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Abstract: ChIP-Seq experiments provide accurate measurements of the regulatory roles of transcription factors (TFs) 
under specific condition. Downstream target genes can be detected by analyzing the enriched TF binding 
sites (TFBSs) in genes’ promoter regions. The location and statistical information of TFBSs make it 
possible to evaluate the relative importance of each binding. Based on the assumption that the TFBSs of one 
ChIP-Seq experiment follow the same specific location distribution, a statistical model is first proposed 
using both location and significance information of peaks to weigh target genes. With genes’ binding scores 
from different TFs, we merge them into a weighted binding matrix. A Markov Chain Monte Carlo (MCMC) 
based approach is then applied to the binding matrix for co-regulatory module identification. We 
demonstrate the efficiency of our statistical model on an ER-α ChIP-Seq dataset and further identify co-
regulatory modules by using eleven breast cancer related TFs from ENCODE ChIP-Seq datasets. The 
results show that the TFs in individual module regulate common high score target genes; the association of 
TFs is biologically meaningful, and the functional roles of TFs and target genes are consistent. 

1 INTRODUCTION 

Chromatin immunoprecipitation with massively 
parallel DNA sequencing (ChIP-Seq) has greatly 
advanced the regulation mechanism analysis by 
identifying transcription factor binding sites 
(TFBSs) of specific protein of interest (Park, 2009). 
This technology helps biologists investigate that 
how proteins interact with DNA to regulate gene 
expression, which is essential for understanding 
many biological processes and disease states. 
Recently, to examine the principles of the human 
cancer transcriptional regulatory network, many 
ChIP-Seq experiments are being carried out in 
various cancer cells to test hundreds of TFs under 
different treatment conditions (Dunham et al., 2012; 
Hurtado et al., 2011; Ross-Innes et al., 2010; Schultz 
et al., 2010). With resources from the ENCODE 
project (Dunham et al., 2012), researchers can now 
investigate different TFs simultaneously under the 
same cell type (Gerstein et al., 2012).  

For ChIP-Seq data analysis, several motif searching 
tools (Bailey et al., 2006; Heinz et al., 2010) are 
widely used for both known motifs enrichment and 
de novo motif discovery. In target gene annotation 
(McLean et al., 2010; Salmon-Divon et al., 2010), 
however, only the distance between the peak 
location and the transcription starting site (TSS) of 
its target gene is utilized to establish gene regulation. 
As a result, over one thousand target genes are 
obtained but no rank information provided. A 
narrowed down gene list with fewer false positives 
is desirable for biologists to perform further 
validation. To tackle this issue existing in current 
target gene identification, new methods utilizing 
more information from the peak files are developed. 
A reasonable assumption used in the TIP method 
(Cheng et al., 2011) is that TFBSs in target genes’ 
promoter region would follow the same position-
specific probability distribution. But it is known that 
only a portion of the TFBSs contain the TF 
associated motifs, usually constituting 20 ~30% of 
all peak files (Bailey et al., 2006; Heinz et al., 2010). 
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In that case, it is hard to assert that the TFBSs 
without similar sequence pattern would follow the 
same location-specific distribution. The false 
positives in the peak files will contaminate observed 
TFBS’s distribution. Furthermore, TIP only utilizes 
each peak’s location information, regardless its 
significance. The p-value of each peak indicates the 
confidence of the current TFBS. If all the peaks 
were treated equally when we generated the TFBS’s 
location specific distribution, the low confident 
peaks would lower the sensitivity of the target gene 
identification. To improve these potential 
weaknesses in TIP method, we proposed a more 
rigorous hypothesis that the TFBSs containing 
similar motifs should follow the same position-
specific distribution, and developed a statistical 
model by incorporating peak’s both location and 
statistics information to reveal the weight of each 
gene. This approach offers a statistical inspection of 
the binding relationship between enriched TFBSs 
and associated target genes. 

With the accumulation of ChIP-Seq data sets, we 
can investigate the co-association among multiple 
TFs and further identify co-regulatory modules. 
Previous studies in location correlation of peak files 
from multiple ChIP-Seq data sets provide evidence 
for different TFs’ co-association (Gerstein et al., 
2012). The module identification is an on-going 
topic for regulatory network analysis. Biclustering 
methods (Turner et al., 2005) (Ihmels et al., 2004) 
are widely used to provide multiple local optimal 
solutions for module identification. They could 
provide a quick view about the distribution of major 
modules in a global picture. However, most 
biclustering methods are unsupervised and use 
different criteria to select final modules, therefore at 
the gene level, the module size is not well controlled 
and the results are provided without any rank 
information regarding the difference among genes.  

In this study, we further proposed a Markov 
Chain Monte Carlo (MCMC) based approach to 
investigate co-regulation mechanism. By clustering 
the TFs into several candidate groups, a large 
binding network is divided into several sub-
networks. Then, searching for multiple local optimal 
modules in the entire binding network is equivalent 
to identifying individual global optimal module in 
each sub-network. In each sub-network, we used an 
MCMC based approach to identify high confident 
co-regulated genes. To overcome the over-fitting of 
clustering methods, which actually provides non-
overlap TF clusters, we carried out a TF refinement 
step by adding or deleting TFs randomly to highly 
confident genes and checking the contribution of 

each TF in our list to enforce co-regulation in 
current module. By repeating these two steps for all 
sub-networks, we identified a list of co-regulatory 
modules with co-associated TFs and high confidence 
target genes. Our method allows overlap among 
modules at both TF and gene levels, which were not 
included in earlier studies (Segal et al., 2003; Su et 
al., 2010). To validate our method, we applied the 
proposed scheme to analyse eleven breast cancer 
related TFs’ ChIP-Seq datasets obtained from the 
ENCODE project. Our computational results are 
well supported by available biological literatures and 
provide a detailed interpretation for the regulation 
mechanism of selected TFs in breast cancer.  

2 METHODS 

First of all, for each TF’s ChIP-Seq experiment, we 
calculated the target gene scores by using the peak 
files reported by MACS, and generated gene 
annotation file from GREAT (McLean et al., 2010). 
A binding matrix is formed with binding scores as 
units. Secondly, we applied affinity propagation 
clustering (APC) (Frey and Dueck, 2007) to classify 
the columns (TFs) of the matrix, and extracted sub-
networks with associated TFs and genes. Then, an 
MCMC based approach was used to identify the 
genes regulated by each cluster of TFs with high 
score. Finally, after target gene selection, we applied 
another round of sampling by adding or deleting TFs 
dynamically to refine the regulators in each module.  

2.1 Data Pre-processing 

We downloaded the peak files processed by MACS 
for the selected breast cancer TFs from the 
ENCODE (http://genome.ucsc.edu/ENCODE/). The 
information we extracted from these peak files 
includes peak’s start, end, summit, summit height 
and the significance p-value. To lower the impact of 
false positive peaks, for each TF, we used HOMER 
(Heinz et al., 2010) to  isolate  the peaks enriched by 



 

Figure 1: Flowchart of the proposed approach for 
regulatory module identification. 
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TF associated motifs. For gene annotation, with user 
specified upstream and downstream promoter 
region, GREAT was used to generate peak 
annotations with distance information.  

2.2 Gene’s Binding Score Calculation 

Given the input ChIP-Seq data, we proposed a 
statistical model to evaluate each target gene’s 
relative importance based on the observations from 
specific TF’s ChIP-Seq data, as detailed in Eq. (1):  

   
( ) 1

, | , |
g

g g
loca i

P Gene peak input P Gene i input


   
(1)

where ( ) 1gloca i   indicates that i-th base with 

respect to TSS of g-th gene is covered by a peak. 
Each peak is composed by several hundreds of bases 
and each location follows the location specific 
probability distribution. Thence, the probability for 
each peak equals to the sum of the probability of all 
the bases it covers. Further, considering the 
conditional relationship of two steps, peak calling 
and gene annotation, Eq. (1) can be extended as:  

     
( ) 1

, | ,
g

g g
loca i

P Gene peak input P Gene i input P i input


  (2)

There are two components for this joint 
probability. ( | , )gP Gene i input  is the conditional 

probability that g-th gene is a true target given by 
the significant binding signal (peak) at i-th base. 
While ( | )P i input  is the relative importance of i-th 

base indicated by the TFBS location specific 
distribution. Here the prior probability of P(input) is 
set as constant value for all locations.  

Probability ( | , )gP Gene i input  can be calculated by 

the read depth at i-th base and its associated 
significance score. The read depth hg(i) of i-th base 
can be estimated by a triangle approximation as 
shown in Fig. 2 and Eq. (3). 

 
(a)    (b) 

Figure 2: Typical binding site locations with respect to 
TSS: (a) TFBS occurs likely at upstream region with 
~10kbps to TSS, (b) or downstream but close to TSS, 
usually within 1kbps. 

where RDsummit is the reported peak height by peak 
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Fig. 2, are the start, summit and end positions of 
each reported peak, respectively.  

The significance p-value is actually a probability 
and cannot be directly used. We used an exponential 
distribution to fit the p-value as in Eq. (3) with λ=1. 
For g-th gene, qg(i) is used to weight the read depth 
hg(i) at i-th base as Eq. (4):  

( ) exp[ ( )]g gp - value i q i    (4)

After the normalization with constant value C 
(considering the maximum value of peak height and 
q score), the conditional probability that g-th gene 
can be linked with binding signal observed at i-th 
base, which can be calculated as: 

 , ( ) ( ) /g g gP Gene i input h i q i C  (5)

Probability ( | )P i input  evaluates the prior 

probability of i-th base according to the statistics of 
read depth and significance of all peak files. To 
generate location specific distribution, we pile up all 
genes’ binding signals at i-th base with respect to the 
TSS as Eq. (6).  

  ( ) ( ) ( ) ( )g g g g
g i g

P i input h i q i h i q i   (6)

Compared to the TIP method, in our case the 
binding signal at each location is associated with a 
weight transformed from its significance. It will 
lower the impact of false positive peaks in TFBS’s 
distribution along the promoter region. 

Given the TFBS distribution in Eq. (6) and 
binding signals at each base, similar to Eq. (1), the 
g-th gene’s regulatory score can be calculated as:  

 
( ) 1

( ) ( )
g

g g g
loca i

s h i q i P i input


   
(7)

2.3 Module Identification 

Module identification problem is to search for 
multiple local optimal regulatory networks. In this 
paper, we proposed an MCMC based scheme to 
identify co-regulatory gene modules. As shown in 
Fig. 3, there are three main steps: (1) use APC to 
cluster TFs into candidate groups and generate initial 
modules; (2) using MCMC to mimic the Markov 
process at gene level in each module to identify high 
confident co-regulated genes; (3) based on the genes 
identified from (2), sampling all TFs to refine the 
TFs in each module by adding new TFs or deleting  
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Figure 3: Flowchart of regulatory module identification: 
(1) TF clustering; (2) MCMC based gene identification; 
(3) TF refinement by using sampling techniques. For 
example, Gene 5 will be rejected during the MCMC 
process due to its low gene score; in the TF refinement 
step, TF 4 gets little support from the target level and it is 
deleted; but TF 5, which is not covered by clustering 
results for current module, is added because it also 
regulates a large portion of genes in current module. 

low confident ones. In this way, the multiple local 
optimal solutions in the whole binding network are 
equivalent to individual global optimal solution in 
each associated sub-network.  

In each module, during the MCMC process, each 
state represents a sampled sub-network with fixed 
up-stream regulators and sampled downstream 
genes. According to Metropolis sampling algorithm, 
for state transition, we proposed a new sub-network 
by randomly adding or deleting one gene to current 
sub-network. Then, we either accept the proposed 
sub-network or keep current network by checking 
whether the overall binding intensity is improved. 
The state of Markov process is updated accordingly, 
and we carry out next round of sampling. Finally, 
the Markov process should converge to a sub-
network or a module with strongly co-regulated 
genes. 

For the m-th cluster with Tm TFs, we define a 
sub-network score as:  

, ,
1 1

1 mTG

n n g g t
g tn m

S f s
G T  

 
   (8)

where fn is a binary vector with length of total gene 
number G. In the n-th round of sampling, if g-th 
gene is covered by current module, fn,g equals to 1, 
otherwise it equals to 0. In Eq. (8), the sum of non-
zero units of fn is Gn. Initially we randomly select G0 
genes and sub-network score is S0. 

In the n-th round of MCMC process, a new sub-
network is proposed by randomly adding or deleting

 one gene. The prior probability for adding or 
deleting is 0.5. Whether such an adjustment 
contributes to co-regulatory characteristic of current 
module is determined by the acceptance criterion 
defined as follows:  

, , 1, ,
1 1 1 111

1 1m mT TG G
n

n g g t n g g t
g t g tn nn

S
f s f s

G GS
 

   

   
   
   
   

   (9)

where Sn and Sn-1 represent sub-module scores for 
the proposed sub-module and current sub-module, 
respectively. Gn and Gn-1 are associated numbers of 
genes. Here, if α is larger than 1, we accept the 
proposed sub-module; else, we accept the proposed 
module by probability α. If the proposed sub-module 
is rejected, we directly set fn = fn-1 for next round.  

After N rounds of sampling, we generate a series 
of  |1nf n N  . When N is large enough, the 

posterior distribution condition on current module 
for g-th gene is proportional to the count of its 
appearance as Fg during the MCMC process:  

,
1

1 N

g n g
n

F f
N 

   (10)

With selected top Gm genes according to Fg, we 
used a sampling method to refine TFs. Using 
clustering result as initial TF selection, in k-th 
sampling, we randomly added a new TF or deleted a 
current TF to current module. Similar to the 
definition of Eq. (9), we determined whether the 
proposed addition or deletion was accepted or not 
according to the binding intensity in current module. 
The result was recorded in vector hk. Finally, a series 
of  |1kh k K  were generated. For t-th TF, we 

calculated sampling statistics Ht by summing all hk,t. 
The distribution of all TFs’ H score reflected the 
contribution of each TF to the co-regulation in 
current module. We adjusted the TFs by adding new 
high score TFs and deleting low score ones. Our 
method allows overlap at both gene and TF levels 
among different modules. A common TF may 
regulate different genes in several modules and 
achieve distinct functional roles. 

3 RESULTS 

3.1 TFBS Location Distribution 

Here, we present three TFBS distributions calculated 
by our method and another TFBS distribution 
calculated by TIP for comparison. By comparing the 
distributions between Fig. 4(a) and Fig. 4(b), it can 
be seen that MYC associated TFBSs share common 
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features in different environments (ovarian cancer 
cell vs. breast cancer cell). In Fig. 4(a), the 
distribution shows a high single sharp peak centred 
on TSS, compared to a wider but still single peak at 
the same location in Fig. 4(b). Different from MYC, 
the ER-alpha’s distribution in Fig. 4(c) shows that 
remote binding still has a high probability to occur 
and plays important roles in target gene regulation. 
Besides the main peak around TSS, another high 
probability region appears around 500bps, which is 
similar to Fig. 4(a). This observation shows that a 
binding within a short range after TSS will also 
activate the regulation. If we compare Fig. 4(c) with 
the distribution generated by TIP in Fig. 4(d), our 
distribution shows a higher probability near TSS and 
that all the features such as high probability of 
remote binding points are kept. It is well known that 
most TFBSs bind close to TSS, i.e. within 2kbps. 
But in Fig. 4(d), the distribution is more flat. The 
sensitivity of TIP’s distribution is lower due to 
assigning equal weight to low significant peaks, a 
large portion of which is located far from TSS. 

(a) (b) 

(c) (d) 

Figure 4: TFBS location specific probability distribution 
from upstream -10k to downstream 1k with respect to 
TSS: (a) MYC in ovarian cancer cell (in house data); (b) 
MYC in MCF-7 breast cancer cell line from the Encode 
project; (c) ER-alpha in MDA-MB-231 breast cancer cell 
line (Stender, et al., 2010); (d) the same data as (c) but 
calculated by the TIP method. 

3.2 ER-α ChIP-Seq Data Validation 

In this section, we utilized a human ER-α dataset 
(Stender et al., 2010) to prove that target genes 
identified by our method is not only intensely 
regulated by the TF under investigation, but also 
functional expressed. From the analysis done by 
(Stender et al., 2010), we know that the ER-α 
binding genes should have significant expression 

change between wide type ER binding (ERwt) and 
mutant ER binding (ERmut) conditions. We 
calculated binding scores for 612 ERE motif 
enriched genes by using our method and TIP, 
respectively. We selected top 25%, 177 genes for 
further comparisons.  

Usually we have more confidence on the high 
significant peak files. Thence, it is necessary to 
check q scores of identified genes’ peaks (defined by 
Eq. (4)). As shown in Fig. 5, our method utilizes 
more significant peak files (the red bar) to identify 
high score genes. And some relatively low 
significant peaks are still used due to their high 
location prior in the TFBS distribution. TIP misses 
some highly significant peaks because a larger 
number of low significant peaks are equally 
weighted when the location distribution is generated. 
The impact of false positive peaks is raised in TIP.  

 

Figure 5: Significance score distribution of the binding 
peaks used to identify high score target genes. 
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Figure 6: ER-α ChIP-Seq data analysis, heat map of 
identified genes’ expression under two conditions. 

There is still some gap to claim that the more 
significant peaks that we used, the more strongly our 
identified genes are regulated by the TF under 
investigation. A true/functional binding will either 
activate or inhibit its target gene’ expression. 
Thence, in the second step, we have checked that 
whether our identified target genes have significant 
fold change when their upstream regulator ER-α is 
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muted. The heatmap of our identified genes’ 
expression profiles are shown in Fig. 6. It can be 
seen that, most of the genes have significant fold 
change between ERwt and ERmut conditions. We 
compared the z-score distribution of our identified 
top 177 genes, TIP identified top 177 genes, to all 
612 candidate targets, respectively. Based on 
Kolmogorov–Smirnov test, we observed that the 
distribution of our results supported that it was a 
significant subset with p-value 8.7e-3, while the p-
value of the genes identified by TIP was 4.1e-2. It is 
evident that our identified genes are more 
functionally expressed.  

3.3 Co-regulatory Module 
Identification 

From ENCODE, we downloaded the ChIP-Seq data 
of 11 breast cancer related TFs, which are carried 
out on MCF7 breast cancer cell line, including 
CEBPB, ELF1, EP300, FOXM1, GATA3, HAE2F1, 
JUND, MAX, MYC, TCF4 and TCF12. Due to the 
multiple possible motifs associated with some TFs, 
with HOMER, we collected 36 motifs. Totally there 
are 11,957 target genes annotated by GREAT with 
upstream 10k and downstream 1k distance control. 
After genes’ binding score calculation, we generated 
a weighted binding matrix for module identification.  

3.3.1 Comparison with Biclustering  

To compare the performance of our module 
identification method with that of biclustering 
methods, we selected two widely used methods, 
Plaid (Turner et al., 2005) and ISA (Ihmels et al., 
2004). Each method is carried out on the weighted 
binding matrix, and finally, ISA, Plaid and our 
method identify 36, 9 and 8 modules, respectively. 
The overall binding pattern and three method’s 
results are shown in Fig. 7, where the red unit 
indicates binding occurrence. For our method, the 
motif name and the number of genes identified in 
each module are summarized in Table 1. The results 
before and after TF refinement are presented as well.  

In Fig. 7, it can be found that ISA is more 
sensitive to the data matrix and provides quite 
diverse biclustering results. We can see that there are 
a lot of sub-modules in each dominant one. 
Furthermore, its gene list is not well refined so that 
the gene set in each module is too large to be further 
investigated. The average number of genes is 1,923. 
By comparing the results of ISA to the overall 
binding pattern, the module containing TCF3 and 
TCF4   is   missed.    Plaid    provides    isolated   but  
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Figure 7: Co-association patterns for multiple motifs and 
identified modules of ISA, Plaid and our proposed 
method. 

Table 1: Summary of identified co-regulatory modules. 

Module Gene* Motif name† 
1 207/2200 AP1, JUNAP1, (TCF12) 
2 588/4875 AP2alpha, AP2gamma, [SP1] 

3 720/7961 
ELF1 ELK1 ELK4 ETS1 GABPA 

MYB [SP1] (FOXO1 BMYB) 

4 610/4990 
FOXA1 FOXA1L FOXA2 

(CEBPAP1 CEBPB RMYB STAT4) 
5 642/6466 E2F1, E2F4, E2F6, SP1 

6 256/2849 
GATA1, GATA2, GATA3, GATA4, 

(NF1) 

7 333/2775 
MAX, MYC, cMYC, cMYCL, 

(nMYC) 
8 152/544 TCF3, TCF4, [AP2alpha] 

*selected gene set/original gene set; † (.) denotes the deleted 
TFs after sampling while [.] denotes the added TFs. 

dominant modules. The number of genes in 
individual module is 600 on average. It provides a 
clear picture about the main modules with strong co-
regulation. However, it did miss some less dominant 
but still important modules, i.e. modules 1, 4, 6 and 
8 in Table 1. Our method not only captures all 
important modules reported by ISA and Plaid, but it 
also identifies their missed modules. TF refinement 
plays quite an important role in the results 
improvement. For example, without TF deletion, we 
would include some noisy TFs like FOXO1 and 
BMYB in module 3, which is not covered by 
biclustering methods. ISA and Plaid also report that 
AP2alpha and AP2gamma should be combined with 
SP1 as a module, which is missed by clustering step. 
Another significant advantage of our method is that 
we can provide rank information in each module for 
further gene selection.  
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3.3.2 Result Interpretation  

To better understand the regulation mechanism of 
this breast cancer case study, we used functional 
annotations to investigate co-regulatory modules, as 
shown in Fig. 8. It is not strange that AP1 and 
JUNAP1 are grouped together. It is known that 
increased c-Jun activity is sufficient to trigger 
apoptotic cell death (Bossy-Wetzel et al., 1997) and 
plays an important role in the apoptosis pathway in 
cancer (Bjornsti and Houghton, 2004). In module 2, 
there is evidence for the co-existence of transcription 
factors AP2 and SP1 in the promoter region of some 
important genes in breast cancer (Liu et al., 2009). 
ELF1, ELK1, ELK4, ETS1 and GABPA, a group of 
ETS family TFs, are grouped with MYB and SP1 by 
support of high score common genes in Module 3. 
ETS1 activity is modulated by interactions with a 
number of factors, including SP1 and MYB 
(Wasylyk et al., 2002). FOXA1 and FOXA2 seem to 
have at least in part redundant roles and modulate 
the transcriptional activity of nuclear hormone 
receptors (Bochkis et al., 2012). Module 5 is the 
second largest module in this study. The fact that 
promoters of growth and cell cycle regulated genes 
frequently carry binding sites for transcription 
factors of the E2F families and SP1 provides 
evidence for what we observed in this module. DNA 
repair, DNA replication and cell cycle are the top 
functional groups enriched with p-value 4.75e-9, 
1.59e-9 and 4.47e-6, respectively. This is consistent 
to the report that E2F directly links cell cycle 
progression  with  the coordinate regulation of genes 
essential for both the synthesis of DNA as well as its 
surveillance (Ren et al., 2002). Module 6 is 
regulated by GATA family. While, in this data set, 
the GATA related motifs are extracted from ChIP-
Seq file of GATA3, recently identified as one of the 
three genes mutated in >10% of breast cancers. 
Module  7  promotes  a  pair  of  well-known   tumor 

 

Figure 8: Identified 8 regulatory modules in the breast 
cancer study. 

related TFs, MYC and MAX. The transcriptionally 
active MYC/MAX dimer promotes cell proliferation 
as well as apoptosis (Amati and Land, 1994). In 
Module 8 AP2alpha are combined with TCF3 and 
TCF4 with high confidence. It is reported that AP-
2α inhibits β -catenin/TCF4 transcriptional activity 
in colorectal cancer cells (Li and Dashwood, 2004), 
might serve as a novel therapeutic target in cancers 
with Wnt signalling.  

4 DISCUSSIONS 

In this study, we proposed a statistical method to 
identify gene co-regulatory modules with multiple 
ChIP-Seq experiments. However, the false positive 
rate in genes identified from ChIP-Seq study still 
needs some effort to improve. For example, 
researchers are greatly interested in cancer 
recurrence by using different technologies on 
multiple data sets to compare different features of 
genes in more than one treatment groups. A proper 
way is to incorporate gene expression or RNA-Seq 
data in the module identification process. With 
multiple gene expression samples belonging to early 
recurrence or late recurrence in cancer treatment, we 
could identify co-regulated and differentially 
expressed genes modules. This would link the 
physical protein-DNA binding to functional 
expression of target genes more intensely. Further, if 
combined with time course expression data, it would 
help us uncover the regulatory mechanism of 
specific drug for cancer treatment. 

5 CONCLUSIONS 

In this study, we have developed a statistical scheme 
to identify co-regulatory gene modules from 
multiple ChIP-Seq experiments of TFs. We 
developed a statistical model to calculate scores for 
the target genes regulated by individual TF. The 
TFBS distribution shows that it is condition specific 
under different environment. Then, an MCMC 
approach is proposed for co-regulatory module 
identification. We have used a breast cancer case 
study to show that our method is more advanced 
than biclustering technology. Finally, through 
functional annotations, it is shown that the identified 
genes and TFs in each module are closely related by 
their common functions, and different modules 
participate in different functional roles in the 
development of breast cancer. 
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