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Abstract: We present an approach for the 3D visualization of clustered tomographic image data using the example of
breast perfusion image data. Our visualization provides fast visual access to the amount of clusters, cluster
size, presence and amount of outliers, and the spatial extent as well as the spatial orientation of the clusters.
The spatial perception of a cluster’s elements is improved with a connection via geometric primitives and
appropriate shading styles and color mapping. Our technique can be easily adapted to any cluster result
arising from medical tomographic image data.

1 INTRODUCTION

Medical image data sets become larger and more
complex, thus increasing the demand for computer
support during the evaluation by a biomedical expert.
Hence, clustering is important to group objects with
similar attributes, e.g., voxels representing certain tis-
sue types. The appropriateness of a cluster algorithm
depends on the medical problem and image parame-
ters. To improve the adoption of a clustering to a spe-
cific problem, the biomedical expert has to evaluate
the quality of the clustering result, like the topology
of the clusters and the spatial orientation of the struc-
ture that has been decomposed.

We present a new 3D clustering view to visualize
clustering results of medical image data, e.g., 4D tem-
poral perfusion data. For the evaluation of perfusion
data sets, clinical diagnosis aims at the identification
of areas that exhibit similar characteristics. For exam-
ple, clustering of breast tumor perfusion data is em-
ployed to evaluate the tumor’s heterogeneity (Preim
et al., 2012). Beyond grouping of voxels with similar
perfusion characteristics, clustering is applied to var-
ious medical image data, such as fMRI data. Hence,
peaks in a histogram often represent overlaps of tis-
sue types that are not particularly interesting. To de-
tect the interesting data parts, clustering is often em-
ployed to analyze the gradient versus the intensity
histogram space (Maciejewski et al., 2009). Further-
more, cluster analysis is carried out to generate trans-
fer functions for this kind of data (Maciejewski et al.,
2013). In addition, cluster analysis is also applied to

identify regions with similar boundary characteristics,
which in turn are used for transfer function specifica-
tion (Sereda et al., 2006). DTI data forms another im-
portant medical application area for clustering, where
fiber tracts are clustered (Moberts et al., 2005).

We illustrate our new 3D cluster view based on the
example of clustering of medical perfusion MRI data
for breast cancer diagnosis. Perfusion MRI exhibits
a higher sensitivity than conventional X-ray mam-
mography in younger women and is often consulted
to confirm benignity (i.e., non-cancer) or malignancy
(i.e., cancer) of a tumor. Contrast-enhanced perfusion
MRI data is acquired to analyze the contrast agent ki-
netics of the tumor. A breast tumor is considered as
malignant as its most malignant tumor part.

Consequently, biomedical researchers try to detect
new correlations between heterogeneity and malig-
nancy based on the clustering result of breast tumors.
For the evaluation of a clustering’s quality, the cluster
shapes and spatial orientations as well as their average
enhancement are assessed. Also, the topology and the
connectivity of the clusters is evaluated such that con-
clusions are made about a necrosis in the tumor center
or varying enhancement kinetics at the tumor bound-
ary. Generally, a standard 2D slice view is analyzed
since this visualization does not suffer from any oc-
clusion. However, we aim at a 3D representation to
not only show the spatial orientation of the clusters,
but also how they penetrate each other.

When it comes to a 3D visualization of different
groups of data (i.e., different groups of voxels that
could be arbitrarily shaped and be nested into each
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other), in general each group is visualized with its
boundary surface and one is directed to the embed-
ded surface problem. We avoid this by employing a
3D scatter plot-like view. The objects (in our case the
voxels) are mapped to small spheres in the 3D scat-
ter plot-like coordinate system. Thus, we can avoid
occlusion, since no surfaces or blocks of data are ren-
dered. To emphasize the connection of the data points
to the corresponding clusters, we employ tubes and
use color-coding. Additional information about the
clusters, like average relative enhancement curve, is
provided with a necklace map legend (Speckmann
and Verbeek, 2010). Our framework is developed
based on the clustering of medical perfusion data.
However, our method is feasible for each cluster 3D
visualization arising from other medical areas.

In summary, we present a visualization with the
following contributions. First, we describe a cen-
ter point-oriented projection of a tumor into a sphere
model, where different spheres represent different
neighbor layers. Now, each voxel can be rendered
as small object on such a sphere’s surface. Sec-
ond, we introduce a 3D scatter plot-like visualiza-
tion for breast clustering results employing the sphere
model and featuring well-fitted tubes. The visual-
ization comprises selected shading styles to enhance
the different scatter plot parts and a perception-based
color mapping to enhance visual differentiation be-
tween clusters. Furthermore, it is adapted to the ex-
tent of the tumor. Third, a necklace map-based legend
provides different information about the clusters. We
evaluate our visualization in a quality user study.

2 RELATED WORK

To improve and support the radiologist’s work, ad-
vanced methods including visual analytic solutions
were developed. Lundström and Persson charac-
terized the visual analytic tasks in diagnostic imag-
ing (Lundström and Persson, 2011). Hence, the de-
termination of shape, size, and relative position of
different parts of the anatomy was identified as im-
portant component of a radiologist’s image review
work, albeit it was considered less important than
the diagnosis of primary and secondary findings in
the image data in an efficient way. For the evalua-
tion, Glaßer et al. stated that density-based clustering
techniques are well suited for the underlying breast
perfusion image data due to the arbitrarily shaped
clusters as well as outlier detection (Glaßer et al.,
2013). The aim of the current work is not to iden-
tify the best clustering but to visualize an extracted
cluster result such that important information, e.g.,

number of clusters, number of outliers, can be ex-
tracted. A Multifield data visualization can be car-
ried out with geometric presentations like the scat-
ter plot (Wong and Bergeron, 1997) for 2D object
spaces or the parallel coordinates plot (Inselberg and
Dimsdale, 1990) for higher dimensional object spaces
without spatial information. To maintain spatial infor-
mation in high-dimensional cluster visualization, Lin-
sen et al. presented a surface extraction approach for
spatial visualization of multifield clustered data (Lin-
sen et al., 2008). Hence, boundary surfaces are ex-
tracted and semi-transparently visualized in a 3D star
coordinate layout to reveal nested clusters. Poco
and colleagues employed a least square projection to
map high-dimensional data to 3D visual spaces (Poco
et al., 2011). Their framework enables the map-
ping of multidimensional non-spatial data as well as
the feature space of multi-variate spatial data. Both
approaches employ surface representations for their
cluster results. Due to the limited number of voxels
in a medical data set, we do not want to visualize sur-
faces but rather present each object directly.

In (Zhang et al., 2006), a method to visualize
gene clusters in 3D is described. First, a spring
model is used to locate genes within a cluster into
InfoCubes. Afterwards, the same method is used
to allocate the InfoCubes into 3D space. The algo-
rithm avoids the space partition problem. Unfortu-
nately, clusters on our tumor data sets can be entwined
around each other such that we need a representation
of such cases. The approach by Quigley deals with
large data sets and generates hierarchical compound
graphs (Quigley, 2001). The clusters are represented
as a graph where the nodes act as the clusters. Yang
et al. presented a system for the processing of DNA
microarray data (Yang et al., 2003). They introduce
a space-undivided and a space-divided 3D gene plot.
In the first plot, every gene is assigned to a sphere
and the cluster membership is color-coded. The sec-
ond plot splits the 3D space into cubes and puts the
clusters into these cubes. In the first case, clusters
seem to be huge point clouds, and in the second case,
no spatial information about the clusters exists. Aono
and Kabayashi developed a visual interface for non-
technical users to understand the output from cluster-
ing algorithms (Aono and Kobayashi, 2011). Their al-
gorithm displays clusters which are projected on a 3D
subspace based on the user’s keyword input. Thus, the
computed recommendations for the 3D visualization
cannot present the spatial impression on the tumor.

In contrast, our approach aims at direct mapping
of each voxel to a data point in the 3D space, which is
possible due to our small data set extents. Similar to
our work, Kosara et al. presented the VoxelPlot, a 3D
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scatter plot that interactively links scientific and infor-
mation visualization (Kosara et al., 2004). A voxel-
based representation of clustered / grouped data for
perfusion MRI was presented in (Oeltze et al., 2007).
Sanftmann and Weiskopf introduced the illuminated
scatter plot, where shape perception is improved by
applying a dedicated illumination technique to the
3D scatter plot point cloud representation (Sanftmann
and Weiskopf, 2009). Piringer and colleagues map
the distance to color and the point size of the scat-
ter plots (Piringer et al., 2004). In contrast to these
approaches, we do not only employ color or shad-
ing to represent the type of cluster, but also add ge-
ometric objects into our 3D scatter plot to enhance
the connections of cluster voxels to cluster centers.
This is similar to the work presented in (Healey et al.,
2001), where contextual cues in the final 3D scatter
plot-based visualizations for large, multidimensional
collections of data are included. Another example re-
lated to the aspect of connected cluster elements is
the butterfly plot (Schreck et al., 2008). Hence, multi-
dimensional point clouds are projected into 2D space
and clusters are visualized by compact shapes that en-
close all members of a given point cloud.

Our visualization method is extended by a legend
that is based on the necklace map (Speckmann and
Verbeek, 2010). This technique is related to boundary
maps, which map labels around the map in the center,
and is well suited for cluster visualization.

3 MATERIAL AND METHODS

In this section, we describe the steps to create the 3D
clustering view, see Figure 1. At step I, the neighbor-
hood model is extracted (described in Sec. 3.1). At
step II, the voxel size and tumor extent is determined
(see Sec. 3.2). At step III, we project the voxels onto
spheres (refer to Sec. 3.3), connect the cluster ele-
ments with their associated cluster center points via
tubes (presented in Sec. 3.4), and reshape the spheres
according to the tumor’s extent. A legend that is based
on the necklace map is added to the 3D visualization
to provide additional information about the clusters,
described in Section 3.5. The assignment of color and
shading styles is presented in the last part of this sec-
tion.

3.1 Neighborhood Model for Voxel
Ordering

Given a voxel in a 3D tomographic data set, the cor-
responding neighbors are defined as adjacent voxels
that share

� a face (yielding 6 neighbors),
� an edge (yielding 18 neighbors),
� or a vertex (yielding 26 neighbors).

We choose the edge-based neighborhood relation-
ship. We build a neighborhood structure by an itera-
tive process. First, we start at an initial voxel vinit that
is typically the centroid of the tumor T . If the cen-
troid is not part of the tumor due to an irregular tu-
mor shape, we choose its nearest neighbor contained
in the tumor. The first layer L1 of our neighborhood
structure contains only vinit . The second layer L2 in-
cludes the neighbors vi 2 T of vinit that are also part
of the tumor. For simplicity, we denote Neigh(v) as
the neighbors of v in T . The i-th layer can be written
as:

Li =
[

v2Li�1

Neigh(v) n Li�1: (1)

3.2 Integration of Voxel and Tumor
Extent

The voxel extent is determined by the image ma-
trix that defines the image plane resolution, i.e., the
voxel’s width and height. The voxel’s depth is set
down by the slice thickness, which usually differs
from the image plane resolution. We rescale the
voxel’s depth vz such that the voxel’s width and height
equals uniform length.

The tumor extent is characterized with a princi-
pal component analysis. The voxel’s x, y and z in-
dices serve as input, whereas z was rescaled with vz.
Hence, the principal components match the eigen-
vectors of the covariance matrix that was constructed
for the principal component analysis. With the three
eigenvalues corresponding to the three principal com-
ponents, we obtain the tumor’s three main extents.

3.3 Projection onto a Sphere

After we extracted the neighborhood structure, we
build up our cluster visualization. Each layer of
neighborhood information is projected onto a sphere.
Therefore, we translate a sphere of radius r = i2 to the
initial voxel, i.e., the centroid. Afterwards, we deter-
mine the intersection point of the sphere with the line
constructed by the initial voxel and an element in the
i-th layer Li. In detail, we translate the voxel such
that the initial voxel is in the origin. Given the mid-
point qi

j of v j 2Li, we obtain the intersection point
pi

j by calculating

pi
j = qi

j

s
r2

(qi
j)

2 : (2)
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Figure 1: Scheme of our cluster visualization pipeline. The example holds five voxels, each forming its own cluster. In step I,
we create a sphere model, holding all voxels of the tumor. In step II, the voxel dimensions are adapted to the image resolution.
A principal component analysis yields the main directions of the tumor. In step III, the 3D clustering visualization is generated
by positioning the voxels onto spheres. The sphere-shaped visualization is adapted to the main tumor extents, approximated
with the principal components.

(a)

1

(b)

2

(c)
Figure 2: We start with the initial voxel (cyan color-coded),
see (a). Next, we determine L1 and calculate the intersec-
tion point of the line constructed by the initial voxel and an
element of L1 with the circle, see (b). In (c), we obtain the
intersection points of the second layer L2.

See Figure 2 for an illustration in 2D.

3.4 Connection of Cluster Elements and
their Associated Midpoints

To support the perception of clustered elements, we
connect all elements and their associated midpoints.
The connections, shaped like tubes, are motivated
by the natural model of neurons and their dendrites
as well as blobby surfaces (Blinn, 1982). We em-
ploy a visualization which connects the start points,
i.e., the extracted positions for each voxel, with the
end point, i.e., the cluster center, by smooth organic
linkage. Hence, the algorithm comprises three steps.
First, we connect the start point and the end point
with a straight line. As an optional step, we add sev-
eral equidistant points on the line. Afterwards, we
use the normalized vector which points to the start
point. We scale this vector to one tenth of the length
from the end point to the start point and add it to the
added points on the line. The scaling linearly changes
to zero such that the first points are more translated
than the last ones. This approach yields a bending
of the tubes and reduced visual clutter. The second
step is about generating a cubical spline to connect
the end point and the start point via the middle points.
The last step generates a Frenet frame around the
curve. Afterwards, we use this frame to generate a
tube around the curve. Inspired by the following for-

Figure 3: An example of a visually pleasing tube connecting
the start point to the end point.

mula:

thick(x) = radius
�

1 �
� x

d

�2
�2

; (3)

we generate a function which determines the thick-
ness of the tube at every point. Let r1 be the radius
of the sphere at the start position, r2 the radius of the
sphere at the end point, and d denotes the distance be-
tween the start and the end position. Additionally, we
define r0 = 0:25min(r1;r2). Furthermore, ra = r1� r0

and rb = r2 � r0. Then, the thick(x) function with
x 2 [0;d] can be written as:

thick(x) =

8>>>><>>>>:
ra �
�

1�
� 4x

d

�2
�2

+ r0 if x� d
4

rb �
�

1�
�

4(d�x)
d

�2
�2

+ r0 if x� 3
4 d

r0 otherwise:
(4)

The construction of thick(x) ensures a smooth change
from r1 for x = 0 to r2 for x = d. First, the value
thick(x) decreases smoothly from r1 to r0 for x 2
[0;d=4] and keeps its value r0 for x 2 [d=4;3d=4].
For x > 3d=4 the function is smoothly increased to
the value r2. See Figure 3 for an example.

3.5 Combination with a Necklace Map

To assess a clustering’s quality, additional informa-
tion to the cluster’s spatial orientation should be pro-
vided. These information may include the cluster’s
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average value of a parameter, its standard deviation,
or its size, etc.

For perfusion imaging, the average perfusion en-
hancement curve is of major interest from the radi-
ologist’s point of view. For each cluster, we provide
its average curve in a legend that is based on a neck-
lace map (Speckmann and Verbeek, 2010). The neck-
lace map was developed for 2D maps and is similar to
cartograms or choropleth maps. However, it arranges
symbols (e.g., circles) around the initial map in a lin-
ear ordering. Thus, the symbols can carry information
but no occlusion arises.

The necklace map is perfectly suited for our
method, since we want to display additional informa-
tion for a group of well-defined objects – our clusters
– albeit we want to accomplish a 3D scene instead of
a 2D scene. The according symbol for each cluster
is a circle that is color-coded with the corresponding
cluster color. All circles are arranged on the necklace
ordered by cluster size, starting in the top right. The
necklace itself is an ellipse that is obtained by scaling
a circle with tumor extents extracted in Section 3.2.
The necklace legend is depicted in Figure 4. The size
of the necklace pearls is linearly decreased, and not
proportional to the cluster size due to strong varia-
tions of cluster sizes, e.g., a cluster may contain 3 or
500 voxels.

3.6 Representation of Clusters

The tubes are rendered with a Phong shading to im-
prove the shape perception. To support the visual-
ization of the start point, and thus a good differentia-
tion from the Phong-shaded connecting tube, we ap-
ply Fresnel shading to the start point.

We assign a specific color to each cluster and its
start points. For the color assignment, we employ
the CIELAB color space to establish high perceptual
color contrast. The first cluster is always assigned to
orange, with the corresponding CIELAB components
L = 67, a = 43, and b = 74. For the n remaining clus-
ters, we extract n colors with the following routine.
We place a circle in the CIELAB space. The circle’s
center is set to (a= 0;b= 0). Given the a- and b-value
for orange, we define its radius r with r2 = a2 + b2.
Then, we define the angle a B arcsin(b=r). Next, we
compute new values for a and b by increasing a with
b , where b ranges from 0 to 2p=n in n steps. We now
compute a = r �cos(a +b ) and b = r �sin(a +b ), and
combine them with the starting value for L.

For the final representation, we scale the spheres
holding the voxels according to the tumor extent to
highlight the tumor’s biological form. Thus, a tumor
with a biological ellipsoid form yields a scaling of

the spheres along the main tumor extents, whereas a
sphere-shaped tumor will only cause minimal scaling.

4 RESULTS

We present our approach adapted to a breast tumor in
Figure 4. There, an overview of our 3D scatter plot-
like clustering visualization is provided. The user can
examine the spatial extent of the single clusters and
their spatial position. The spheres, which hold the dif-
ferent neighbor layers, are visualized with a Fresnel
shading. We assign gray to these spheres. Outliers are
presented with white colored spheres. Furthermore, a
standard headlight is applied to the visualization.

The 3D view is accomplished with a necklace
map. Thus, the user has a fast overview of all exist-
ing clusters and additional information are mapped.
As demanded by our medical experts, we provide the
cluster’s average relative contrast agent enhancement
as time-intensity curve. Our framework also holds a
conventional slice view. To study a cluster’s spatial
orientation in more detail, the user can pick a cluster
by clicking via the necklace map or the 2D view and
study its extent in more detail. Now, Fresnel shad-
ing is interactively applied to the non-selected clus-
ters with a gray color. This emphasizes the selected
clusters and supports the individual examination, re-
call Figure 4.

In Figure 5, we loaded a brain tumor data set
comprising a masked perfusion MRI data set. For
brain perfusion, the parameter cerebral blood volume
(CBV) is analyzed to detect hot spots, i.e., regions
with elevated CBV values. The brain tumor was de-
composed into five clusters with k-means based on the
parameter CBV. Hence, no outliers are present. In-
stead of presenting the whole contrast agent enhance-
ment curve, the pearls of the necklace map provide
average CBV values and identify the pink cluster as
cluster with highest averaged CBV value.

5 EVALUATION

We performed a qualitative evaluation of our cluster
visualization method. Our goal was to assess the ca-
pability to express the topology of the clustering result
in the 3D visualization. Hence, we focussed on the
3D representation of the clusters in combination with
connecting tubes and presented a point-based scatter
plot view and transparent isosurfaces for comparison,
see Figure 6. The evaluation was conducted with one
medical researcher and physician, and ten researchers
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Figure 4: Example of a breast tumor clustering result of tomographic perfusion data. The 3D cluster visualization (left) and
the 2D slice (top right) are integrated in our framework and reveal three clusters arranged at three layers. The necklace map
(placed around the 3D visualization) and the slice view allow for a fast selection of clusters. Once the user selected a cluster,
only this cluster is color-coded, and the remaining clusters are visualized with a Fresnel shading (bottom right). Outliers are
highlighted with bright red after selection according to observations from our user study.

who are familiar with the visualization and evaluation
of medical tomographic image data.

In this study, we asked the participants to handle a
few minor tasks about

� the topology of the clustering result,

� the presence of outliers,

� and the impression about the tumor’s boundary
and shape.

Figure 5: Illustration of the clustering result of a brain tu-
mor. The tumor has an elongated shape and was clustered
into five clusters, no outliers exist. The necklace map pro-
vides additional cluster information, i.e., the cluster’s aver-
age parameter value of the cerebral blood volume (CBV).
The slice view was added for a 2D view.

The topology of the clustering result was covered
by the request to identify the largest cluster and to cat-
egorize the clustering result’s topology in pre-defined
categories. It was questioned if the participants could
identify outliers and how many outliers there are with
respect to number and percentage to the whole tumor.
The last question concerned the tumor’s boundary
(from round to stellated boundary) and shape (from
spherical to ellipsoidal). For each answer, we pro-
vided well-defined categories to make the answers of
different participants comparable.

First, the participants were introduced to the three
techniques by presenting a clustering result of a test
data set (recall Fig. 6). Next, the subjects solved the
tasks for nine examples, created by applying each vi-
sualization technique to three new data sets. The vi-
sualizations were presented such that no data set was
consecutively shown, but after each presentation an-
other data set with another 3D view was depicted. Af-
ter answering the questionnaire, we asked the partici-
pants to rate the techniques according to their appro-
priateness to evaluate the clusters’ topology, the re-
quired user interaction, as well as for additional feed-
back.

As a result, all volunteers correctly identified the
largest cluster for each example. However, when it
comes to the cluster number, our technique achieved
better results than the other two methods, see Fig-
ure 7. This is very relevant, since a wrong number of
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Figure 6: The three 3D views of a clustering result, including a point-based view (left), the isosurface view (center), and our
approach (right).

clusters implies that some clusters were not detected
at all or (very rare) that some single, spatially con-
nected, clusters were interpreted as different clusters.
The majority of the participants rated our method to
be the most appropriate for evaluating the clusters’
topology (8 out of 11).

Outliers were present in all examples, and with
two exceptions (arising from our visualization and an
isosurface-based view) for two single examples, all
participants detected the outliers for each view. When
it comes to tumor shape, the volunteers assign higher
ratings, i.e., more stellated boundaries based on our
visualization in comparison to the other two views.
This is due to the arrangement of the voxels onto
the spheres. Hence, our view suggests a more stel-
lated boundary, which is a limitation. However, there
was no trend with respect to the employed technique,
when the participants should evaluate the tumor size
via the number of voxels that were clustered. All
participants had no difficulty with the interaction or
with the visualization. But the majority (9 out of 11)
needed less interaction with the 3D scene, e.g., cam-
era rotation, with our method due to the good spatial
impression of the connected clusters.

However, the study does not allow for a defini-
tive statement. A further evaluation is required with
more participants and data sets. In summary, the par-
ticipants were able to fulfill the assigned tasks with
our method very well. They rated it as best suited for

Figure 7: Bar diagrams illustrate the average squared error
of the approximated number of clusters (left) by all users for
the three techniques: point-based 3D view, isosurface view
and our 3D scatter plot-like view. On the right, the number
of users is presented that chose a technique as best suited
for evaluation of the clustering’s topology.

the evaluation of a clustering topology. Furthermore,
they preferred it due to the visual cluster connections
via tubes and due to the lesser scene interaction in
comparison to the other techniques. They asked for
a more prominent color-coding of outliers, like bright
red, which we included in the framework afterwards.
It must also be stated that our visualization indicates
a more stellated boundary due to the spatial represen-
tation of the voxels on the spheres. On the other hand,
these representations reduce the amount of occlusion
and thus the amount of required user interaction.

6 DISCUSSION AND FUTURE
WORK

In this paper, we presented a novel method for 3D
cluster visualization for analyzing medical tomo-
graphic image data. We applied our techniques to
clustering results of breast perfusion data. However,
our methods are feasible for each clustering arising
from other medical areas. Our 3D scatter plot-like
cluster visualization addresses the spatial information
as well as the size of each cluster. A fast overview
of how many clusters are present and how they are
spatially aligned is presented. Geometric modeling
enhances cluster connections. The 3D view is com-
pleted with a necklace map legend, maintaining that
each cluster can be adressed. Hence, the user can se-
lect a cluster of interest for further exploration in the
3D view. While the appearance of the selected cluster
does not change, color and shading of the remaining
clusters change from opaque visibility to Fresnel.

For future work, we like to address an improved
perception in case of a huge number of cluster el-
ements. We think about a view-dependent trans-
parency representation similar to the work by Günther
and colleagues, who reduce the number of displayed
lines by smoothly fading them out (Günther et al.,
2011). Connections very close to the camera are
opaque, whereas connections far away are rendered
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transparent. This is done to improve the visual ap-
pearance of the tubes and to concentrate on the focus
of the camera. Furthermore, we like to use the GPU to
get a real-time interaction while changing the param-
eters of the cluster algorithm yielding an immediate
result in the 3D cluster visualization after parameter
changes.
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