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Abstract: One of the major health challenges of the future is Chronic Obstructive Pulmonary Disease (COPD). It is 
characterized by airflow limitations, although current diagnosis does not give attention to the flow 
measurements. We aimed to develop a data-based model of the decline of the forced expiratory flow. 
Moreover, we analysed the relationship of model parameters with COPD presence and its severity. The 
data-based model was developed in 474 smoking individuals, who are at risk of having COPD, and have 
performed complete pulmonary function tests in order to identify whether the disease is present and at 
which stage. The time series of the decline of the flow was parameterised using the poles and steady state 
gain (SSG) of a second order transfer function model. These parameters were then linked with the presence 
of COPD. Observing SSG, median (IQR) in subjects with COPD was lower 3.9(2.7-5.6) compared to 
8.2(7.1-9.3) in subjects without, (p<0.0001). Significant difference was also found when observing median 
(IQR) of two poles in subjects without disease were 0.9868(0.9810-0.9892) and 0.9333(0.9010-0.9529), 
respectively, compared to 0.9929(0.9901-0.9952) and 0.9082(0.8669-0.9398) in subjects with COPD 
(p<0.001 for both poles). Forced exhaled air can be used to expand understanding of the COPD. Moreover, 
the suggested parameterisation of the flow decline could be used to access COPD using spirometry. 

1 INTRODUCTION 

Chronic Obstructive Pulmonary Disease (COPD) is 
one of the major health challenges of the next 
decades. Currently it is 4th leading cause of death, 
while the World Health Organization anticipates that 
it will become the 3rd leading cause of death in less 
than 20 years from now (Mathers and Loncar 2006; 
Murray and Lopez 1997; WHO 2012). COPD is 
characterised by airflow limitation that is not fully 
reversible. It is usually progressive and associated 
with an abnormal inflammatory response of the lung 
to noxious particles or gases, most often from 
cigarette smoke (Decramer et al. 2012). Up to 
almost one quarter of the adults aged 40 years and 
older may have mild airflow obstruction, according 
to the latest prevalence surveys (Mannino and Buist 
2007). One of the challenges in such a disease is to 

identify patients at risk for brisk deterioration and to 
develop diagnostic tools which are directly clinically 
important (Agusti et al. 2010; Miravitlles et al. 
2013). 

Indications of COPD are production of sputum, 
signs of dyspnea, chronic cough or/and a history of 
exposure to the tobacco smoke (Rabe et al. 2007). 
However, the diagnosis itself is based on measuring 
differences in lung volume using a spirometer, as 
most common signs of COPD and patient history 
cannot accurately reflect COPD presence. Current 
diagnosis is simple and inexpensive to perform, but 
also lately debatable due to ability to overdiagnose 
or underdiagnose (Garcia-Rio et al. 2011). Various 
approaches have been developed to diagnose and 
characterize COPD, either by measuring volatile 
organic compounds in the exhaled air (Fens et al. 
2009; Phillips et al. 2012), or by looking into 
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computed tomography images (Bodduluri et al. 
2013; Sorensen et al. 2012), or even by applying 
forced oscillation technique to stimulate respiratory 
system (Amaral et al. 2012). However, none of the 
techniques entered clinical practice, due to their 
complexity, costly undertaking or unsatisfactory 
results. 

Surprisingly, mathematical data-based modelling 
was never performed when it comes to revealing 
background of COPD. Starting from that point and 
knowing that COPD, by its definition, is flow 
limited (Decramer, Janssens, & Miravitlles 2012; 
Dellaca et al. 2004) we hypothesized that modelling 
of the flow dynamics during exhalation may offer a 
more precise indication of COPD presence. This 
should lead to better understanding of the COPD and 
additional tool for diagnosis. 

In the present study our objective was firstly to 
develop a mathematical data-based model for the 
decline of the forced expiratory flow. Secondly, to 
investigate how the parameters from the model are 
linked with COPD presence and its severity. 

2 METHODS 

2.1 Study Population 

This study included data of 474 individuals who had 
performed complete pulmonary function testing 
(PFT) at cohort entry, including post-bronchodilator 
spirometry, body plethysmography and diffusing 
capacity. All included subjects were tested between 
October 2007 and January 2009 at the University 
Hospital of Leuven (Belgium), as described earlier 
(Lambrechts et al. 2010; Wauters et al. 2011). 
Briefly, participants were all current or former heavy 
smokers with at least 15 pack-years and with 
minimal age of 50 years. As COPD is smoking 
disease per se, restricting our study to only smoking 
individuals increased chances to observe more 
abnormal pulmonary functions and patients with 
higher risk for COPD.  Individuals with suspicion or 
diagnosis of asthma were excluded, as well as 
patients with exacerbations due to COPD within last 
6 weeks and patients with other respiratory diseases. 
The study was approved by the local ethical 
committee of the University Hospital Leuven, (KU 
Leuven, Belgium). All patients included in the study 
provided informed consent. The study design of the 
LEUVEN COPD cohort can be found on 
www.clinicaltrials.gov (NCT00858520). 

According to the international COPD GOLD 
guidelines (Rabe et al. 2007), patients with COPD 

were identified when the post-bronchodilator 
FEV1/FVC ratio was <0.7, furthermore they were 
lined over different severity stages. The population 
consisted of 336 patients with diagnosed COPD 
comparing to 138 healthy controls. Stratified for 
disease severity from mild (GOLD I) to moderate 
(GOLD II), severe (GOLD III) and very severe 
(GOLD IV), the COPD population was comprised of 
77, 101, 97 and 61 patients respectively. Table 1 
describes the population characteristics within two 
separate groups, revealing typical characteristics for 
smoking and demographics of COPD patients 
admitted in hospitals. 

2.2 Pulmonary Function Tests 

All pulmonary function tests were performed with 
standardized equipment (Masterlab, Erich Jeager, 
Würzburg, Germany) by experienced respiratory 
technicians, according to the ATS/ERS guidelines 
(Miller et al. 2005). Spirometry data are post-
bronchodilator measures and expressed as percent 
predicted of normal reference values (Quanjer et al. 
1994). 

Table 1: Study population characteristics; Values are 
median and IQR; BMI = body mass index; M = male; F = 
female; FEV1= forced expiratory volume in one second; 
FVC = forced vital capacity; M = male; %pred. = percent 
predicted of normal reference values. 

 Healthy COPD 
Patients, N 138 336 
Sex, M/F 110/28 260/76 

Age, years 60.7(57.3– 64.6) 65.1(59.5– 72.1) 
Smoking, 
pack yr. 

38.0(29.3– 52.0) 45.0(32.6– 60.0) 

BMI, kg/m2 26.4(24.0– 28.7) 25.0(22– 28) 
FEV1, %pred. 104.0(94–112) 53.0(35– 78) 
FVC, %pred. 108.0(100–118) 89.0(71– 106) 
FEV1/FVC 0.75(0.73– 0.78) 0.47(0.37– 0.62) 

2.3 Data based Modelling 

To develop our data-based model we used 
MATLAB (7.14, The MathWorks, Natick, 
Massachusetts) and compatible toolbox for non-
stationary time series analysis, system identification, 
signal processing and forecasting – CAPTAIN 
toolbox (Taylor et al. 2007). In all individuals the 
best expiratory curve (rule of highest sum of FEV1 
and FVC (Miller et al. 2005)) within one spirometry 
was exported from the Masterlab system at a 
sampling rate of 125Hz. By extracting data points it 
was possible to reconstruct the best expiratory 
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manoeuvre in MATLAB. To observe the dynamics 
of the expiration, only the declining phase of 
expiration was analysed. Declining is the area that 
starts at peak flow and ends at the end of the 
expiration, far right tail (Figure 1). 

When starting with data-based modelling, the 
appropriate model structure is determined using 
objective methods of time series analysis from a 
generic model class. The goal is to describe the data 
in a parametrically efficient way, but still having 
simplicity in the sense of model parameters and 
model order. Considering our study and our data, 
most appropriate model was a discrete-time transfer 
function (TF) model for a single input single output 
(SISO) system. The general form of such system is: 

y୲ ൌ
୆ሺ୐ሻ

୅ሺ୐ሻ
u୲ ൅ ξ୲, (1)

where y୲ is the output; u୲ is the input; ξ୲	 is additive 
noise, assumed to be zero mean; L is the backward 
shift operator; A(L) and B(L) are polynomials 
defined by the order of the model in the following 
form: 

AሺLሻ ൌ 1 ൅ aଵL ൅ ⋯൅ a୬L୬ (2)

BሺLሻ ൌ b଴ ൅ bଵL ൅ ⋯൅ b୫L୫ (3)

where n represents the order of the system: aଵ, …, 
a୬ and b଴, bଵ, …, b୫ are the TF denominator and 
numerator parameters, respectively. 

 

Figure 1: Two examples of expiratory manoeuvres; Solid 
line represents expiratory flow of an individual with 
diagnosed very severe COPD, while dashed line represents 
expiratory flow of a healthy individual. Decline is 
considered the section when the flow starts dropping from 
its maximum back to its minimum, over time. 

Once the input-output data are available, TF 

parameters (Eq. (2) and (3)) can be identified using 
statistical procedures. For the input data, we used 
step-down for each model, while output signal was 
original measurements obtained from spirometry. 
The parameters of a TF model can be estimated 
using various methods of identification and 
estimation procedures (Ljung L. 1987; Young PC. 
1984). In this study the Simplified Refined 
Instrumental Variable (SRIV) algorithm was used as 
a method for model identification. The advantage of 
SRIV lays not only in yielding consistent estimates 
of the parameters, but also in exhibiting close to 
optimum performance in the model order reduction 
context (Figure 2). 

 

Figure 2: Step down (dashed line) used for each model as 
input signal; Solid line represents an example of 
declination, meaning output signal (different for each 
individual). We assumed that the time-series of the output 
had a constant value (first 10 data samples) then the drop 
started, it was also point for the step-down of the input. 
Based on these two signals SRIV estimates TF parameters.  

An equally important problem to the parameter 
estimation is the identification of the objective 
model order which will result in low complexity. 
The process of model order identification can be 
performed by the use of well-chosen mathematical 
measures which indicate the presence of over 
parameterization. Often used successful 
identification procedure to select the most 
appropriate model structure is based on the 
minimisation of the Young identification criterion, 
(YIC) (Young 1981) (Eq. (4)). 

YIC ൌ ln
σෝଶ

σ୷ଶ
൅ lnቌ

1
np

෍
σෝଶpො୧୧
aො୧
ଶ

୬୮

୧ୀଵ

ቍ (4)

where σෝଶ is the sample variance of the model 
residuals; σ୷ଶ is the sample variance of the measured 
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system output about its mean value; np is the total 
number of model parameters; aො୧

ଶ is the square of the 
i-th element in the parameter vector aො; pො୧୧ is the i-th 
diagonal element of the inverse cross product matrix 
P(N); σෝଶpො୧୧ can be considered as an approximate 
estimate of the variance of the estimated uncertainty 
on the i-th parameter estimate. 

YIC is a heuristic statistical criterion which 
consists of two terms, as shown in Eq. (4). The first 
term provides a normalised measure of how well the 
model fits the original data: the smaller the variance 
of the model residuals, in relation to the variance of 
the measured output, the smaller this term becomes. 
The second term is a normalised measure of how 
well the model parameter estimates are defined. This 
term tends to become bigger when the model is 
over-parameterised and the parameter estimates are 
poorly defined. Consequently, the best model should 
minimise the YIC and provide a good compromise 
between goodness of fit and parametric efficiency. 

Finally, upon passing all listed steps, derivation 
of additional parameters which describe exhaled 
airflow was feasible. Firstly, using an individual TF 
for each subject, we were able to derive poles of the 
model. These poles were direct representatives of 
the dynamics of the observed model. Secondly, the 
steady-state gain (SSG) of the model is also derived. 
SSG is the ratio of the output and the input of the 
model in steady state, and it is obtained by: 

SSG ൌ
∆y
∆u

ൌ
∑ b୧
୬ౘ
୧ୀଵ

1 ൅ ∑ a୧
୬౗
୧ୀଵ

 (5)

3 RESULTS 

Using the already explained YIC, we discovered that 
the most appropriate model would be a second-order 
model. Looking into complete dataset, second-order 
model explains data with a YIC of -14.5 (-15.7 – -
13.1) and RT

2 of 0.997 (0.994 – 0.998) (values are 
median and IQR). Confirmation of the good model 
order identification is presented in Figure 3, where 
the original output signal with the simulated one is 
compared using the estimated parameters from 
second-order model. 

In total, analysis was performed employing two 
poles (coming from second-order model) and SSG 
of the model from 423 individuals. From the 
included 474 individuals, 51 (=10.8%) had to be 
excluded, where 32 (=6.8%) due to missing data 
from the PFT and 19 (=4%) due to model instability. 

More detailed investigation of poles of 
the  model, meaning  the  dynamics   of  the   airflow 

 

Figure 3: No difference between the original (marked with 
x) and the simulated (solid line) output signal is noticed 
(RT

2 = 0.999, YIC = -17.6091) when using second-order 
model. 

exhalation, resulted in clear difference when 
comparing subjects with and without COPD (see 
figure 4). Certainly, first pole was higher when 
COPD was present, indicating that the system starts 
faster when disease occurs. Median (IQR) poles in 
subjects without disease were 0.9868 (0.9810-
0.9892) and 0.9333 (0.9010-0.9529), respectively, 
compared to 0.9929 (0.9901-0.9952) and 0.9082 
(0.8669-0.9398) in subjects with COPD (p<0.0001 
for first pole and p<0.001 for second pole). 
Stratifying for disease severity, same shift in poles 
with disease progression was noticed (Figure 5). 
This pointed that the dynamics of the system 
become faster with higher severity. Median poles 
were 0.9895 and 0.9346 for GOLD 1, 0.9916 and 
0.9160 for GOLD 2, 0.9946 and 0.9009 for GOLD 3 
and finally for GOLD 4 0.9959 and 0.8615. 

When focusing the analysis on the SSG of the 
model, similar conclusions as the ones with poles 
can  be  made.  Median  (IQR)  SSG in subjects with 
COPD was significantly lower 3.9 (2.7-5.6) 
compared to 8.2 (7.1-9.3) in subjects without COPD, 
(p<0.0001). When disintegrating over severity of 
COPD, SSG decreased significantly (p<0.0001) with 
each GOLD stage: 6.8 (5.7-7.8), 5.0 (3.9-5.7), 3.1 
(2.6-3.7) and 2.3 (1.7-2.8), respectively (Figure 6). 
This is manifested due to lower flow change that 
occurs when lungs are obstructive compared to 
healthy lungs. 
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Figure 4: Pole distribution within two observed groups, with centroids pointing the median value of each group. 

 

Figure 5: Distribution of poles when stratified for COPD severity (GOLD stages). Dynamics are faster with increase of 
severity. Centroids indicate median values of each GOLD stage. We see movement of centroids from left to right, in the 
order: from no COPD over each growing GOLD stage. 
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Figure 6: Decrease of SSG with each GOLD stage. 

4 CONCLUSIONS 

Our study demonstrates that chronic obstructive 
pulmonary disease observed at forced expiration can 
be described by a second order data based model, 
whereas model parameters relate very well with the 
presence and severity of COPD. Our method 
confirms that COPD is indeed a flow limited 
disease, and in certain way raise a question whether 
future diagnostic for COPD should go back to its 
basis, its definition, and take flow values at 
examination. 

To the best of our knowledge, our study is the 
first to validate the concept of COPD-associated 
airflow dynamics in larger group of individuals 
comprising COPD patients of all severity stages, as 
well as smoking controls. In our population, we 
found that poles and steady state gain match well 
with severity of COPD. Interestingly, the estimated 
model resulted in significantly lower steady state 
gain within each severity stage. Moreover steady 
state gain was significantly different comparing to 
the healthy cases. This undoubtedly confirms that 
obstructive lungs are having much more difficulties 
to exhale flow and therefore, exhale it in much lower 
speed.  

The concept we are introducing opens new 
opportunities for research in the field of respiratory 
mechanism and respiratory diseases. In general, by 
using airflow dynamics, with this study we provided 
additional explanation of COPD behaviour. We see 
that they anticipate that the faster dynamics of the 
system are probability to notice presence of COPD 
will increase. Moreover, with increase of dynamics, 
the severity stages of COPD are also increasing. 
This probably means that bigger obstruction of lungs 
cause decreased exhalation of air which results in 
faster emptying of the lungs (faster dynamics of the 
exhalation). Various reasons influence such 
occurrence, firstly it is common to observe airway 

narrowing or airway collapse to cause suddenly 
diminished airflow (Healy et al. 1984). Furthermore, 
in COPD, the greatest reduction in air flow occurs 
during expiration, as the pressure in the chest tends 
to compress rather than expand the airways 
(Koulouris and Hardavella 2011). One would 
assume that loss of lung tissue elasticity, typical for 
emphysematous type of COPD, plays additional role 
in accelerating exhalation dynamics, as it might be 
the case that lungs get faster its limits while exhaling 
(Papandrinopoulou et al. 2012). 

When comparing with the other alternative 
approaches, advantage is that parameters obtained 
from model-based method can have physiological 
validity. Further, when used with routine spirometry 
during patient examination, this method is de facto 
simplest, fastest and cheapest to perform. 

Additional strength of this study is the fact that 
observing dynamics of the flow decay represents 
same approach that many researchers had performed 
in the past, but based only on a visual basis of 
typical patterns (Bass 1973; Jayamanne et al. 1980). 
Today routinely, clinicians are capable to presume 
presence of Chronic Obstructive Pulmonary Disease, 
on the basis of visual assessment of flow decay, 
whereas with this study we offer more precise and 
automated way of inspection. Furthermore, we 
believe that the concept which we are introducing, is 
easy to understand and linked to physiological 
behaviour of the lungs. Moreover, we believe that 
extra value of this study comes from the study 
cohort itself. All patients are heavy smokers older 
than 50 years, meaning that they are all labelled as 
having risk of COPD, consequently inducing bigger 
challenge to distinguish between diseased and not 
diseased. 

Finally, our method failed to provide valid 
measurements in 4% of the cases. This occurrence is 
inevitable, as we tried to automatize process where 
data selection and estimation algorithm are not 
always the optimal ones. Certainly, this could be 
avoided in most of the cases, if ensuring that 
exhalation ends with plateau (having stable ending). 

Taken together, our data provide strong evidence 
that dynamics of the forced exhaled air can be used 
to get elevated understanding of the chronic 
obstructive pulmonary disease. Moreover, if 
characterized like in our model, flow decline can be 
used to access Chronic Obstructive Pulmonary 
Disease by spirometry. 
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