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Abstract: The shape and size of retinal vessels have been prospectively associated with cardiovascular outcomes in 
adult life, and with cardiovascular precursors in early life, suggesting life course patterning of vascular 
development.  However, the shape and size of arterioles and venules may show similar or opposing 
associations with disease precursors / outcomes. Hence accurate detection of vessel type is important when 
considering cardio-metabolic influences on vascular health. This paper presents an automated method of 
identifying arterioles and venules, based on colour features using the ensemble classifier of boot strapped 
decision trees. The classifier utilizes pixel based features, vessel profile based features and vessel segment 
based features from both RGB and HIS colour spaces.  To the best of our knowledge, the decision trees 
based ensemble classifier has been used for the first time for arteriole/venule classification. The 
classification is performed across the entire image, including the optic disc. The methodology is evaluated 
on 3149 vessel segments from 40 colour fundus images acquired from an adult population based study in 
the UK (EPIC Norfolk), resulting in 83% detection rate. This methodology can be further developed into an 
automated system for measurement of arterio-venous ratio and quantification of arterio-venous nicking in 
retinal images, which may be of use in identifying those at high risk of cardiovascular events, in need of 
early intervention. 

1 INTRODUCTION 

With the development of digital imaging and 
computational efficiency, image processing, analysis 
and modeling techniques are increasingly used in all 
fields of medical sciences, particularly in 
ophthalmology (Abràmoff, Garvin et al. 2010). 
Automated detection of micro-vascular disease such 
as diabetic retinopathy in the retinal image using 
digital image analysis methods has huge potential 
benefits in screening programs for early detection of 
disease (Fraz, Remagnino et al. 2012). The blood 
vessel structure in retinal images is unique in the 
sense that it is the only part of the blood circulation 
system that can be directly observed non-invasively, 
can be easily imaged using Fundus cameras. 
Morphological characteristics of retinal blood 
vessels (particularly width) have been prospectively 
associated with cardiovascular outcomes in adult life 
(Wong, Klein et al. 2001), and with cardio-
metabolic risk factors in early life (Owen, Rudnicka 

et al. 2011). Associations between retinal vessel 
morphology and disease precursors / outcomes may 
be similar or opposing for arterioles and venules. For 
instance, hypertension and atherosclerosis may have 
different effects in retinal arterioles and venuels, 
resulting in a decreased arteriole to venule width 
ratio (AVR) (Jack J. Kanski and Brad Bowling 
2011). Retinal arteriovenous nicking, a 
pathognomonic sign of hypertension, is another 
retinal feature worthy of study, characterized by a 
decrease in the venular calibre at both sides of an 
artery-vein crossing (Jack J. Kanski and Brad 
Bowling 2011). However, more subtle changes in 
arteriole / venular morphology may be an early 
physio-maker of vascular health, which might 
predict those at high risk of disease in middle and 
later life. However, identifying small changes in 
retinal arterioles and venules is a difficult task to 
perform manually, as it is subjective, open to 
measurement error, and time consuming, limiting its 
use in large population based studies.  Automated 
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segregation of retinal arterioles and venules could be 
used to assist with this task, which would be a pre-
requisite for the development of a computer assisted 
tool  for use in large populations to identify those at 
high risk of disease. 

The appearance of arterioles and venules in 
retinal images are similar. The general assumption is 
that there is a difference in the colour and size of the 
venules and arterioles; the later one appears to be 
thinner, brighter and present more frequently with a 
central light reflex. However, there are some 
challenges in building a robust vessel classification 
system. There is intra-image and intra-subject 
variance in the blood colour. The size and colour of 
similar blood vessels changes as they move away 
from the optic disc. In the periphery vessels become 
so this they are almost indistinguishable. The 
context based features may also fail at these 
locations due to vessel crossings and branching. In 
addition, the curved shape of the retina and non-
uniform illumination add complexity to the 
automated vessel classification task. 

A number of methods have been reported in 
literature for retinal arteriole/venule (a/v) 
classification, which can be divided into two broad 
categories; automated and semi-automated methods. 
In automated methods (Niemeijer, Xiayu et al. 2011; 
Huang, Zhang et al. 2012; Dashtbozorg, Mendonca 
et al. 2013; Nguyen, Bhuiyan et al. 2013), the vessel 
centerline pixels forming the vascular skeleton are 
extracted from the segmented vascular tree, followed 
by the calculation of various distinguishable features 
for each centerline pixel and finally each pixel is 
assigned as an arteriole or venule by a classifier. In 
semi-automated methods (Rothaus, Jiang et al. 2009; 
Vázquez, Cancela et al. 2013), the initial pixels on 
the main vessels are marked as arteriole or venule by 
an expert, and then these labels are propagated 
across the vascular network through vessel tracking 
using the structural characteristics and connectivity 
information. 

Grisan’s method (Grisan and Ruggeri 2003) was 
amongst the first to propose automatic a/v 
separation. The main idea was to divide the optic 
disc centered images into four quadrants with the 
assumption that each quadrant will contain 
approximately the same number of arterioles and 
venules with significant differences in the features. 
The variance of the red channel and mean of the hue 
are used as vessel features, fuzzy clustering is 
applied to each partition independently. In another 
method (Saez, González-Vázquez et al. 2012), the 
quadrants are rotated in steps of 20 degrees with the 
aim of fulfilling the assumption that each quadrant 

should contain at least one venule and one arteriole. 
K-Means clustering is used to classify the vessels in 
two concentric circumferences around the optic disc. 
The quadrant-wise classification enforces a 
condition to have at least one arteriole and one 
venule per quadrant and it seems more suitable for 
optic disc centered images rather than macula 
centered images. Also, basic K-Means clustering is 
sensitive to the initialization and may often become 
stuck at a local optimal.  

In this paper we have presented an automated 
method for retinal a/v classification utilizing an 
ensemble classifer of boot strapped decision trees. 
The classifier based on the boot strapped decision 
trees is a classic ensemble classifier, which has been 
broadly applied in many application areas of image 
analysis (Fraz, Remagnino et al. 2012), but has not 
been extensively utilized for retinal vessel 
classification. To our knowledge, this is the first use 
of a decision trees based ensemble method for a/v 
classification. An important feature of the bagged 
ensemble is that the classification accuracy can be 
estimated during the training phase, without 
supplying the classifier with test data. Moreover, the 
importance of each feature in classification can also 
be predicted during the training phase, which helps 
in identifying the most relevant features used in a/v 
classification thus automatically reducing the 
dimensionality of the feature vector and boosting 
computational speed. The method is validated on 40 
macula centered fundus photographs acquired from 
20 middle-aged and elderly adults examined as part 
of the latest phase of the European Investigation into 
Cancer in Norfolk study (EPIC-Norfolk 2013). The 
classification is not only performed near the optic 
disc but across the entire image. The proposed 
method achieves a high classification rate without 
increasing the training samples or adding many 
features.  

The organization of the paper is as follows. 
Section 2, presents the methodology for automated 
segmentation of retinal blood vessels. Next, the 
vessel classification methodology is explained in 
section 3. Section 4 presents the validation 
methodology and experimental results. Finally, the 
discussion and conclusions are given in Section 5. 

2 THE METHODOLOGY 

The vascular network is segmented from the 
coloured retinal image and the vascular skeleton 
consisting of centerline pixels is constructed. Vessel 
segments are generated by search and removal of 
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bifurcations crossing points. For each centerline 
pixel in the vessel segment, the feature vector is 
computed using pixel based features, profile based 
features and vessel segment based features of the 
RGB and HSI colour spaces, and finally each 
centerline pixel is assigned an artery or vein label by 
a decision tree based ensemble classifer. 

2.1 Retinal Vessel Segmentation 

The retinal vasculature is composed of arterioles and 
venules, appearing as piecewise linear features, with 
variation in width and their branches visible within 
the retinal image (Fraz, Barman et al. 2012). We 
have computed a measure of vessel-ness for each 
pixel in the retinal image by combining a multi-scale 
line detection which is calculated from the inverted 
green plane of the coloured retinal images. The 
average pixel intensity is measured along lines of a 
particular length passing through the pixel under 
consideration at 12 different orientations spaced by 
15 degrees each. The line with the highest average 
pixel intensity is selected. The line strength of a 
pixel is calculated by computing the difference in 
the average grey values of a square sub-window 
centred at the target pixel with the average intensity 
of the selected line. This concept was first 
introduced by (Ricci and Perfetti 2007) and has also 
been employed elsewhere (Fraz, Remagnino et al. 
2012). We have used a generalized multi-scale line 
detector (Nguyen, Bhuiyan et al. 2012), which uses a 
variable length of aligned lines in a fixed square sub-
window, for calculating the line strength measures 
for the pixels in the images containing a central 
vessel reflex. In the line strength image (LSI), each 
value corresponds to the confidence measure of each 
pixel to be a part of the vessel or not. The LSI, as 
illustrated in Figure 1(b), is often considered as a 
greyscale image, where bright pixels indicate a 
higher probability of being a vessel pixel. 

In order to obtain a vessel binary segmentation, a 
hysteresis thresholding based morphological 
reconstruction is applied. Hysteresis thresholding 
employs a bi-threshold procedure such that the 
intensity image is thresholded for two ranges of grey 
values, one being included in the other. The image is 
first segmented by a narrow threshold range which 
concedes only high confidence object pixels and 
thus also contains many false negatives. This image 
is termed a marker image. The mask image is 
generated by applying a wide threshold range to the 
greyscale image. These threshold values are derived 
from the intensity histogram of the non-null pixels; 
each one of these thresholds; T1 for the marker 

image and T2 for the mask image, is defined as the 
highest intensity value such that the number of 
pixels with intensities above this limit is greater or 
equal to a predefined percentage. This percentage 
value is empirically selected for T1 and T2 as 90% 
and 95% respectively. 

(a) (b) (c) 

(d) (e) (f) 

Figure 1: (a) Coloured retinal image, (b) Line strength 
image, (c) Marker Image, (d) Mask Image, (e) Segmented 
vascular, (f) Extracted Vessel segments. 

The image is first segmented by a narrow 
threshold range which concedes only high 
confidence object pixels and thus also contains many 
false negatives. This image is termed a marker 
image. The mask image is generated by applying a 
wide threshold range to the greyscale image. These 
threshold values are derived from the intensity 
histogram of the non-null pixels; each one of these 
thresholds; T1 for the marker image and T2 for the 
mask image, is defined as the highest intensity value 
such that the number of pixels with intensities above 
this limit is greater or equal to a predefined 
percentage. This percentage value is empirically 
selected for T1 and T2 as 90% and 95% respectively. 
The marker image is used as a seed for the 
morphological reconstruction using the mask image. 
Figure 1(c-e) shows the marker, mask and 
segmented vessels image respectively.  

2.2 Vessel Segment Extraction 

The skeletonization is applied to the binary 
segmented vasculature image which reduces all the 
vessels to a single centreline one pixel wide. The 
bifurcation points and crossing points are detected in 
the vessel centreline image by counting the 
neighbourhood of each pixel. The vessel centreline 
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image is scanned to analyse the neighbours of each 
pixel for eight-connectivity. This way, the 
intersection number, ( , )In x y is calculated for each 

pixel ( , )p x y  of the centreline image, as shown in 

equation (2). 
8

1( , ) 0.5* | ( , ) ( , ) |i i
i

In x y N x y N x y
    
  (1)

where ( , )iN x y  are the neighbours of the 

analysed point, ( , )p x y . 

According to its intersection number In each 
pixel p(x,y) will be marked as vessel end point if 
In(x,y)=1, vessel internal point if In(x,y)=2, 
bifurcation if In(x,y)=3 and crossover if In(x,y)= 4 

The detected bifurcation points and crossing 
points are deleted from the vessel centreline image 
and the retinal vasculature is cut into the vessel 
segments as shown in Figure 1(f). 

2.3 Image Normalization and Shade 
Correction 

The absolute colour of the blood in the vessels varies 
between the images and across the subjects. To 
overcome this variability some authors (Grisan and 
Ruggeri 2003; Saez, González-Vázquez et al. 2012) 
have used a quadrant based approach which is 
computationally intense, also it enforces a condition 
to have at least one arteriole and one venule per 
quadrant, and it seems more suitable for optic disc 
centered images rather than macula centered images.  

We have used a simple linear transformation for 
shade correction and variability normalization. For 
this purpose, the estimate of the background o is 
obtained by applying a filtering operation with a 
large arithmetic mean kernel. The size of the filter 
kernel is not a critical parameter as long as it is large 
enough to ensure the blurred image contains no 
visible structures such as vessels. In this work, we 
use a 121×121 pixel size kernel. Then the difference 
between the morphologically opened image Io and 
the estimated background IBE is then computed for 
each pixel to obtain a normalized image In. 

( , ) ( , ) ( , )n O BEI x y I x y I x y 
 (2)

Likewise, when the fluctuation in background 
intensity of retinal images is examined, there can be 
significant variation in intensities between images 
due to different illumination conditions in the 
acquisition process. Therefore, a shade corrected 
image is obtained by applying a global 
transformation with the purpose of reducing the 

intensity variation and contrast enhancement. For 
this purpose, the pixel intensities are modified 
according to the following global linear 
transformation function, 

0,  ( , ) 0

( , ) 1,          ( , ) 1

( , ),

n

H n

if I x y

I x y if I x y

p x y otherwise


 

  

_( , ) ( , ) 0.5n MAX PIXELp x y I x y val    

(3)

where, IH(x,y) is the homogenized image, In(x,y) 
is the normalized image shown in (7), valMAX_PIXEL is 
the intensity value presenting the highest number of 
pixels in the normalized image In(x,y). The pixels 
with intensity value equal to valMAX_PIXEL belong to 
the background of the retinal image. This global 
transformation will set them to 0.5 and will 
standardize the intensity around this value of those 
background pixels with different illumination 
conditions. In order to find differences between 
arterioles and venules, we have analysed RGB and 
HIS colour spaces. Figure 2 shows the red, green 
and blue components of the image shown in Figure 
1(a) along with respective shade corrected images.  

(a) (b) (c) 

(d) (e) (f) 

Figure 2: The colour spaces; (a-c) Red, Green and Blue 
channels of RGB. (d-f) the shade corrected images of Red 
green and blue channels respectively. 

2.4 Feature Extraction 

In previous work (Fraz, Remagnino et al. 2013), we 
have computed the local orientation angle of vessel 
segment and the width of vessel for each centreline 
pixel. Based on this information we have extracted 
the vessel profile for each centreline pixel. The 
vessel profile is perpendicular to vessel direction, 
and the length of vessel profile is equal to the vessel 
width. The centreline, edges and the vessel segment 
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profiles are shown in Figure 3(a). We define three 
types of features extracted from the vessel segments 
for each centreline pixel: pixel based features, 
profile based features and vessel segment based 
features.  

The pixel based features are the centreline pixel 
intensity values taken from the respective colour 
channel. The profile based features are the mean and 
variance of the intensity values across a vessel 
profile for each centreline. The vessel segment based 
features are calculated in two ways for each 
centreline pixel from the respective colour channel. 
First, the mean and variance of the pixel intensities 
are calculated for the entire vessel segment. Second, 
the relatively longer vessel segments are divided into 
smaller vessel parts of length of almost 50 pixels, 
and then the mean and variance of the pixel 
intensities are calculated with in these vessel . We 
have tried and tested the different size of vessel sub-
segments ranging from 15 to 75 pixels and achieve 
the best results using 50 pixels. 

Figure 3(b) illustrates a vessel segment where 
the edges are marked with blue lines and the 
centreline pixels (Ci) are shown with green circles 
on the black line. The vessel profile (Pi) consists of 
the pixels in the line drawn perpendicular to the 
local vessel direction, equal to the approximate 
vessel width, and is shown in white. VPi are the 
vessel segment parts. Table 1 shows the complete set 
of features extracted for each centreline pixel. 

 

Figure 3: (a) Vessel profiles; (b) Vessel Features for A/V 
classification. 

The feature set (fv) can be summarized as 
follows. 

( ) [ ]         

( ) ( [ ])     

( ) ( [ ])     

( ) ( [ ( , )])     

( ) ( [ ( , )])     

( )

i i

i i

i i

i i

i i

fv n X C C vessel segment

fv n X P P vessel segment

fv n X P P vessel segment

fv n X VP x y VP vessel segment

fv n X VP x y VP vessel segment

fv n






  
  
  
  
  

( [ ( , )])   ( , )   

( ) ( [ ( , )])   ( , )   

X I x y pixels x y in vessel segment

fv n X I x y pixels x y in vessel segment




 
 

 

Table 1: Complete set of features extracted for each 
centreline pixel. 

No. Feature description Type

1-6 
The centreline pixel intensity values from each 

component of RGB and HSI colour space 

P
ixel 

based 

7-12 
Mean of pixel intensities of vessel part VPi from 

each colour component of RGB and HSI. 

V
essel segm

ent 
part based 
features 

13-18
Standard deviation of pixel intensities of vessel 

part VPi from each colour component of RGB and 
HSI. 

19-22
Min and Max values of pixel intensities of vessel 
segment part VPi from each R and G component 

23-25
Mean of pixel intensities of vessel profiles Pi from 

each colour component of RGB 

V
essel profile 

based features 

26-31
Standard deviation of pixel intensities of vessel 
profiles Pi from each colour component of RGB 

and HSI. 

32-35
Min and Max values of pixel intensities of vessel 

profiles Pi from R and G component. 

36-41
Mean of pixel intensities of complete vessel 

segment from each component of RGB and HSI. V
essel segm

ent 
based features 

42-47
Standard deviation of pixel intensities of complete 

vessel segment from each colour component of 
RGB and HSI. 

48-51
Min and Max values of pixel intensities of 

complete vessel segment from each R and G 
component from RGB. 

where, n is the number of features, X[Ci] is the value 
of the colour channel X at point Ci in the image, X ɛ 
{R,G,B,H,S,I}. For instance, R[Ci] is the value of 
the centreline pixels in the R colour component, 
µ(G[Pi]) is the mean of the vessel profile pixels in 
the green channel.  

Figure 4(a) shows the graphs for feature 
importance index calculated from classifiers created 
with 30 decision trees and trained with 15000 
training samples. Based on the information shown in 
the graph, five sets of features have been created by 
selecting those features, where the importance index 
is more than the following values {0.75, 1.0, 1.5, 
2.0,2.75}. Five classifiers have been trained with the 
reduced feature sets and the out-of-bag (OOB) 
classification error is computed for each of the 
classifiers and is plotted in Figure 4(b). It has been 
observed that the performance of the classifier 
trained with 16 most significant features is best 
among all; therefore 16-D is utilized for vessel 
classification.  

2.5 Vessel Labelling 

The final labelling of vessel pixels is obtained by 
employing supervised classification with an 
ensemble classifier of bagged decision trees. We 
assume that all the pixels in the vessel segment are 
either in an  arteriole or venule. The  classification of 

 
VPi 

VPi+
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(a) 

(b) 

Figure 4: (a) Feature Importance Index, (b) Out-of-Bag 
classification error with reduced feature sets. 

the retinal vessel is a two class classification 
problem where each pixel in the image either 
belongs to an artery (CA) or to a vein (CV). 

 In Ensemble classification (Polikar 2006), 
multiple classifiers or models are tactically 
generated and combined in order to give the solution 
to a machine learning problem; with the goal of 
obtaining better predictive performance than could 
be obtained from any of the constituent classifiers / 
models. This process is used to abbreviate the 
likelihood of inadequate or unfortunate selection 
while improving the classification or prediction 
performance of the classifier. We use this strategy 
instinctively in our day to day activities, where we 
consider the opinion from several experts, evaluate 
and merge their recommendations for establishing a 
well optimized and well-versed conclusion. In the 
same manner, the ensemble methods utilize multiple 
classifiers/models to accomplish gain in 
classification performance by mixing/aggregating 
the outcomes from several weak learners into one 
high-class classifier, with the goal of reducing the 
variance and amplifying the confidence in the 
decision. In the present work, the decision trees have 
been used as the component classifier of the 
ensemble system and which is created by employing 
boot strapped aggregation 

Let us consider a set of observations “xn” from 
the feature vector with a known class label “y” as a 
training set, where y ∈{CA,CV}. The objective is to 
predict the class label “y” for the given observations. 

The classifier assigns soft labels to the centreline 
pixel labels, which can be regarded as a vote for the 
label of the complete vessel segment, and the mean 
of these votes is assigned as the label for the entire 
vessel segment. 

3 RESULTS 

3.1 Evaluation Criteria and 
Performance Measures 

We have tested this methodology on retinal images 
obtained from EPIC Norfolk study (EPIC-Norfolk 
2013). The dataset contains 40 macula centered 
retinal images from both of the eyes of 20 study 
participants, with the vessel types manually labelled 
by trained observers. The images were captured with 
non-mydratic fundus cameras and saved in 24-bit 
JPEG format with a resolution of 3000x2000 pixels. 
The performance measure are obtained for the 
centreline pixels in the entire image and evaluated 
separately for arterioles and venules. For each of the 
vessel type, the True Positives (TP), False Positives 
(FP), True Negatives (TN) and False Negatives (FN) 
are calculated in the same way as in (Saez, 
González-Vázquez et al. 2012), and tabulated in 
Table 2. 

Table 2: Vessel classification (Class ∈ {a,v}). 

 
Observer Identify 

pixel  ∈ Class 

Observer 
identify pixel 
∉Class 

System Identify 
pixel  ∈ Class 

True Positive 
(TPClass) 

False Positive 
(FPClass) 

System Identify 
pixel  ∉ Class 

False Negative 
(FNClass) 

True Negative 
(TNClass) 

The algorithm is evaluated in terms of Detection 
Rate / Sensitivity (SNa|v), Specificity (SPa|v), 
Classification Accuracy (ACCa|v), Classification 
Error Rate (CERa|v), Positive Predictive Value 
(PPVa|v), Negative Predictive Value (NPVa|v) and the 
Positive and Negative Likelihood Ratios (PLRa|v and 
NLRa|v). The ACCa|v is measured by the ratio of the 
total number of correctly classified pixels (sum of 
true positives and true negatives) by the number of 
pixels under consideration in the image. SNa|v 
reflects the ability of an algorithm to detect the true 
positives. SPa|v measures the proportion of negatives 
that are correctly identified. PPVa|v or precession rate 
gives the proportion of vessel pixels with correctly 
identified positive test results and NPVa|v is the 
proportion of vessel pixels with negative test results 
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that are correctly identified. The predictive values 
depends on the percentage of a/v in the retina 
(prevalence), therefore the likelihood ratios (PLRa|v 
and NLRa|v) are also computed which are not 
dependent on prevalence. These metrics are 
illustrated in Table 3, based on the terms defined in 
Table 2. 

Table 3: Performance metrics for vessel classification. 

Measure Description 

SNa|v TPa|v/(TPa|v+FNa|v) 

SPa|v TNa|v/(TNa|v+FPa|v) 

ACCa|v (TPa|v+TNa|v)/(TPa|v+FPa|v+TNa|v+FNa|v) 

CERa|v (FPa|v+FNa|v) / (TPa|v+FPa|v+TNa|v+FNa|v) 

PPVa|v TPa|v/(TPa|v+FPa|v) 

NPVa|v TNa|v / (TNa|v+FNa|v) 

PLRa|v SNa|v / (1- Spa|v) 

NLRa|v (1-SNa|v)/ SPa|v 

3.2 Experimental Results 

We have analysed the methodology by using 3149 
vessel segments from 40 colour fundus images from 
20 EPIC Norfolk participants. The algorithm is 
evaluated by using a two-fold validation 
methodology. The images of the right eye are 
assigned to set S1 and the left eye images are 
allocated to the set S2. The classifier is then trained 
on S1 and tested on S2, followed by training on S2 
and testing on S1. The performance metrics are 
computed separately for arterioles and venules and 
presented in Table 4. 

Table 4: Vessel classification performance metrics. 

Measure Arterioles Venules 

 
Tested 
on S1 

Tested 
on S2 

Tested 
on S1 

Tested 
on S2 

SNa|v 0.9067 0.8795 0.7658 0.7652 

SPa|v 0.7658 0.7836 0.9067 0.8804 

ACCa|v 0.8387 0.8298 0.8327 0.8261 

CERa|v 0.1612 0.1701 0.1672 0.1738 

PPVa|v 0.8162 0.8170 0.8757 0.8513 

NPVa|v 0.8757 0.8513 0.8162 0.8170 

PLRa|v 3.6183 5.7391 7.9255 8.8678 

NLRa|v 0.1261 0.1623 0.2763 0.2505 

The similarity in the performance metrics 
obtained for the sets S1 and S2 indicates the 
repeatability of the methodology in classification of 
vessels. The sensitivity in the set S1 for the arteries is 
0.9067 and for the veins is 0.7658. This in turn 
indicates that the probability of incorrect 
classification (i.e., false positives) for arterioles and 
venules is 9.33% and 23.42% respectively. Some 

results of the presented A/V classification 
methodology are illustrated in Figure 5. 

 

Figure 5: A/V classification result. 

A comparison of the proposed method’s 
performance metrics with the recently published 
methods is shown in Table 5. The sensitivity of 
proposed method in identifying arterioles is higher 
than the other methods, which suggests that our 
method has lower probability of incorrect 
classification. The higher specificity of our 
algorithm in identifying veins also indicates fewer 
false positives compared with other methods. We 
have analysed 40 coloured fundus images compared 
to 35, 58 and 35  images analysed in (Grisan and 
Ruggeri 2003), (Saez, González-Vázquez et al. 
2012) and (Relan, MacGillivray et al. 2013), 
respectively. Also the resolution of our images are 
3000 x 2000 pixels which is greater than 1300x1000 
and 786x567 used in previous studies (Grisan and 
Ruggeri 2003) (Saez, González-Vázquez et al. 
2012). It should be noted that the resolution of our 
test images is higher than those used to test other 
methods, so the performance metrics for our method 
may differ with a different image-set. The 
classification accuracy of the method is dependent 
upon the vessel segmentation results and the 
extraction of vessel centreline pixels. Moreover, the 
choice of a different classifier, feature set and retinal 
image zone is likely to have an impact of the 
method’s performance. 

Table 5: Results of our method compared with recently 
published methods. 

Method SN SP PPV NPV

A
rt

er
ie

s 

(Saez, González-Vázquez et al. 
2012) 

0.78 0.89 0.88 0.80 

(Relan, MacGillivray et al. 2013) 0.81 0.89 0.90 0.80 

Proposed Method 0.90 0.76 0.81 0.87 

V
ei

n
s 

(Saez, González-Vázquez et al. 
2012) 

0.87 0.79 0.81 0.86 

(Relan, MacGillivray et al. 2013) 0.76 0.95 0.94 0.83 
Proposed Method 0.76 0.90 0.87 0.81 
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4 CONCLUSIONS 

An automated method for A/V classification in 
retinal vasculature based on colour features utilizing 
the ensemble classifer of boot strapped decision 
trees is presented. To the best of our knowledge, this 
is the first time the decision trees based ensemble 
classifier has been used for A/V classification. 

An application of image processing algorithms 
for computer assisted analysis of digital fundus 
images offers a number of advantages over a manual 
system, including fast, timely and reliable 
quantification of abnormalities. The presented 
methodology will be incorporated in to a software 
package QUARTZ (QUantitative Analysis of 
Retinal vessel Topology and siZe). The QUARTZ 
software will assist in examining arterio-venous 
morphological associations with cardiovascular risk 
factors and outcomes in large population based 
studies, furthering our understanding of the vascular 
changes / consequences associated with the 
development of disease. 

In future we aim to extend the QUARTZ 
software to incorporate the analysis of other retinal 
vessel features pathognomonic of cardiovascular 
disease, including measurement of arterio-venous 
ratio, identification of venous beading and 
quantification of arterio-venous nicking. 
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