers (Kuncheva, 2005; 
Polikar, 2006).  

In this paper the problem of parallel 
implementation of the ensemble composed of tensor 
classifiers operating with the multi-dimensional data 
is discussed. The system extends our previous work 
on the problem of handwritten digits classification, 
as well as road signs recognition. These showed high 
accuracy using a serial software implementation 
(Cyganek, 2010; Cyganek, 2012). In this paper we 
present parallel versions of the mentioned 
implementation.  

In the proposed system, the member classifiers 
perform subspace classification in the spaces 
spanned by the bases obtained from the Higher-
Order Singular Value Decomposition (HOSVD) of 
the prototype pattern tensors. The HOSVD classifier 
shows good results when applied to multi 
dimensional data, such as images (Vasilescu and 
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Terzopoulos, 2002; Cyganek, 2013). This is due to 
tensor processing which allows separate control of 
all intrinsic dimensions of data. Let us recall that in 
the classical PCA-based classification method, 
images are first vectorized and, in the result, the 
obtained subspaces are spanned by vector bases 
(Turk, 1991). Contrary to this, in the HOSVD 
method the bases of the orthogonal pattern subspace 
are spanned by the two-dimensional tensors 
(images). In both methods, when classifying an 
unknown pattern, these are projected onto the 
subspaces of each of the trained class and the best 
fitting projection is returned. However, in the tensor 
case the bases are multidimensional. Nevertheless, 
computation of tensor decompositions, such as the 
HOSVD, is both time and memory demanding.  

In the proposed system parallelism is obtained 
through the functional and data decompositions on 
different levels of computations. First, the parallel 
implementation of the HOSVD is presented. Then, 
the second level of parallelism relies on data 
decomposition. For this purpose, the training dataset 
is partitioned into smaller chunks, either by 
clustering or bagging, as discussed in our previous 
works (Cyganek, 2013). Each of the training data 
partitions is then used to concurrently train a 
corresponding separate tensor classifier of the 
ensemble. Thanks to this, also memory requirements 
for the training stage are greatly reduced. Last but 
not least, the third possible level of parallelism is 
obtained on the multi-class level since each of the 
training classes can be trained independently of the 
others. Parallel operation is also possible at the 
response time of the system, since each subspace 
projection can be also computed independently. The 
experiments with the proposed system applied to the 
problem of image recognition show high accuracy, 
adjustable memory requirements, and accelerated 
performance both in the training and response 
stages. 

2 MULTI-LEVEL PARALLEL 
ARCHITECTURE OF THE 
ENSEMBLE OF MULTI-CLASS 
CLASSIFIERS 

As already mentioned, tensor processing usually 
results in high computational and memory demands. 
The former can be alleviated by parallel 
implementation of the specifically chosen parts of 
the system, as will be discussed. In this approach we 
exploit both strategies for parallel decompositions: 

 Data decomposition. 
 Functional decomposition. 

However, in many real situations, parallel 
processing of some software modules leads also to 
higher memory demands. Therefore both aspects, 
i.e. computational speed-up due to concurrency, as 
well as memory requirements, need to be considered 
together. These issues are addresses in the proposed 
classification system. 

Figure 1 shows an architecture of a single multi-
class HOSVD based classifier. Each training dataset 
of each class is used to build a separate tensor 
subspace. During classification, a test pattern is 
projected onto each of these subspaces to check the 
closest class. Parallel operation of this module is 
obtained due to the data decomposition, as well as 
parallel implementation of the HOSVD algorithm, as 
will be described. 

 

Figure 1: Architecture of a HOSVD based single classifier 
for multi-class classification. Each training dataset of each 
class is used to build a separate tensor subspace. A test 
pattern is projected onto each of the subspaces to check 
the best fit. Parallel operation of this module can be 
obtained due to data decomposition, as well as parallel 
implementation of the HOSVD algorithm. 

Figure 2 presents an extension to the system in 
Figure 1. It is an ensemble composed of the multi-
class HOSVD classifiers. Each grayed block has a 
structure as shown in Figure 1.  

3 PARALLELIZATION OF THE 
HOSVD SUBSPACE 
CLASSIFIER 

Tensors in data mining can be interpreted as 
multidimensional arrays. Processing and analysis of 
multi-dimensional data, such as images, builds well 
into this framework. However, an analysis of data 
content requires proper decomposition of pattern 
tensors. One of the most popular decomposition 
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method is the HOSVD (Cichocki, 2009; Lathauwer, 
1997; Lathauwer, 2000; Cyganek, 2013). It can be 
used to build orthogonal spaces which can be then 
used for pattern recognition in a way similar to the 
subspace projection methods (Duda, 2000)(Turk, 
1991). This procedure is briefly outlined in this 
section. More information on tensors in signal 
processing can be found in literature, e.g. (Cichocki, 
2009; Lathauwer, 1997; Lathauwer, 2000; Cyganek, 
2013; Cichocki, 2009). 

Multi-Class 
HOSVD1

Multi-Class 
HOSVDi

Multi-Class 
HOSVDN

Classifier 
Combiner

Data multiplexer (bagging, clustering)

ENSEMBLE OF HOSVD CLASSIFIERS

Test pattern

Data filtering (feature extraction)

Training dataset 
for class 1

Training dataset 
for class k

Training dataset 
for class k

 

Figure 2: Architecture of the ensemble composed of the 
multi-class HOSVD classifiers. Each base classifier has a 
structure shown in Figure 1 (grayed blocks). Each member 
multi-class classifier is trained with its partition of training 
data from each class. Data partitions are obtained due to a 
clustering or a bagging process.  

In this section let us briefly present the main 
concepts of tensors and their decomposition. The 
first concept is the k-mode vector of a P-th order 

tensor 1 2 PN N N   . It is a vector obtained from 

the elements of   by changing only one index nk, 

and keeping all other fixed. The second important 
concept is the operation of the k-mode flattening of a 
tensor. For a tensor , a result of its k-mode 

flattening is the following matrix (Lathauwer, 1997; 
Kolda, 2008) 

 
 1 2 1 1k k k PN N N N N N

k
T    

. (1)

Now we can define the HOSVD decomposition. 
For any P-dimensional tensor 

1 2 m n PN N N N N        , the HOSVD 

decomposition allows to equivalently represent  in 

the following form (Lathauwer, 1997)  

1 1 2 2 P P
   S S S  . (2)

In (2) Sk denote unitary matrices of dimensions 
NkNk, which are called mode matrices. The tensor 

1 2 m n PN N N N N       is a core tensor which 

fulfills properties of the sub-tensor orthogonality and 
decreasing energy value (Lathauwer, 1997)(Kolda, 
2008). 

Lathauwer proposed a method of computation of 
the HOSVD which is based on successive 
application of the matrix SVD decompositions to the 
flattened matrices of a given tensor (Lathauwer, 
1997). The HOSVD decomposition algorithm for a 
P-dimensional tensor   is outlined in Figure 3. It 

can be easily observed that computation of the 
HOSVD requires a series of computations of the 
SVD decompositions on flattened matrices. These 
are independent versions (different modality) of the 
input tensor. Therefore it is possible to run all these 
SVD decompositions concurrently, which must be 
synchronized on a barrier just before computation of 
the core tensor in (8), however. Figure 3 shows the 
algorithm for computation of the HOSVD. Its 
grayed area can be run concurrently, as discussed. 

Let us now observe that, thanks to the 
commutative properties of the k-mode 
multiplication, for each mode matrix Si in (2) the 
following sum can be constructed 

1

PN
h

h P P
h

  s  . (3)

Further, it can be shown that tensors 

1 1 2 2 1 1h P P    S S S   (4)

in (3) constitute the basis tensors and sh
P are 

columns of the unitary matrix SP (Lathauwer, 
1997)(Lathauwer, 2000). Thus, they form an 
orthogonal basis which spans a subspace. This 
property is used to construct a HOSVD based 
classifier (Savas, 2007; Cyganek, 2010).  

In each subspace spanned by tensors h, pattern 

recognition can be stated as a testing of a distance of 
a given test pattern Px to its projections in each of 
the spaces spanned by the set of the bases h in (4). 

That is, the following optimization process needs to 
be solved (Savas, 2007): 
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

 


2

, 1

min
i
h

i

H
i i

x h h
i c h

Q

cP  , 
(5)

where the scalars ci
h denote unknown coordinates of 

the pattern Px in the space spanned by h
i, and H≤NP 

denotes a number of chosen dominating 
components. It can be further shown that to 
minimize (5) we need to maximize the following 
value (Savas, 2007; Cyganek, 2013) 




 
2

1

ˆ ˆˆ ,
H

i

i h x
h

P . (6)

In other words, the (single) HOSVD based 
classifier returns a class i for which its i from (6) is 
the largest. 

begin 

for each k=1, …, P do 

1. From Eq.(1) compute k-
mode flattened matrix T

k
 of 

tensor   

2. Compute S
k
 from the SVD 

decomposition of T
k
 

 T

k k k k
T S V D  (7)

end 

Compute the core tensor from all 
matrices S

k
 

1 1 2 2

T T T

P P
   S S S   (8)

end 

Figure 3: Algorithm for computation of the Higher-Order 
Singular Value Decomposition of tensors of any 
dimensions. The steps in gray can be executed 
concurrently. 

Each of the multi-class HOSVD blocks denotes a 
single classification sub-system, as presented in 
Figure 1. Each member multi-class classifier is 
trained with its partition of training data from each 
class. In the proposed system data partitions are 
obtained due to the bagging process which also 
showed to be superior to the clustering. However, 
thanks to data partitions which are less numerous 
than the whole training set, training of each of the 
HOSVD member classifiers if possible on 
computers with very limited memory. More details 
on this can be found in our previous publication

 (Cyganek, 2012). 

4 IMPLEMENTATION AND 
EXPERIMENTAL RESULTS 

The presented method was implemented in C++, 
supported by the DeRecLib software from 
(Cyganek, 2013) and the OpenMP library for the 
multicore processing (Chapman, 2008; OpenMP, 
2013). The experiments were carried out on the 
computer with 8 GB RAM and the Pentium® Quad 
Core Q 820 microprocessor (eight cores due to the 
hyper-threading technology (Intel, 2013)).  

For the experiments the USPS dataset was used 
which contains selected and preprocessed scans of 
the handwritten digits (Hull, 1994)(LeCun, 1998), as 
shown in Figure 4. Each test and train pattern is a 
1616 gray level image. The database is divided into 
the training and testing partitions. The former counts 
7291, and the latter 2007 patterns, respectively. 
However, the bagging process was applied, as 
described. In effect the training dataset is split into 
smaller partitions. In this paper two partitions of 64 
and 128 elements were used in experiments 
(Cyganek, 2012).  

Figure 4: Examples of the training (top) and test (bottom) 
datasets from the USPS database (from data). 

In our experiments parallelism on different levels 
of computations were measured. Also, each parallel 
realization was analyzed in the context of memory 
requirements. The following parallel configurations 
were built and analyzed: 

1. Parallel version of the HOSVD algorithm (see 
Figure 3). 

2. Parallel construction of the HOSVD multi-
classifier shown in Figure 1 (i.e. each subspace 
built concurrently). 

3. Parallel training of the ensemble of multi-class
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 classifiers, shown in Figure 2 (i.e. each 
member classifier trained concurrently with its 
data partition). 

4. Parallel run-time system response (formula (6)). 

From the above, the version no. 1 resulted in a 
speed-up ratio of 20-30%. This is due to two factors. 
First reason is a relatively small number of parallel 
threads since number of SVD computations in the 
HOSVD algorithm (Figure 3) is equal to the tensor 
valence P. In our case P=3 since the input tensors 
consists of a number of 2D image prototypes. In 
effect, despite a high number of computations, the 
time overhead related to the thread launch makes the 
whole operation less effective. The second factor 
relates to a number of memory blocks allocated by 
the SVD procedure in our framework. In a serial 
implementation some of these allocations can be 
reused which makes computations faster. However, 
in the cases of higher order tensors, such as ten or 
above, this way of parallelism can be considered 
provide higher acceleration level than in the 
presented experiments. This is also due to the fact 
that the main tensor does not need to be copied. 
Instead, it is accessed through the proxy objects, 
each responsible for a different flattening mode. 
This feature was implemented in our software 
framework (Cyganek, 2013).   

Because of the above, the two other parallel 
processing options, no. 2 and 3, were analyzed. 
These gave the best results, however when used 
separately. Their concurrent application would result 
in the nested parallelism which showed to be 
ineffective in our system due to high thread 
overhead (there are only eight cores). However, this 
option can be used in systems with higher number of 
cores or graphic processing units (GPU).  

Figure 5 shows a speed-up ratio of the training 
process in the serial and parallel implementations, 
respectively. The plots are drawn for a different 
number of member classifiers E in the ensemble and 
different chunks of data from bagging. These are 64 
chunks in Figure 5a, and 128 chunks in Figure 5b, 
respectively. Analyzing the plots in Figure 5 we 
noticed a two-times speed-up ratio in the OpenMP 
implementation and with 8 cores. The speed-up ratio 
is higher for larger chunks of data (128 in this case). 
However, increasing numbers of data in the chunks 
has its limits due to memory capacity (only 8 GB in 
our system), as well as time for data transfers. 
Nevertheless, the proposed data decomposition at 
this level pave the way for parallel implementation. 

Interestingly, application of many classifiers (an 
ensemble)   leads   also  to  higher  accuracy  of  the 

 

Figure 5: System training speed-up ratio of the serial and 
parallel implementations for different number of member 
classifiers E in the ensemble and different chunks of data 
from bagging: 64 chunks (upper), 128 chunks (lower). 

system when compared to a single classifier. The 
highest accuracy A=95% was obtained for E=13 
member classifiers in the ensemble and 128 chunks 
of data, as reported in our previous work (Cyganek, 
2012). Nevertheless, the values of data in chunks 
and classifiers in the ensemble need to be 
determined experimentally since they depend on 
type of used data. 

Finally, parallel version no. 4 from the above list 
was tested. It resulted in speed-up ratio of 10-15% in 
the OpenMP software implementation. However, 
after that the GPU implementation was implemented 
and checked (CUDA platform) which resulted in a 
speed-up ratio of 30-120 times depending on a size 
of the base tensors h

i in (6). This option can be used 

in demanding classification tasks with large base 
tensors h

i, or in brute-force tasks in which patterns 

are checked in each pixel position of an image, etc. 
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5 CONCLUSIONS 

In this paper the parallel implementation of the 
ensemble composed of classifiers operating with 
multi-dimensional data is presented. The classifiers 
of the ensemble are based on the Higher-Order 
Singular Value Decomposition of the prototype 
pattern tensors. Parallelism of the system is obtained 
through the functional and data decompositions on 
different levels of computations. As presented, the 
first level of parallelism can be achieved by 
functional decomposition of the SVD step in the 
HOSVD algorithm. The second level of parallelism 
is obtained by concurrent subspace construction for 
each of the HOSVD classifiers. The third level of 
parallelism is due to data decomposition with proper 
partitioning of the input dataset (in our system this 
was achieved by data bagging). The proposed 
method also greatly limits memory requirements. 
Finally, the response time of the system can be 
significantly accelerated, which constitutes the 
fourth level of parallelism in the presented 
classification system. The experiments conducted on 
image recognition show high accuracy and the 
training speed-up ratio in order of 100-150% in the 
multi-core operation. Despite the computational 
advantages, also accuracy of the ensemble showed 
to be higher than in the case of a single classifier. 
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