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Abstract: Pedestrian detection is a challenging task for video surveillance. The problem becomes more difficult when 
occlusion is prevalent. In this paper, we extend a deformable part-based pedestrian detector to pedestrian de-
tection in crowded scenes by considering both body part detection responses and detections' mutual spatial 
relationship. Specifically, we first decompose the full body detector into several body part detectors, whose 
detection responses can be computed efficiently from the response of the full body detector. Then, given the 
detection responses of the body part detectors, hypotheses are nominated by considering both detection 
scores and responses’ mutual spatial relationship. Finally, a local optimization process is applied to make 
the final decision, where an objective function encouraging detections with high confidence, high discrimi-
nability and low conflict with other detections is proposed to select the best candidate detections. Experi-
mental results show the effectiveness of the proposed approach. 

1 INTRODUCTION 

Pedestrian detection is a very important task for 
video surveillance. It is difficult due to pose articula-
tions, appearance variations, low figure-ground con-
trast and etc. Recently, significant advance has been 
made on detecting well separated individual pedes-
trians through training detectors using statistical 
machine learning methods and running the detectors 
on the detection window that slides over image posi-
tions and across scale levels (Dollar, 2012). Howev-
er, when applied to the detection of crowds, their 
performance degrades significantly due to ambigu-
ous appearance caused by heavy occlusions. 

The deformable part-based model (DPM) trained 
using latent support vector machine (Felzenszwalb, 
2010) has been proved to be one of the most power-
ful object detectors. It runs detection on individual 
parts and then sum up the responses to form the final 
detection score. DPM has a good potential to apply 
to crowd detection because parts can be flexibly 
removed from and added to the model to deal with 
occlusion. There are some works that apply the 
DPM models to deal with occlusion (Ouyang, 2012); 
(Shu, 2012); (Yan, 2012). However, (Ouyang, 2012) 
and (Shu, 2012) focus on improving the responses in 
a detection window without considering detection 
responses of neighboring windows; only Yan, 2012 

determines the visibility of part by simultaneously 
considering the appearance and mutual spatial rela-
tionship. Therefore, the aim of this work is to adapt 
a DPM based full body pedestrian detector to crowd 
detection in surveillance scenarios by considering 
both body part detection responses and detections' 
mutual spatial relationship. 

In this paper, we assume the camera looks down 
onto a ground plane and no camera parameter is 
known. Specifically, we first propose to decompose 
the original whole body detector trained on the 
INRIA pedestrian dataset into several body part 
detectors, whose responses are computed efficiently, 
and the bias term for each part detector is estimated 
from the training data so that the same threshold can 
be used to select responses from different body part 
detectors. Then, given the detection responses of the 
body part detectors, hypotheses that may correspond 
to genuine pedestrians are nominated by considering 
both detection scores and responses’ mutual spatial 
relationship. Finally, a local optimization process is 
applied to make the final decision, where an objec-
tive function encouraging detections with high con-
fidence, high discriminability and low conflict with 
other detections is proposed to select the best detec-
tions from the mutually overlapped hypotheses. 
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2 RELATED WORK 

For pedestrian detection in crowded scenes, there are 
two categories of works. The first category deals 
with occlusion from the detector's respect. For ex-
ample, in Wang, 2009, full body detector based on 
HOG and LBP is first applied and the classification 
score of each block is used to infer whether occlu-
sion occurs and where it occurs. Ouyang et al., 
(2012) designed overlapping body parts and verify 
the visibility of a part by the scores of overlapping 
parts and the correlation among parts is modeled by 
a discriminative deep model. Duan et al., (2010) 
proposed a structural filter consists of a set of detec-
tors which is able to infer what parts are visible in a 
test window. Shu et al., (2012) designed a DPM 
based detector that deals with partial occlusion by 
selecting the subset of parts that maximizes the av-
erage score of parts. The disadvantage of this cate-
gory of methods is that the responses of other detec-
tion windows is not considered.  

The second category approaches use body part 
detectors to nominate a set of candidates and then 
perform optimization over an objective function to 
select the best candidate subset as the final detection 
result. As the number of possible combinations of 
candidates is quite large, efficient optimization 
method must be developed. For example, Wu, 2005, 
(Lin, 2007); (Beleznai, 2009) assumed the occlusion 
order is known and used greedy methods for optimi-
zation. Global optimization methods such as Expec-
tation-Maximization (EM) (Rittscher, 2005); (Tu, 
2008) and Markov Chain Monte Carlo (MCMC) 
(Zhao, 2003); (Ge, 2009) have also been developed. 
In Rujikietgumjorn, 2013, the best set of candidates 
are determined by applying quadratic programming 
to maximize the objective function composed of 
unary detection scores and pairwise mutual overlap 
constraints. Wang et al. proposed to compromise 
greedy optimization and global optimization by 
considering a small portion of mutual overlapped 
candidates each time (Wang, 2012). In this work, we 
apply the optimization strategy similar to Wang, 
(2012). 

3 THE BODY PART MODELS 

The original full body person model we consider in 
this work consists of one root filter (F0) and eight 
body part filters (F1, ..., F8), as shown in Figure 1(a), 
where each green box corresponds to one body part 
filter Fi, and the combination of the gray and green 
areas constitute the root filter F0. A deformation cost 

coefficients di (i=1,...,8) is also defined for each 
body part. The features for body part filters are ex-
tracted at twice the resolution of the root filter for 
both training and detection.  

 

 
               (a)          (b)          (c)          (d)         (e)         (f) 

Figure 1: Illustration of the body part models: (a) full body 
model; (b) upper body model; (c) head shoulder model; 
(d) left upper body model; (e) right upper body model; (f) 
lower body model. 

The score of each detection window is defined 
by the location p0 of the root filter as 

 

ܵሺ݌଴ሻ ൌ max
௣భ,…,௣೙

ܵሺ݌଴,… , ௡ሻ݌ , with 

(1)ܵ௞൫݌௞,଴, … , ௞,௡ೖ൯݌ ൌ ௞,଴ܨ
ᇱ ∙ ߶൫݌௞,଴൯ ൅ ∑ ௞,௝ܨൣ

ᇱ ൫݌௞,௝൯ െ
௡ೖ
௝ୀଵ

݀௞,௝ ∙ ߶ௗ൫݀ݔ௞,௝, ௞,௝൯൧ݕ݀ ൅ ܾ௞  
 

where pi=(x, y, l) specifies a position(x, y) in the lth 
level of the feature pyramid; li = l0 - λ for i>0 (λ is 
the number of levels in an octave of the feature pyr-
amid); ߶ሺ݌௜ሻ is the feature vector extracted from the 
feature pyramid with top-left corner at pi; 
߶ௗሺ݀ݔ௜,   .௜ሻ are the deformation featuresݕ݀

To deal with the mutual occlusion exists preva-
lently in crowded scenes, we derive five body part 
detectors {D1, ..., D5} from the full body model, as 
shown in Figure 1 (b)-(f), namely the upper body, 
the head shoulder, the left/right upper body and the 
lower body detectors. Among the five body part 
detectors, upper body, head shoulder and lower body 
detectors are widely used in crowd detection works 
(e.g. Wu, 2005). The left/right upper body parts are 
applied here to deal with more severe occlusion 
where only one shoulder is visible.  

In each derived body part detector Dk, the consti-
tutional body part filters (green boxes) {Fk,1,…, 
 ,௞,௡ೖ} (nk<8) are a subset of {F1, ..., F8}. Similarlyܨ
the deformation coefficients {dk,1,…, ݀௞,௡ೖ } are a 
subset of {d1, ..., d8} and the root filter Fk,0 (the 
combination of the gray and green areas) is a subar-
ray of F0. Thus, similar to Eq. (1), the response 
ܵ௞൫݌௞,଴൯ of a part detector Dk at the root filter loca-
tion ݌௞,଴ can be computed by 

 

ܵ௞൫݌௞,଴൯ ൌ max௣ೖ,భ,…,௣ೖ,೙ೖ ܵ௞൫݌௞,଴, … ,  ௞,௡ೖ൯, with݌

(2)ܵ௞൫݌௞,଴, … , ௞,௡ೖ൯݌ ൌ ௞,଴ܨ
ᇱ ∙ ߶൫݌௞,଴൯ ൅ ∑ ௞,௝ܨൣ

ᇱ ൫݌௞,௝൯ െ
௡ೖ
௝ୀଵ

݀௞,௝ ∙ ߶ௗ൫݀ݔ௞,௝, ௞,௝൯൧ݕ݀ ൅ ܾ௞  
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which is completely part of the calculation in Eq. 
(1), except that the bias bk needs to be estimated. To 
avoid redundant calculation, an efficient way for 
calculating ܨ௞,଴

ᇱ ∙ ߶ሺ݌௞,଴ሻ for all Dk's is to: 1) parti-
tion F0 into subfilters, 2) compute filtering responses 
for each resulting subfilter, and 3) sum up the re-
sponses accordingly for each Dk. To achieve this, we 
divide F0 into a minimum number of 7 subfilters 
଴ܨ}

ଵ, ..., ܨ଴
଻} according to the configuration of part 

detectors, as shown in Figure 2, which requires the 
minimum computational time and the memory space 
for saving the responses.	 

 

 

Figure 2: Partition of the root filter F0 into 7 subfilters for 
calculating the part detectors’ root filters. 

To estimate the bias term bk for each body part 
detector Dk so that the same threshold can be used to 
measure responses from different body part detec-
tors, we learn it from the training data similar to the 
way proposed in Wang, 2009 as follows. 

We revisit the INRIA person data and apply the 
full body detector to find the best deformation con-
figuration of parts (i.e. p1, ...p8 given p0) on both 
positive and negative examples. Then for each ex-
ample, we record the score ௜ܨ	

ᇱ ∙ ߶ሺ݌௜ሻ െ ݀௜ ∙
߶ௗሺ݀ݔ௜,  ௜ሻ of each body part i (i = 1, …, 8), asݕ݀
well as the score  ܨ଴

௤ ∙ ߶ሺ݌଴
௤ሻ of each subfilter ܨ଴

௤ 
(q=1, …, 7) of F0. Considering the linearity of the 
dot product operation, the score f(x) of an example x 
can be written as  

 

݂ሺxሻ ൌ xߙ ൅ ܾ ൌ෍ሺߙ௜ܤ௜ ൅ ௜ሻߚ

଼ା଻

௜ୀଵ

,	with 

(3)
௜ߙ ൌ ൜ ଴ܨ

௜ ݅ ൌ 1,… ,7
ሺܨ௜ି଻, ݀௜ି଻ሻ ݅ ൌ 8,… ,15

, 

௜ܤ ൌ ൜ ߶ሺ݌଴
௜ ሻ ݅ ൌ 1,… ,7

ሺ߶ሺ݌௜ି଻ሻ, െ߶ௗሺ݀ݔ௜ି଻, ௜ି଻ሻሻݕ݀ ݅ ൌ 8,… ,15
and

ܾ ൌ෍ߚ௜	.

଻ା଼

௜ୀଵ

 

 

Then, according to Wang, 2009, ߚ௜ can be estimated 
by  

 

௜ߚ ൌ ௜ߙܦ ቌܥ෍ܤ௨,௜
ା

ேశ

௨ୀଵ

൅෍ܤ௩,௜
ି

ேశ

௨ୀଵ

ቍ, (4)

where ܤ௨,௜
ା ௩,௜ܤ) 

ି ) denotes the ith block of the uth (vth) 
positive (negative) example; N+ (N-) is the number of 

positive (negative) examples; C is the negative of 
the ratio between sum of the positive example scores 
and sum of the negative example scores; D equals to 
-1/(CN++N-). Then the bias bk for body part detector 
Dk can be calculated by 

 

ܾ௞ ൌ ∑ ௤ሼ௤|ிబߚ
೜∈ிೖ,బሽ

൅ ∑ ௜ା଻ሼ௜|ி೔∈஽ೖሽߚ , (5)
 

To get a concept of the discriminability of the de-
rived part detectors, the ROC curves of these detec-
tors on the INRIA training data set are shown in 
Figure 3. We can see that the discriminability of 
body part detectors is significantly lower than that of 
the full body detector, and the less number of parts 
contained, the lower the detector's discriminability 
is. This result can be expected because less infor-
mation is made use of by body part detectors.  

 

 

Figure 3: The ROC curves of the part detectors' perfor-
mance on the INRIA training data. 

4 DETECTION 

To find the optimal combination of detection re-
sponses, we first merge responses of the same type 
which are likely to correspond to the same pedestri-
an. Then detection scores and responses’ spatial 
relationship are considered to further exclude unlike-
ly responses. Finally, a local optimization process is 
applied to make the final decision that selects detec-
tions with high confidence, high discriminability and 
low conflict with other detections. 

To select the likely candidate detections, two 
quantities, namely the attraction force Fatt(H, H') and 
the exclusion force Fexc(H,H'), that can describe the 
consistency and confliction between any two hy-
potheses H and H’ are calculated. Fatt calculates the 
overlapping degree by  

 

ᇱሻܪ,ܪ௔௧௧ሺܨ ൌ෍
,ܪሺܣሺܽ݁ݎܽ ݅ሻ ∩ ,ᇱܪሺܣ ݅ሻሻ
,ܪሺܣሺܽ݁ݎܽ ݅ሻ ∪ ,′ܪሺܣ ݅ሻሻ

௜ݓ

଼

௜ୀ଴

, (6)

 

where A(H, i) represents the image region occupied 
by the ith part of H (if H does not contain part i, then 
A(H, i) = 0); ∩  and ∪  denote the intersection and 
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union of two regions; wi is the weight of the ith part 
and is set to be -ߚ௜. Two hypotheses with large Fatt 
are likely to correspond to the same pedestrian. Fexc 
is defined as 

 

,ܪ௘௫௖ሺܨ ᇱሻܪ ൌ෍ ෍
,ܪሺܣሺܽ݁ݎܽ ݅ሻ ∩ ,ᇱܪሺܣ ݅ᇱሻሻ
,ܪሺܣሺܽ݁ݎܽ ݅ሻ ∪ ,ᇱܪሺܣ ݅ᇱሻሻ

଼

௜ᇲୀ଴,௜ᇲஷ௜

଼

௜ୀ଴

. (7)

 

Two hypotheses with large Fexc are unlikely to be 
true simultaneously. 

4.1 Hypotheses Formation 

Given a global threshold θ, responses of all the body 
part models with detection score greater than θ are 
taken as possible hypotheses. To reduce the number 
of responses to deal with, non-maximum suppres-
sion is performed for responses from the same detec-
tor by setting the bounding box overlap threshold to 
be 0.7 (the threshold is set relatively higher to avoid 
missing genuine detections). After that, we further 
use Fatt>1.5 as a criterion to merge responses from 
the same part detector with bounding box overlap-
ping ratio less than 0.7 but having significant parts 
overlap. The advantage of Fatt over bounding box 
overlap is that weighted body part overlap is also 
taken into account. 

To exclude those hypotheses unlikely to be true, 
we conduct hypotheses formation as described be-
low. 

(1) All the hypotheses produced by the full body 
detector are added to the list of hypotheses (LoH) 
as they are most reliable. 

 

Figure 4: Definition of the parent detector. The whole 
body detector is the parent detector of upper body detector 
and lower body detector; the head shoulder detector is the 
parent detector of head shoulder, left upper body and right 
upper body detector.  

(2) A hypothesis nominated by a body part model is 
added to LOH if the lacking portion compared 
with its parent detector (e.g. for the head shoul-
der detector, the lacking portion is the waist) is 
significantly occluded by other hypotheses in 
LoH or the image border. Definition of parent 
detection is shown is Figure 4.  

In our experiment, we found the bottom border of 
the image can produce a strong shoulder effect, re-
sulting in false positives when the corresponding 
head position has weak edge response. Therefore, 
for the head shoulder detector, its detection thresh-
old is set to be 0.2 greater than θ. 

4.2 Optimization 

Given the list of hypotheses LoH, we use a local 
optimization method to make the final decision. In 
each iteration of the optimization process, we con-
sider the hypotheses that might be the lowest in 
terms of the vertical position together with hypothe-
ses which have significant overlap with them. Then 
from these hypotheses, the one that best matches the 
criteria is accepted and unqualified hypotheses are 
rejected. The optimization process terminates when 
all the hypotheses are either accepted or rejected. 
Details of this process are described as follows. 

Due to occlusion and the lack of scale constraint, 
it is not easy to decide which hypothesis is the low-
est. Therefore, we take the hypotheses whose bound-
ing boxes' bottom, or center, or top are the lowest as 
possible lowest hypotheses. Then the hypotheses 
that overlap significantly with the lowest hypothe-
ses, i.e. Fatt>a (0.2 is used in our experiment), are 
also selected for consideration, ensuring that no true 
detections are neglected during the optimization. 
After that, we choose from them the one that is most 
likely to be true according to the following equation 

 

∗ܪ ൌ argmaxுሾ݁ݎ݋ܿݏሺܪሻ ൅ ∑ ௜ሼ௜|ி೔∈஽ሺுሻሽݓ െ
∑ ,ܪ௘௫௖ሺܨ ᇱሻሿுᇲ∈஼ೌ೎೎ܪ   (8)

 

where score(H) is the detection score of hypothesis 
H, D(H) is the type of the body part detector of H, 
and Cacc represents the set of accepted hypotheses. 
Eq. (8) selects the hypothesis with higher score, 
more parts (meaning higher discriminability), and 
less conflict with other accepted hypotheses. From 
our experiment, Eq. (8) makes correct decisions in 
most cases. However, sometimes a hypothesis with 
good confidence may be missed by (8) due to the 
smaller number of parts it contained. Therefore, we 
further consider the hypotheses whose tops are lower 
than H* and meanwhile with detection scores greater 
than H*, and choose the best one from them accord
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ing to Eq. (8) again.  
The hypothesis H* chosen above is accepted and 

added to Cacc except for the following two cases: 

(1) It has less than two basic parts visible or its head 
is invisible. This is to ensure that the accepted 
hypothesis has enough visible ratio to support its 
existence. 

(2) It is a body part detector Dk's response, and 
meanwhile body parts of its parent detector Dj in 
the same detection window p are all visible but 
with detection score Sj(p) <θ. This is the case 
that the occlusion information is not sufficient to 
explain the existence of the part detector re-
sponse.  

5 EXPERIMENTAL RESULTS 

We evaluate the performance of our proposed ap-
proach on two data sets, i.e. CAVIAR 
(http://homepages.inf.ed.ac.uk/rbf/CAVI-RDATA1) 
and PETS 2009 (http://www.cvg.rdg.ac.uk/PETS20-
09/a.html). We select the crowded sequence 
OneStopMoveEnter1cor (1590 frames with resolu-
tion being 384ൈ288) from the CAVIAR data set, 
and the S2L1_1 sequence (221 frames with resolu-
tion being 768ൈ576) from the PETS 2009 data set, 
as the testing data. We compare the performance of 
our proposed approach with two deformable part 
based person detectors trained using Latent SVM 
(Felzenszwalb, 2010). The first one is the full body 
detector from which we derive our approach, and the 
second one is a mixture of separately trained full 
body and body part detectors (the part detectors are 
the upper body and head shoulder detectors), and is 
trained on the VOC2007 person dataset. Both detec-
tors are provided online (http://www.cs.uchicago. 
edu/~pff/latent/). 

All the three detectors need to perform nonmax-
imum suppression, in which the bounding box over-
lap threshold needs to be determined. We set this 
parameter to be 0.7 for our approach as stated above. 
For the other two detectors, we experimentally select 
the optimal overlap threshold for them  and the re-
sulting parameter is 0.6 for the INRIA full body 
model and 0.5 for the VOC2007 body part model.  

The detection performance evaluation criterion 
used is the commonly applied intersection over un-
ion greater than 0.5, under the constraint that the 
detection and the ground truth are in one to one cor-
respondence.  

Figure 5 shows the recall-precision curves of the 
three detectors on the CAVIAR data set, from which 

we can see that our proposed approach consistently 
outperforms both detectors because of the applica-
tion of body part detectors while performing occlu-
sion reasoning at the same time. Figure 6 illustrates 
some examples of the detection results of our ap-
proach when the threshold ߠ is set to be 0.  

  

Figure 5: The precision-recall curves of the three detectors 
on the tested Caviar sequence. 

    ..   

Figure 6: Illustration of the detection results of the pro-
posed approach on the Caviar data set. 

Figure 7 demonstrates the performance of the 
three detectors on the PETS 2009 data set. It can be 
seen that the body part model performs the worst, 
whereas our proposed approach gives better result 
when the recall rate is less than 0.7. The reason that 
the performance of our approach at high recall rate is 
not satisfactory is that if two detections share many 
parts, although their bounding box do not overlap 
significantly, we take the two detections as conflict-
ing, discarding more true positives when body parts 
are not accurately localized whereas the non-
maximum suppression applied by the full body 
model does not do this action.  

 

Figure 7: The precision-recall curves of the three detectors 
on the tested PETS 2009 sequence. 
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Figure 8 illustrates some examples of the detec-
tion results of our approach on the PETS 2009 data 
set when the threshold ߠ is set to be 0.  

 

 

Figure 8: Illustration of the detection results of the pro-
posed approach on the PETS 2009 data set. 

For each frame, our proposed approach takes 
about 15% more time to calculate the part detection 
scores than the full body detector, whereas the com-
putational time for the hypotheses formation and 
optimization is quite short and can be neglected. The 
VOC 2007 body part model cost more than twice the 
time cost by our approach, due to that body part 
filters are not well shared among different body part 
detectors. 

6 CONCLUSIONS 

We have developed an approach to adapting the 
deformable part based pedestrian detector to crowd-
ed scenes by considering both body part detection 
responses and detections' mutual spatial relationship, 
without enforcing much additional computational 
overhead through part response sharing, while im-
proving the detection results significantly. 

Our future wok includes enriching the part detec-
tors with higher discriminability; estimating the 
pedestrians' size distribution over the image online 
so that size constraint can be enforced on the detec-
tion of future coming frames; designing an efficient 
global optimization method that considers both con-
flicts between overlapping visible parts and detec-
tion scores so that decisions can be made more 
properly. 
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