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Abstract: The ability of generalization by random forests is higher than that by other multi-class classifiers because of
the effect of bagging and feature selection. Since random forests based on ensemble learning requires a lot of
decision trees to obtain high performance, it is not suitable for implementing the algorithm on the small-scale
hardware such as embedded system. In this paper, we propose a boosted random forests in which boosting
algorithm is introduced into random forests. Experimental results show that the proposed method, which
consists of fewer decision trees, has higher generalization ability comparing to the conventional method.

1 INTRODUCTION trees must be constructed to obtain high generality.
However, increasing the number of decision trees in-

Random forest(Breiman, 2001) is a multi-class clas- C'€ases the memory requirements, so that approachiis
sifier that is robust against noise, has high discrimina- N°t Suited to implementation on small-scale hardware
tion performance, and is capable of training and clas- SUCh as embedded system. We therefore propose a
sifying at high speed. It is therefore attracting atten- P00sted random forest method, in which a boosting
tion in many fields, including computer vision, pattern /gorithm is introduced in random forest. The pro-
recognition, and machine learning(Amit and Geman, Poséd method constructs complementary classifiers
1997), (Lepetit and p. Fua, 2006), (J. Shotton and by successive decision tree construction and can yield

Cipolla, 2008), (J. Shotton et al., 2011), (Gall et al., plass_ifier_s yvith_smaller decision trees while maintain-
2011). Random forest controls loss of generalization N9 discrimination performance.

in training due to overfitting by introducing random-

ness in bagging and feature selection(Ho, 1998) when

constructing an ensemble of decision trees. Each2 RANDOM FOREST

decision tree in random forest is independent, so

high speed can be attained by parallel processing inRandom forest is an ensemble training algorithm that
tree training and classification. Boosting(Freund and constructs multiple decision trees. It suppresses over-
Schapire, 1995) is a typical ensemble training algo- fitting to the training samples by random selection
rithm that is used to sequentially construct classifiers of training samples for tree construction in the same
for random forest that involve independent decision way as is done in bagging(Breiman, 1996),(Breiman,
trees. Boosting is an ensemble training algorithm that 1999), resulting in construction of a classifier that is
combines weak learners, which individually have low robust against noise. Also, random selection of fea-
discriminating performance, to construct a classifier tures to be used at splitting nodes enables fast train-
of higher discriminating performance. Boosting gen- ing, even if the dimensionality of the feature vector is
erally attains high discrimination by sequential train- large.

ing of classifiers in which the training sample for

which the previous classifier produced classification 2.1 Training Process

errors is used to train the subsequent classifier to pro-

duce correct classification. However, boosting tends In the training of random forest, bagging is used to
to overfit the training sample. Random forest, on the create sample sub sets by random sampling from the
other hand, uses randomness in the construction of thetraining sample. One sample set is used to construct
decision trees, thus avoiding overfitting to the training one decision tree. At splitting nodg sample seg,
sample. For that reason, a large number of decisionis split into sample sets; and.S; by comparing the
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value of feature quantity; with a threshold value
1. The splitting function of the splitting node se- —— .
lects combinations that can partition the most samples Reauire: Training samplegxy, y1, Wi}, {Xn, yn. W };

from among randomly selected featurdg} ; and Init: Initi;ilsexs’grinil“{el\’lvzéi'éH?w'\i/:'}’Wi

Algorithm 1: Proposed method.

threshold{th}ﬂz1 for each class. The recommended @ _ 1
number of feature selection, is the square root of  Rrun: N
the feature dimensionality. The evaluation function fort=1:T do
used for selecting the optimum combination is the in- Make subseg; from training samples.
formation gain,AG. The splitting processing is re- AG”““:_—‘”-
peated recursively until a certain depth is reached or ~ fork=1:Kdo
. . . . . Random sampling from featurg.
until the information gain is zero. A leaf node is then for h—1-H do

created and the class probabilRyc|l) is stored. Random sampling from threshotg.

Split §, into § or S by fx andt.
Compute information gaiAG:

AG=E($) — 1 E(S) — 5ES).

if AG > AGnax then

2.2 Classification Process

An unknown sample is input to all of the decision

trees, and the class probabilities of the leaf nodes ar- gﬁmax =A4G
rived at are output. The class that has the largest av- enc?rf]orl
erage of the class probabilities obtained from all of ol

the decision tree$}(c|x), according to Eq. (1) is the

cLisit it if AGmax = 0 0Or reach a maximum depthen
classification decision.

Store the probability distributioR(c|l) to leaf node.
else
(1) Generating a split node recursively.
end if
if Finished training of decision treben
Estimate class labgl:"
¥ = arg maxd (|l ).

1 T
Ple) = 3 (e

2.3 Number of Decision Trees and

Discriminating Performance c .
Compute error rate of decision treg

N N
Random forest achieves generality by using a large g= Y w'/ lei(”.
number of decision trees for ensemble training. How- iy 75 i=

ever, it is difficult to obtain the optimum number of Compute weight of decision treq:
trees for training, so there are many redundant deci-
sion trees that consume a large amount of memory.

3 BOOSTED RANDOM FOREST

Random forest is robust against noise and has high

ay = 3 log M=1=8)

if a > Othen
Update weight of training sampie ;1:
(t+1) _

" w'exp(ay) i yi # Y,
' w" exp(—a;) otherwise
else
Reject a tree
end if

end if

generality because of random training. However, it .

requires many decision trees, as using fewer deci-
sion trees reduces performance. It therefore cannotupdating.
maintain generality when implemented on small-scale {xj,y1,w1},...,{Xn,Yn,Wn}, that have a feature of
hardware. For that reason, boosting is introduced to dimensiond and class labelgc M are prepared. The
random forest. The purpose of using boosting is to training sample weighty, is initialized toﬁ. Sample

First, a training sample of size N,

maintain generality even with a small number of de- sets are created by random sampling from the train-
cision trees by using the fact that sequential training ing sample. Decision trees are constructed using the
constructs complementary decision trees for the train- sample sets in the same way as in random forest. Pro-

ing samples. posed algorithm 1 is described in above.

3.1 Training Process 3.1.1 Node Splitting

The proposed training algorithm involves one proce- The flow of the proposed method is illustrated in
dure for when the sample weighting is updated and Fig. 1. The splitting function selects combinations of

another procedure for when there is no
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randomly-prepared features and thresholds that have
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Figure 1: Training algorithm of the proposed method.

the highest information gain. The information gain
AG is computed by

|51 |5t
E(S)) - =
T
wheres, is sample set at nodg S is sample set at
left child -node,S; is sample set at right child node,
andE(S) is entropy computed by

AG =E(Sn) — E(Sr), (2

M
E(S) =— > P(cj)logP(c)). ®)
=1

In calculating the information gain, the samples are
prioritized by largest weight and the probability of
classcj, P(cj), is calculated using the weight of sam-
plei, w; computed using

e = ies%:cj / gsWi’

where,Sis the sample set that arrived at node. A leaf

(4)

tree is discarded. The training sample is classified by
the constructed decision trees and the error rate is cal-
culated from the weights of the incorrectly classified

samples as
N N
& = é Wl(t)/ ZWFU
i2yi i i=

3.1.3 Updating Training Sample Weights

(6)

Decision trees that easily correct classification of the
samples that have been incorrectly classified in the
next step are constructed by making the weights of
incorrectly classified samples large as

) v Lo
Wi(t+l) _ Wi(t> exp(oy) ifyi # y'. 6
w;’ exp(—ay) otherwise
wherey; is estimated class label using
yi = arg maR (cfl). ®)
C

After updating the training sample weights, the
weights are normalized td. Constructing the deci-
sion trees and updating the training sample weights in
that way is repeated to obtaindecision trees and
weighted decision trees. After all decision trees have
been constructed, the decision tree weights are nor-
malized.

3.2 Classification Process

An unknown sample is input to all of the decision
trees as shown in Fig. 1, and the class probabilities
that are stored in the arrived-at leaf nodes are output.
Than, the outputs of the decision tre@(c|x), are

node is created when recursive splitting has developedweight-averaged using the decision tree weights as

the decision tree to a certain depth or when the infor-
mation gain of a sample set that has reached a node is

zero. The leaf node stores the class probabiity)
obtained with Eq. (4).

3.1.2 Decision Tree Weighting

In the same way as for multi-class boosting(Kim and

Cipolla, 2008), (Saberian and Vasconcelos, 2008), the

decision tree weightyy, is calculated by

1 (M-1)1-g)

0= log =, )

where,&; is the error rate of the decision tree akid

T
P(c|x) = %tzlatPt(qx). (9)

The class that has the highest probabiitis dutput
as the classification result by

y = arg maxP(c|x). (10)
Cc

4 EXPERIMENTAL RESULTS

To show the effectiveness of the proposed method,
the number of nodes are compared for the proposed

is the number of classes. The expected value for theMethod and the conventional method at the same level
successful classification rate in random classification ©f generalization ability. For the proposed method,

1

is TE If the classification error rate exceed&%,
the value ofa is negative in Eq. (5) and the decision
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we investigated procedures with and without sequen-
tial sample weight updating.



4.1 Data Set

The evaluation experiments used four data sets,

Pendigits, Letter, Satelite, and Spambase, from those

published by the UCI Machine Learning Repository
as a set of machine training algorithm benchmarks.
The data sets are described briefly in Table 1.

Table 1: Data sets.

Dataset | Training | Tests | Class| Dim.
Pendigits | 7,494 | 3,498 | 10 16
Letter 10,000 | 10,000| 26 16
Satelite 4,435 | 2,000 6 36
Spamebase 3,221 | 1,380 2 57

4.2 Training Parameter

In this experiment, the depth of the decision trees for
training parameters was fixed at 5, 10, 15, and 20.
We compared the minimum value of the miss rate by
changing the number of decision trees. The number
of candidates for the split function was 10 times the
square root of the number of feature dimensions.

4.3 Experimental Results

The error ratio for each dataset of the conven-
tional random forest(RF) and for the proposed
method(boosted random forest with or without sam-
ple weight updating, BRF, BRF w/o updating) are
shown in Table 2, 3, and 4 respectively. The miss

Table 2: Error rate by random forest [%].

Depth || Pen | Letter | Satelite| Spame|| Ave.
5 8.38| 22.95| 13.05 | 6.88 || 12.82
10 3.97| 7.25 9.95 5.58 6.69
15 3.66| 6.40 9.30 5.14 6.13
20 3.69| 6.20 9.10 471 5.92

Table 3: Error rate by boosted random forest w/o updating
[%%].

Depth || Pen | Letter | Satelite| Spame|| Ave.
5 8.18 | 22.75| 1295 | 6.81 || 12.67
10 3.92| 750 | 10.05 | 5.58 6.76
15 3.66| 6.20 9.40 5.07 6.08
20 3.72| 6.10 9.10 4.64 5.89

rate of the proposed method was lower than that of the
random forest when the number of depth for decision
trees was shallower. In contrast, when the number of

Boosted Random Forest

Table 4: Error rate by boosted random forest [%].

Depth || Pen | Letter | Satelite| Spame|| Ave.
5 3.72] 11.45] 10.70 | 457 || 7.61
10 2.55] 5.00 8.35 4.13 |[ 5.01
15 2.69| 455 8.25 3.77 || 4.81
20 2.66| 4.40 8.20 3.55 || 4.70
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Figure 2: Generalization error of pendigits.

performance of the boosted random forest with up-
dating sample weight is superior. Figure 2 shows the
miss rate for each depth in the case of the “Pendig-
its” dataset. From Fig. 2, we realized that the ran-
dom forest requires more depth in order to obtain a
higher classification performance than the proposed
method. In contrast, the proposed “boosted random
forest” method does not require more depth because
it has been trained by choosing the split function with
difficult training samples at upper nodes, which have
a heavier sample weight.

4.4 Memory Usage for Decision Trees
For the implementation of decision trees on small-

scale hardware, less memory is better. Therefore,
in this section we compare the amount of memory

depth for decision trees was deeper, the miss rate ofneeded for each method. For each node, the total

the proposed method was equal to or lower than that
of the random forest. It is clear that the classification

memory of a split function is 11 bytes, of which the
selected feature dimension is 1 byte, the threshold is
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2 bytes, and the pointer for a child node is 8 bytes.
For each leaf node, total memory is estimated by the
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decision trees, because it constructs complementary

classifiers through sequential training by boosting.
Experimental results show that the total memory re-
quired by the boosted random forest is 47% less
than that of the conventional random forest. It is
thus suited to implementation in low-memory, small-

scale hardware applications such as embedded sys-

tems. Our future work includes experimental evalua-
tion for image recognition problems that are currently
difficult to classify.
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