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Abstract: This pilot study applied Permutation Entropy (PE), a non-linear symbolic measure, and a novel modification 
(modPE), to investigate the regularity of electroencephalogram (EEG) signals from 11 Alzheimer’s disease 
(AD) patients and 11 age-matched controls given input parameters n (embedding vector), τ (coarse graining) 
and slide (difference between the start of two concurrent embedding vectors).  PE discriminated better than 
modPE with controls showing reduced regularity over AD patients.  Increasing τ identified the greatest 
differences between EEG signals.  Longer embedding vectors were also more able to identify differences.  
The greatest difference between groups was at Fp1 with n,τ,slide = 3,10,1 (p=0.0112 Kruskal Wallis with 
Bonferroni).  Subject and epoch based leave-one-out cross validation was carried out with thresholding from 
Receiver Operating Characteristic Curves.  The greatest ability to correctly identify AD patients and 
controls were 81.82% (Fp2 n,τ,slide = 7,4,4, PE and modPE, F7 n,τ,slide = 3,10,1, PE and modPE) and 
90.91% (Fp1 n,τ,slide = 3,10,1, PE and modPE), respectively.  The maximum accuracy (both groups 
correctly identified) was 81.82% seen at many electrode and input combinations.  All are with subject based 
analysis.  This suggests that PE can identify changes in EEG signals in AD, given appropriate variables.  
However, modPE makes little improvement over PE.  

1 INTRODUCTION 

Alzheimer’s Disease (AD) is a neurological 
condition of complex aetiology producing 
progressive symptoms of memory and function loss 
caused by modification of amyloid β and 
hyperphosphorated tau in neurons, modifying 
information transition in the brain (Pieyani et al, 
2011).  The ‘preclinical’ phase of the disease, where 
the AD patient is undiagnosed, can be as long as 20 
years (Reiman et al, 2012) due to the slow symptom 
onset and possible misdiagnosis, caused by the range 
of symptoms which can be presented (McKann et al, 
2011).  With the development of more effective 
treatments for AD and the increase in the number of 
patients suffering from this disease, the need for 
early, accurate diagnosis is imperative to ensure that 
treatments can be utilised effectively. 

There is evidence that the progress of the disease 
can be detected through changes of brain signals 
measured with an electroencephalogram (EEG) 

(Dauwels, Vialatte and Cichocki, 2010).  The 
disease must be highly progressed for visual 
identification from EEG signals but signal 
processing techniques may improve the ease at 
which changes due to AD can be seen in the early 
stages of the disease. 

Non-linear signal processing has been shown to 
reliably identify changes in EEG signals in AD 
patients including the slowing of EEG signals and 
increased signal regularity and decreased signal 
complexity (e.g. Abásolo et al, 2006; Dauwels, 
Vialatte and Cichocki, 2010; Escudero et al, 2006).  
Permutation Entropy (PE) is a symbolic, non-linear 
method that calculates the complexity of a signal by 
identifying different patterns in it (Bandt and 
Pompe, 2002).  However, information is lost about 
the magnitude of the patterns (Zanin et al, 2012) and 
so a number of modifications have been proposed to 
improve results when used with biological signals 
(Bian et al, 2012; Xiao-Feng and Yue, 2009).   

In this pilot study PE and a novel modification of 
PE (modPE) are tested for investigating the 
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regularity of EEG signals of AD patients in 
comparison to age-matched controls.  It is 
hypothesised that the modPE method will show clear 
differences between the two groups, while PE will 
show reduced differences between the two groups.  
Further, it is hypothesised that the AD patients will 
show an increased EEG regularity when compared 
to the control subjects. 

The paper is arranged as follows.  Section 2 
introduces the test database and the methods used in 
this study.  Section 3 contains results and a 
discussion is held in section 4.  Section 5 contains 
the conclusion of this study. 

2 METHODS 

2.1 EEG Signals Database 

This database has been described in a number of 
different studies (e.g. Escudero et al, 2009).  The 
pertinent points are repeated here for completeness.   

The sample group contained 22 subjects, 11 
probable AD patients (6 men and 5 women, 72.5 ± 
8.3 years, mean ± standard deviation (SD)), who had 
a Mini-Mental State Examination (MMSE) score of 
13.1 ± 5.9 (mean ± SD) and 11 age-matched controls 
(4 women and 7 men, 72.8 ± 6.1 years, mean ± SD) 
with a MMSE score of 30 ± 0 (mean ± SD).  The 
MMSE is a long established method of measuring 
the level of cognitive function of a patient (Folstein, 
Folstein and McHugh, 1975).  Full ethical approval 
was obtained for the collection and use of this 
database. 

Signals were recorded at 256Hz with a 12-bit 
analogue to digital converter using the international 
10-20 electrode placement system (electrodes Fp1, 
Fp2, F3, F4, C3, C4, P3, P4, O1, O2, F7, F8, T3, T4, 
T5, T6, Fz, Cz and Pz) with subjects in an awake but 
resting state with closed eyes.  In excess of 5 
minutes of data were recorded from each subject.   

This data was then reviewed by a clinician who 
selected 5 second epochs (1280 data points) with 
minimal electromyographic activity and no 
movement and electrooculographic artefacts.  These 
epochs were copied for off-line analysis and were 
then further filtered using a Hamming window finite 
impulse band-pass filter with cut-off frequencies at 
0.5 and 40Hz to remove DC components and 
residual noise.  For each subject, 30.0 ± 12.5 (mean 
± SD) epochs were collected.  All epochs were 
tested with the methods described in this paper. 

 
 

2.2 Permutation Entropy 

PE is a symbolic dynamics non-linear method which 
has been shown to be robust to noise and can be 
applied to short time series (Bandt and Pompe, 
2002).  The method is as follows (Bandt and Pompe, 
2002): 
 Take the first embedding vector of the dataset n 

data points long, skipping τ data points between 
each data point selected to join the embedding 
vector.  I.e. given time series {x(i), i = 1,2,…}, 
embedding vector = x(i),  x(i+τ), …, x(i+(n-1)τ). 
 Assign the lowest data point in the embedding 

vector 0, the second lowest 1 and on until all data 
points in the embedding vector have been replaced 
with their ranking order. 
 Collect a new embedding vector from the original 

dataset.  The first data point is slid further along 
the original dataset from the first data point of the 
previous embedding vector.  The subsequent data 
points of the embedding vector are found using the 
same pattern as the first embedding vector from its 
first data point.  The movement of vectors along 
the dataset is shown in Figure 1. 

 

Figure 1: Two graphs showing how different combinations 
of n,τ,slide move along the same dataset with a) showing 
3,1,2 and b) showing 3,2,4.  In figure b) the dashed line 
between points indicate the pattern of the embedding 
vector created by τ=2. 

 Again replace this with the ranking of the new 
vector as detailed in the previous point. 
 Continue this until all possible embedding vectors 
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have been created and ranked.  Then calculate the 
PE with equation 1. 





k

v
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where k is the number of different sub-sequence 
ranked vectors and Pv is the fraction of the sub-
sequence ranked vectors. Equation 1 is similar to 
Shannon’s Entropy (Shannon, 1948).  A less regular 
signal will have a greater range of embedding 
vectors and, therefore, a higher PE. Given the 
pattern recognition method in PE, where the ranking 
of each data point in order of assent is mapped back 
to their position in the original vector, {0.2 0.5 0.1 
0.4 0.7} would create the ranking {1 3 0 2 4}. 

The outcome of PE will be influenced by the 
choice of n, τ and slide.  A greater value of n, the 
embedding dimension, will give a greater possible 
range of ranking vectors and, therefore a greater 
resolution.  Bandt and Pompe (2002) recommended 
n=3 to 7 but n! must be less than the length of the 
original time series.  However, testing with epilepsy 
patients showed n=3 and 4 were too small to be of 
use (Cao et al, 2004).  In this study this range will be 
adhered to along with testing of n=10 to identify if 
values greater than n=7 may also identify 
statistically significant differences between the two 
study groups.   

Coarse-graining of the recorded EEG signal for 
creation of the sub-sequence vectors is carried out 
by τ.  Initially Bandt and Pompe (2002) used τ=1 but 
it was identified that this may not be the optimum 
value for signal analysis (Cao et al, 2004).  No 
studies have been completed to identify the most 
reliable range of τ and there is little consensus in the 
studies already completed using PE on the value(s) 
chosen for τ. The maximum τ seen in biological 
studies is 50, used to investigate EEGs of AD 
patients (Frantzidis et al, 2012) though this study 
produced results showing AD patients with more 
irregular EEGs, a finding inconsistent with the large 
body of other, already published results from similar 
studies.  In this study, τ=1 to 4 was chosen with a 
further test of τ=10. 

There is another variable that has not yet been 
investigated by previous work on PE.  This is the 
movement of the sub-sequence vector along the 
original data set and will be denoted by slide in this 
paper.  All previous papers have used slide=1 but 
this may not be the optimal choice of variable and 
could have a significant effect on the PE calculation 
given its interaction with the other two input 
variables.  Therefore, this study looked at slide=1 to 
4. 

The combinations of n,τ,slide tested in this study 
are summarised in Table 1, chosen to investigate the 
influence of each input variable and variable 
combinations and to compare how low and high 
input variable combinations interact: 

Table 1: Combinations of input variables tested. 

n τ slide 
3 to 7, 10 1 1 

3 2 to 4, 10 1 
3 1 2 to 4 
7 4 1, 4 

 

The results were normalised to allow for direct 
comparison between different variations in n, τ and 
slide.  Equation 2 shows the normalisation 
procedure: 

)!ln(

),,(
),,(

n
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
   (2) 

with ln(n!) the maximum number of ranking 
permutations given the length of the ranking vector.  
Note that the number of possible permutations is not 
dependent on τ or slide as these do not directly affect 
the theoretical maximum of possible permutations. 

2.3 Modified Permutation Entropy 

As previously mentioned, PE loses information 
which relates to the relative magnitude of the sub-
sequence vector data points, including ignoring any 
repeated values, giving the first repeated value in the 
vector (the value to the left of the vector) a lower 
integer than subsequent repeats and so on until all 
repeats are accounted for (Bandt and Pompe, 2002).  
With biological datasets this can cause a significant 
loss of information due to the level of sampling 
applied in the data collection phase or the 
information needed being held in the signal 
amplitude (Bian et al, 2012).   

A number of methods have been proposed to 
improve the PE algorithm when applied to biological 
datasets, Fine-grained PE (FGPE) (Xiao-Feng and 
Yue, 2009), Weighted permutation entropy (WPE) 
(Fadlallah et al, 2013) and index-modified PE 
(imPE- identified as mPE in the seminal paper) 
(Bian et al, 2012).  FGPE adds a further argument to 
the sub-sequence ranking vector which relates 
mathematically to the specific values contained in 
the sub-sequence vector but maintains the PE 
method in all other aspects.  WPE creates a 
multiplication factor of each logarithmic calculation 
which are created using amplitude information from 
each embedding vector.  However, imPE allows for 
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repeated values to be given the same ranking value.  
The created ranking vector from imPE does not 
follow the same method as PE, unlike FGPE.  The 
ranking of each data point in order of increasing 
value is not mapped back to their position in the 
original embedding vector, as in PE.  Instead the 
ranking denotes the position of the data point in the 
embedding vector in an order that describes 
ascending value of each of those data points.  The 
vector {0.2 0.5 0.1 0.4 0.7} described before with 
PE as pattern {1 3 0 2 4} would now be {2 0 3 1 4} 
with imPE.  This is because as, when reordered, the 
lowest value 0.1 comes from the third position, 
denoted as two when starting from zero rather than 
one, the next lowest 0.2 is from position one, 
denoted zero in the ranking, and so on (Bian et al, 
2012).  

The method proposed in this paper, modPE, 
combines the ability to cope with repeated values 
within the embedding vector suggested by Bian et al 
(2012) with the ranking mapping used in the original 
PE method.  The method will be described as PE 
though repeated values will retain the same ranking 
index, rather than being given differing ranking 
indexes.  Retention of information pertaining to 
repetition of data points in an embedding vector of 
two or more instances with one or more values will 
be incorporated into the method.  For example sub-
sequence vector {0.2 0.5 0.1 0.2 0.7} will create the 
ranking {1 3 0 1 4}.  Note position 2 is not recorded 
in the ranking vector as there are two 1’s. 

The variables for n, τ and slide will be the same 
as those tested for PE to allow for easy comparison.  
Again the results will also be normalised to allow for 
direct comparison by the method identified by 
equation 2, though the denominator for this method 
will be calculated differently due to the increased 
numbers of possible permutations.  For modPE, this 
was calculated by summing the number of different 
combinations given different repeated values. 

2.4 Statistical Analysis 

Results given PE and modPE analysis from all 
epochs were averaged for each electrode from each 
subject.  Normality of these average values was 
tested using Lilliefors test.  Statistically significant 
differences were identified between the 11 AD 
patients and the 11 controls using Student’s t test if 
the data were found to be normally distributed and 
Kruskal Wallis if not.  Statistical significance was 
indicated with p<0.05 in both cases with a 
Bonferroni correction for the 16 electrodes.  This 
correction leads to an uncorrected statistical 

significance of 0.0031. 
Statistically significant combinations were 

further investigated using Receiver Operating 
Characteristic (ROC) curves (Fawcett, 2006) with a 
leave-one-out cross-validation procedure.  
Sensitivity is defined as the proportion of correctly 
identified AD patients and specificity is defined as 
the proportion of correctly identified controls, while 
accuracy identifies the total number of correctly 
identified AD and control subjects combined.   

3 RESULTS 

Controls have a higher PE and modPE value than 
AD patients, suggesting an increase of EEG 
regularity due to this form of dementia.  At low n, τ 
and slide combinations, electrodes F7, T3 and T4 do 
not follow this trend.  At n = 5 to 7 with τ and slide 
= 1 electrodes Fp1, Fp2, F7, F8, C4, T3, T4, T5 do 
not follow this trend though all these cases show a 
difference between values of less than 2%. At these 
values of n, increasing τ reduces the number of 
electrodes not following the trend but the modPE is 
less able to distinguish between the two groups, with 
almost all electrodes showing an increased modPE 
for patients as τ increases.  With n,τ,slide = 10,1,1 
electrodes T3, T4 and T5 show increased irregularity 
in AD patients.  In total, 75.21% of calculations 
showed increased irregularity in controls over AD 
patients, but this was not equally distributed; some 
input parameters showed increased irregularity in 
EEG signals of AD patients in all electrodes and 
others increased regularity in EEG signals of AD 
patients in all electrodes.  Results were found to be 
predominately normally distributed except for when 
τ=10.  All electrodes showing statistically significant 
differences between the two groups are presented in 
Table 2. 

With low values of n with slide and τ both equal 
to 1 both methods were unable to distinguish with 
statistical significance between the two test groups at 
any electrode.  The ability to distinguish between the 
two groups increased as n increased.  The choice of τ 
was found to be the most critical in distinguishing 
between the two test groups.  Slide values had little 
effect on distinguishing between the two groups.  
However, a greater significance was seen between 
the two groups as slide increased though this did not 
reach statistical significance. 

All statistically significant electrode 
combinations were then subjected to leave-one-out 
cross-validation analysis with the threshold 
identified  through  ROC  plots.  The  results are also 

BIOSIGNALS�2014�-�International�Conference�on�Bio-inspired�Systems�and�Signal�Processing

100



Table 2: Statistical results for PE and modPE.  Statistical significance calculated with Student’s t Test is identified by S 
while statistical significance calculated with Kruskal Wallis is denoted KW.  P values in this table have already been 
corrected with a Bonferroni correction.  As such, statistical significance is denoted as p<0.05.  Leave-one-out with subject 
based analysis is denoted SB and with epoch based analysis is denoted EB. 

Electrode n,τ,slide Method Normalised 
control 

(mean±SD) 

Normalised 
AD 

(mean±SD) 

Statistical 
method 

P with 
Bonferroni 
correction 

Leave-
one-out 
method 

Sensitivity 
(%) 

Specificity 
(%) 

Accuracy 
(%) 

Fp1 3,10,1 PE 0.9957 
±0.0016 

0.9886 
±0.0058 

KW 0.0112 SB 72.73 90.91 81.82 
EB 60.93 69.55 65.04 

modPE 0.6588 
±0.0011 

0.6541 
±0.0039 

KW 0.0224 SB 72.73 90.91 81.82 
EB 61.52 71.47 66.26 

Fp2 7,4,1 PE 0.7981 
±0.0071 

0.7860 
±0.0082 

S 0.0224 SB 63.64 81.82 72.73 
EB 76.61 69.86 73.56 

7,4,4 PE 0.6654 
±0.0020 

0.6609 
±0.0033 

S 0.0144 SB 63.64 81.82 72.73 
EB 67.54 73.05 70.03 

F7 3,10,1 PE 0.9964 
±0.0023 

0.9927 
±0.0034 

KW 0.0368 SB 81.82 81.82 81.82 
EB 58.09 70.68 64.18 

modPE 0.6593 
±0.0015 

0.6568 
±0.0023 

KW 0.0368 SB 81.82 81.82 81.82 
EB 56.36 64.51 60.30 

 

held in Table 2.  For subject-based analysis, the 
greatest sensitivity of 81.82% was obtained at 
electrode F7 with n,τ,slide = 3,10,1 and the greatest 
specificity was 90.91%  at electrode Fp1 with 
n,τ,slide = 3,10,1.  In both cases this is the same for 
both PE and modPE.  The greatest accuracy, 
81.82%, was seen at a number of electrode and 
calculation combinations with subject based 
methods.  Epoch based results were less sensitive to 
differences between the two groups, with a 
maximum sensitivity of 76.61% with Fp2 at n,τ,slide 
= 7,4,1, a maximum specificity of 73.05% with Fp2 
at n,τ,slide = 7,4,4, and an accuracy of 73.56% with 
Fp2 at n,τ,slide = 7,4,1.  This shows a significant 
ability to distinguish between controls and AD 
patients at this electrode. 

4 DISCUSSION 

In this study we tested PE and a novel version of PE, 
denoted modPE, to analyse the EEG signals of 11 
AD patients and 11 age-matched controls.  PE is a 
symbolic non-linear method and other symbolic 
non-linear methods, such as Lempel-Ziv 
Complexity, have been shown to discriminate 
between the EEG signals of AD patients and 
controls with statistical significance (Abásolo et al, 
2006).  While PE is not a new method, little research 
has been carried out into its behaviour with EEG 
signals from AD patients. 

The increased signal irregularity of control 
subjects when compared to AD patients EEG signals 
supports the hypothesis stated in section 1 that 
controls show a less regular signal than AD patients.  

Morabito et al (2011; 2012) tested AD and MCI 
subjects using PE and multivariate multi-scale PE 
with n=3 and τ=1, also finding increased irregularity 
in control subject EEGs in comparison to AD 
patients. However, modPE did not perform 
significantly better than PE as hypothesised, a 
hypothesis which was based on the work by Bian et 
al (2012) where imPE was used with input 
parameters n,τ = 3-7,1 and 3,1-4 on R-R intervals 
from ECG signals rather than complete EEG signals.  

The inability of small n (n < 5) to identify 
changes in signals caused by pathological changes in 
the brain was identified by Cao et al (2004) testing 
combinations of input parameters which included 
n=3-7 and τ=2,3 and 10.  This is supported by our 
results, with low values of n unable to discriminate 
between control subjects and AD patients.  Further, 
ranges of n outside those suggested by Bandt and 
Pompe (2002) can be utilised successfully with this 
method, shown by the support of the trend of 
reduced regularity in AD EEG signals seen with the 
lower values of n.  These findings suggest that the 
differences in EEG signals between AD patients and 
controls only manifest themselves in larger patterns 
and similar smaller patterns are seen in both signal 
types. 

The influence of τ was the greatest of all input 
variables on the ability of PE and modPE in 
distinguishing between the two groups.  This input 
variable effectively coarse-grains the signal before 
calculating PE or modPE.  It has been found that 
coarse-graining of signals can provide a greater 
understanding of those signals under investigation 
and in some cases has increased the ability to 
distinguish between differing groups such as AD 
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patients and controls (Escudero et al, 2006; Simons, 
Abásolo and Escudero, 2012a; 2012b).  The ability 
of this method to improve understanding and 
discrimination and the link between coarse-graining 
and τ supports the findings of this study.   

It was found in the range of slide variables tested 
in this study that this had no influence on the ability 
of the methods to distinguish between the two 
groups, though a trend was seen in the resulting p 
values that suggests that increasing slide may 
improve resolution for investigation of EEG signals.  
However, significantly increasing slide reduces the 
data investigated directly in the calculation of PE.   

Given the findings of this pilot study, it is 
suggested that n,τ,slide = 3,10,1 is the optimum 
selection of parameters for discriminating between 
AD patients and controls.  However, there may be 
another combination with higher n and τ values 
which has not been tested in this study which is 
more able to discriminate between the two groups. 

The novel method of modPE was introduced to 
investigate the improvement over PE by retaining 
the information contained in the appearance of 
repeated values, identified as a key component of the 
changing R-R intervals from ECG signals 
investigated in the paper by Bian et al (2012) and 
vital to distinguish between the data from patients 
and healthy controls.  This study does not confirm 
their findings, both as PE identified statistically 
significant differences in the EEG signals of AD 
patients and controls and that modPE, while also 
identifying statistically significant differences, did 
not provide a large increase in the ability of the 
methodology to distinguish between signals from 
healthy controls and patients.   

This change in the abilities of the two methods to 
distinguish between the two groups is thought to be 
due to significant differences in the signal types 
analysed and, therefore, the appearance of repeated 
values.  An ECG is more prone to repeatability than 
signals from other, more complex neuronal systems 
such as the EEG from the brain.  This means that the 
probability of repeated values within a given pattern 
from an ECG trace is significantly higher than that 
from an EEG signal.  Furthermore, the focus of a 
particular metric from a signal, such as the R-R 
interval, rather than the entirety of a signal further 
increases the possibility of repeated values. 

While PE is currently undergoing wide ranging 
testing (e.g. Fadlallah et al, 2013; Li et al, 2013; 
Riedl, Müller and Wessel, 2013), there are few 
studies applying this method to AD diagnosis.  The 
differences in signal regularity found by  a majority 
of PE and modPE calculations with this dataset are 

comparable to those found with Multi Scale Entropy 
(Escudero et al, 2006), historically the most accurate 
method with this database. 

Some limitations of this study should be 
mentioned.  The small sample size of this dataset 
leads the findings of this work to be a pilot study.  
Furthermore, a greater range of input variables must 
be trialled to understand the optimum combination 
of input variables to discriminate between these two 
groups and other groups with similar pathologies 
such as Mild Cognitive Impairment (Albert et al, 
2011). In addition, recent evidence suggests that the 
increased regularity observed in AD patients’ EEGs 
with non-linear methods might be closely linked 
with the slowing found with traditional spectral 
techniques (Dauwels et al, 2011). Therefore, further 
research looking at possible correlations between 
different implementations of PE and spectral 
techniques is needed. One possible option might 
include synthetic signal analysis (Riedl, Müller and 
Wessel, 2013). In spite of these shortcomings, PE 
and modPE are able to distinguish changes in the 
EEG signal of AD patients with a range of input 
parameters. 

5 CONCLUSIONS 

This work has shown the application of PE and a 
novel modified version of PE to the analysis of EEG 
in AD patients in comparison to age-matched 
controls.  The findings with PE corroborate other 
studies with this dataset and others with similar 
methods, in that control subject’s EEGs were found 
to be more irregular than those of AD patients.  The 
choices of input parameters were found to be a key 
component in identifying the changes in the signal.  
However, caution must be taken due to the small 
size of the dataset studied. 
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