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Abstract: We present online kernel-based LSPI (or least squares policy iteration) which is an extension of offline kernel-
based LSPI. Online kernel-based LSPI combines characteristics of both online LSPI and offline kernel-based
LSPI to improve the convergence rate as well as the optimal policy performances of the online LSPI. Online
kernel-based LSPI uses knowledge gradient policy as an exploration policy and the approximate linear de-
pendency based kernel sparsification method to select features automatically. We compare the optimal policy
performance of online kernel-based LSPI and online LSPI on 5 discrete Markov decision problems, where
online kernel-based LSPI outperforms online LSPI.

1 INTRODUCTION action taken in that state, the reward obtained and the
next state of the environment. The agent can either

A Reinforcement Learning (RL) agent has to learn to learnofflinewhen firstly a batch of past experience is
make optimal sequential decisions while interacting collected and subsequently used and reusexhtime
with its environment. At each time step, the agent Whenittries toimprove its behaviour at each time step
takes an action and as a result the environment transitdased on the current information.
from the current state to the next one while the agent  Fortunately, the optimaD-values can still be de-
receives feedback signal from the environment in the termined usingQ-learning (Sutton and Barto, 1998)
form of a scalar reward. which represents the actions-val@'(s,a) as a
The mapping from states to actions that specifies lookup table and uses the agent’s experience to build
which actions to take in states is called a policgnd ~ the Q™(s,a). Unfortunately, when the state and/or the
the goal of the agent is to find the optimal polmy, action spaces are large finite or continuous space, the
i.e. the one that maximises the total expected dis- agent faces a challenge called the curse of dimension-
counted reward, as soon as possible. The state-actiorality, since the memory space needed to store all the
value functiorQ (s, a) is defined as the total expected Q-values grows exponentially in the number of states
discounted reward obtained when the agent starts inand actions. Computing alp-values becomes infea-
states, takes actiom, and follows policyrtthereafter.  sible. To handle this challenge, function approxima-
The optimal policy maximises the€¥'(s, a) values. tion methods have been introduced to approximate the
When the agent's environment can be modelled Q-values, e.g. (Lagoudakis and Parr, 2003) have pro-
as a Markov Decision Process (MDP) then the Bell- posed Least Squares Policy Iteration (LSPI) to find
man equations for the state-action value functions, the optimal policy when no model of the environment
one per state-action pair, can be written down and canis available. LSPI is an example of both approximate
be solved by algorithms like policy iteration or value policy iteration and offline learning. LSPI approxi-
iteration (Sutton and Barto, 1998). We refer to Sec- mates th&Q-values using a linear combination of pre-
tion 2.1 for more details. defined basis functions. The used predefined basis
When no such model is available, the Bellman functions have a large impact on the performance of
equations cannot be written down. Instead, the agentLSPI in terms of the number of iterations that LSPI
has to rely only on information collected while inter- needs to converge to a policy, the probability that the
acting with its environment. At each time step, the converged policy is optimal, and the accuracy of the
information collected consists of the current state, the approximated-values.
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To improve the accuracy of the approximagd 2.1 Markov Decision Process
values and to find a (near) optimal policy, (X. Xu
and Lu, 2007) have proposed Kernel-Based LSPI A finite Markov decision process (MDP) is a 5-tuple
(KBLSPI), an example of offline approximated policy (S A P,R ), where the state spac&contains a fi-
iteration that uses Mercer kernels to approxim@te  nite number of states and the action spack con-
values (Vapnik, 1998). Moreover, kernel-based LSPI tains a finite number of actiorss the transition prob-
provides automatic feature selection by the kernel ba- abilities P(s,a,s') give the conditional probabilities
sis functions since it uses the approximate linear de- p(s'|s, a) that the environment transits to statevhen
pendency sparsification method described in (Y. En- the agent takes actianin states, the reward distribu-
gel and Meir, 2004). tions R(s,a,s) give the expected immediate reward

(L. Busoniu and Babuska, 2010) have adapted when the environment transits to stafeafter tak-
LSPI, which does offline learning, for online rein- ing actiona in states, andy € [0,1) is the discount
forcement learning and the result is calledline factor that determines the present value of future re-
LSPL A good online learning algorithm must quickly wards (Puterman, 1994; Sutton and Barto, 1998).
produce acceptable performance rather than atthe end A deterministic policyrt: S— A determines which
of the learning process as is the case in offline learn- action a the agent takes in each stade For the
ing. In order to obtain good performance, an online MDPs considered, there is always a deterministic op-
algorithm has to find a proper balance between ex- timal policy and so we can restrict the search process
ploitation, i.e. using the collected information in the to such policies (Puterman, 1994; Sutton and Barto,
best possible way, and exploration, i.e. testing out 1998). By definition, the state-action value function
the available alternatives (Sutton and Barto, 1998). Q™(s,a) for a policy 1t gives the expected total dis-
Several exploration policies are available for that pur- counted rewardEx(5 2y ri) when the agent starts
pose and one of the most popular ones-greedy in states, takes actiora and follows policyrt there-
exploration that selects with probability-1e the ac- after. The goal of the agent is to find the optimal
tion with the highest estimate@-value and selects policy 1, i.e. the one that maximize®@™ for ev-
uniformly, randomly with probabilitg one of the ac-  ery states and actiona: 1T°(s) = argmaxcaQ*(s,a)
tions available in the current state. To get good perfor- where Q*(s,a) = maxQ"(s,a) is the optimal state-
mance, the parametehas to be tuned for each prob- action value function. For the MDPs considered, the
lem. To get rid of parameter tuning and to increase Bellman equations for the state-action value function
the performance of online LSPI, (Yahyaa and Mand- Q™ are given by
erick, 2013) have proposed using Knowledge Gradi- - - /
ent (KG) policy (1.O. Ryzhov and Frazier, 2012) in Q(s:a)=R(s a,§)+y§ P(sas)Qs.a) (1)
the online-LSPI.

To improve the performance of online-LSPI and [N Equation 1, the sum is taken over all stasethat
to get automatic feature selection, we propose online can be reached from stasewhen actiona is taken,
kernel-based LSPI and we use the know|edge gradi- and the actiom’ taken in next statg is determined by
ent (KG) as an exploration policy. The rest of the pa- the policytt i.e. & = 1i(s'). If the MDP is completely
per is organised as follows: In Section 2 we present known then algorithms such as value or policy itera-
Markov decision processes, LSPI, the knowledge gra- tion find the optimal policyt". Policy iteration starts
dient policy for online learning, kernel-based LSPI With an initial policy o, e.g. randomly selected, and
and the approximate linear dependency test. While repeats the next two steps until no further improve-
in Section 3, we present the knowledge gradient pol- mentis found: 1policy evaluatiorwhere the current
icy in online kernel-based LSPI. In Section 4 we give Policy T is evaluated using Bellman equations 1 to

the domains used in our experiments and our results.calculate the corresponding value functfy, and 2)
We conclude in Section 5. policy improvemenivhere this value function is used

to find an improved new policy 1 that is greedy in

the previous one, i.g%.11 = argmaxaQ™ (s,a) (Sut-

ton and Barto, 1998).
2 PRELIMINARIES For finite MDPs, the action-value functio@d for
a policyttcan be represented by a lookup table of size
|S| x |A], one entry per state-action pair. However,
when the state and/or action spaces are large, this ap-
proach becomes computationally infeasible due to the
curse of dimensionality and one has to rely on func-
tion approximation instead. Moreover, the agent does

In this section, we discuss Markov decision processes,
online LSPI, the knowledge gradient exploration pol-
icy (KG), offline kernel-based LSPI (KBLSPI) and
approximate linear dependency (ALD).
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not know the transition probabilitiéys,a,s’) andthe ~ whereAisa matrix andisa vector. Offline-LSPI up-
reward distribution&(s,a,s'). Therefore, it mustrely  dates the matriA and the vectob from all available
on information collected while interacting with the samples as follows:

environment to learn the optimal policy. The infor- . . T
mation collected is a trajectory of samples of the form At = A1+ @S, a) (@S, @) — Y@(S+2, T(S+1))]
br = b1+ @(s, 80 4)

(S8, M, S+1) O (S, @, T, S+1, 841), wheres, a, I,
S+1, andag, 1, are the state, the action in the state,

the reward, the next state, and the next action in thewhere T is the transpose and is the immediate
next state, respectively. To overcome these problems,reward that is obtained at time stép After iter-
least squares policy iteration (LSPI) uses such sam-ating over all collected samplesy™ tan be found.
ples to approximate th@™-values (Lagoudakis and (L. Busoniu and Babuska, 2010) have adapted offline-

Parr, 2003). LSPI for online learning. The changes with respect

More recently, (L. Busoniu and Babugka, 2010) to the offline algorithm are twofold: 1) online-LSPI
have adapted LSPI so that it can work online Updates the matriA and the vectob after each
and (Yahyaa and Manderick, 2013) have used thetime stept. Then, after every few samplé& ob-
knowledge gradient (KG) policy in this online LSPI. tained from the environment, online-LSPI estimates
Since we are interested in the most challenging RL the weight vectow™ for the current policyrt, com-
problem: online learning in a stochastic environment Putes the corresponding approximatQefunction,
of which no model is available. Therefore, we are go- and derives an improved new learned polityn’ =

ing to compare the performance of online-LSPI with argmax%caQ"(s,a). WhenKg = 1, online-LSPI is
called fully optimistic and wheriKg > 1 is a small

value, online-LSPI is called partially optimistic. 2)
online-LSPI' needs an exploration policy and (Yahyaa
and Manderick, 2013) proposed using KG policy
as an exploration policy instead efgreedy policy.
(Yahyaa and Manderick, 2013) have shown that the
performance of the online-LSPI is increased, e.g. the
average frequency that the learned policy is converged
to the optimal policy. Therefore, we are going to use
KG policy in our algorithm and experiments.

the proposed algorithm using KG policy.
2.2 Least Squares Policy Iteration

LSPI approximates the action-valQ@¥ for a policyTt
in a linear way (Lagoudakis and Parr, 2003):

n
QT[(S’ a WT[) = Zm(sa a)WIT[ (2)
1=

where n, n << |Sx A|, is the number of basis
functions, the weightgw!")' ; are parameters to be
learned for each policy, and{@ (s a)}{' ; is the set
of predefined basis functions. L&tbe the basis ma-
trix of size |Sx A| x n, where each row contains the
values of all basis functions in one of the state-action
pairs (s,a) and each column contains the values of
one of the basis functiong in all state-action pairs
and letw™ be a column weight vector of length

Given a trajectory of lengthL of samples
(a7a¢,rt,a+1){-:1. Offline-LSPI is an example of ap-
proximated policy iteration and repeats the follow-
ing two steps until no further improvement in the
policy is obtained: 1Approximate policy evaluation
that approximates the state-action value funct@h
of the current policyrt, and 2) Approximate policy
improvementhat derives from the current estimated
state-action value functior@™ a better policyrt, i.e.
T = argmaxeaQ"(s,a)

Using the least square error of the projected Bell-
man’s equation, Equation 1, the weight veaidrcan
be approximated as follows (Lagoudakis and Parr,
2003):

AW™ = b ©)

2.3 KG Exploration Policy

Knowledge gradient KG (1.0. Ryzhov and Frazier,
2012) assumes that the rewards of each adiiare
drawn according to a probability distribution and it
takes normal distributions (., 02) with meany, and
standard deviatiow,. The current estimates, based
on the rewards obtained so far, are denotedbgrid
Ga. And, the root-mean-square error (RMSE) of the
estimated mean rewagg, given n rewards resulting
from actiona is given byg, = %/yn. The KG is an
index strategy that determines for each actiothe
indexVK®(a) and selects the action with the highest’
index. The index/X®(a) is calculated as follows:

. (g — MaXy -4 Py
VKG(a) = Gaf (_|w|> (5)

Oa
In this equation, f(x) = @a(X) + xPka(X) where
&a(X) = 1/v2m exp(—x?/2) is the density of
the standard normal distribution andkg(x) =
%, @®x)dX is its cumulative distribution. The pa-
rameteio, is the RMSE of the estimated mean reward
fla. Then KG selects the next action according to:
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akg = argmax (ﬁa+ LVKG(a)) (6)
acA 1-y

where the second term in the right hand side is the to-

tal discounted index of actioa. KG prefers those
actions about which comparatively little is known.

Given a trajectory of length. of samples and
an initial policy mp. Offline kernel-based LSPI
(KBLSPI) uses the approximate linear dependency
based sparsification method to select a part of the data
samples and consists a dictionddjc elements set,

i.e. Dic ={(s, ai)}iEilc‘ with the corresponding kernel

These actions are the ones whose RMSE (or spread)yatrix Koic of size |Dic x Dic| (Y. Engel and Meir,

0a around the estimated mean rewarg i$ large.
Thus, KG prefers an actioa over its alternatives if
its confidence in the estimated mean rewaydsTow.
For discrete MDPs, (Yahyaa and Manderick,
2013) estimated th@-valuesQ(s, &) and the RMSE
of the estimated}value&(z1 to calculate the index

VKG(q)) for each available actiog;,a € Ag in the
current statey, whereAg is the set of actions in state
5. The pseudocode algorithm of the KG exploration
policy is shown in Figure 1. KG is easy to imple-

2004). Kernel-based LSPI repeats the following two
steps: 1Approximate policy evaluatigiernel-based
LSPI approximates the weight vectof for policy T,
Equation 3 from all available samples as follows:

A{ = A{fl"' k((37a()7 J)[k((s*at)~ J) _yk((SIJrlsn(&Jrl))ﬂ J)]T
Bt = 6[71+k((3,at), j)rtaj € DiC,j = 17 7|D|C|
(7

wherek(.,.) is a kernel function between two points

ment and does not have parameters to be tuned like(@ State-action pairs(a) and j, wherej is the state-

e-greedy orso ftmaxaction selection policies (Sutton

action pairz; that is element in the dictionaric,

and Barto, 1998). KG balances between exploration i-€. j € {21,22,*:+ ,Zpi¢/})- The matrixA should be

and exploitation by adding an exploration bonus to
the estimate®-values for each available actianin

the current state_and this bonus depends on all es-
timatedQ-valuesQ(s,a) and the RMSE of the esti-

matecQ-vaIueEé (steps: 2-8in Figure 1). The RMSE

8?4 are updated according to (Powell, 2007).

1. Input: current state s;discount factor vy
the current estimtes Q(s,&);the current
RVBEs 8(24(&7&') for all actions @ in state §

For a € Ag

Qs &) +

End for
For &€ As

(o < —abg(Q(s,a) — Q(s,a))/0q(st,&);
f(la) < CaPra(la)+®a(la)
VKC(a) « Q(s,a)+ 1y Oq(s,a)f(la)
End for
Qutput: & + argmaxVKC(g)

ac A

argmax Q(s.a))
aj€ Aq.aj# &

e ok wh

~

©

Figure 1: Algorithm: (Knowledge Gradient).

2.4 Kernd-based LSPI

Kernel-based LSPI (X. Xu and Lu, 2007) is a kernel-
ized version of offline-LSPI. Kernel-based LSPI uses
Mercer’s kernels in the approximated policy evalua-
tion and improvement (Vapnik, 1998). Given a fi-

nite set of points, i.e{z1,2,---,z}, wherez is the

initialized to a small multiple of the identity matrix to
calculate the inverse & or using the pseudo inverse.
After iterating for all the collected samplegT ¢an be
found and the approximaté@™-values for policyris
the following linear combination:

Q'(s,a) =Wk((s,a),]), j € Dic, j =1,2,---,|Dic|

(8)
2) Approximate policy improvemen€BLSPI derives
a new learned policy which is the greedy one, i.e.
TU(s) = argmax.a Q™(s,a). The above two steps are
repeated until no change in the improved policy or a
maximum number of iterations is reached.

2.5 Approximate Linear Dependency

Given a set of data sampld3 from a MDP, i.e.
D={z,...,2 }, wherez is a state-action pair and the
corresponding linear independent basis functions set
b, i.e. d={0(z1),---,9(z.)}. Approximate linear
dependency ALD method (Y. Engel and Meir, 2004)
over the data samples 4&fs to find a subsdbic, i.e.

Dic C D whose elementf }E’f‘ and the correspond-
ing basis functions are stored @, i.e. Ppjc C .
The data dictionanDic is initially empty, i.e.
Dic = {} and ALD is implemented by testing every
basis functionpin @, one at time. If the basis func-
tion @(z) can not be approximated, within a prede-
fined accuracy, by the linear combination of the ba-
sis functions of the elements that storedia;, then

the basis functiop(z ) will be added to®pic, andz

state-action pair, with the corresponding set of basis will be added taDic;, otherwisez will not be added

functions, i.e.@(z) : z— K. Mercer theorem states
the kernel functiorK is a positive definite matrix, i.e.

K(z,zj)) =< 9(z),9(zj) >.

to Dic; and@(z ) will not be added taPpic. As a re-
sult, after the ALD test, the basis functions ©pjc
can approximate all the basis functionsiaf
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At time stept, let Dic; = {zj}‘jD:iit‘ and the cor-
responding basis functions are storeddgc,, i.e.

Ppic, = {9(z )}ET‘ andz is a given state-action pair
at timet. The ALD test on the basis functiap(z)
supposes that the basis functions are linearly depen
dent and uses least squares error to approxip(@te

by all the basis functions of the elementdiic;, for
more detail we refer to (Engel and Meir, 2005). The

least squares error is:

|Dict |

min|| Y ¢je(z) - @I <v (9)
=1

error

error k(z, ) — kbic, (), where -~ (10)

G = Klgi%t kpic, (),

k-lgict = [k(lvzt)v 7k(j7zt)7"' 7k(|DICt|7Zt)]
If the erroris larger than predefined accuracthenz
will be added to the dictionary elements, iici1 =
Dic; U{z}, otherwiseDici; = Dic;. After testing
all the elements in the data samplesBethe matrix
Kpie can be computed, this is in the offline learning
method. For online learning, the matig;. can be
updated at each time step (Y. Engel and Meir, 2005).

At each time step, if the error that results from
testing the basis functions &f is smaller thanv,
then Dict;1 = Dice and Kpg, , = Kpig, Otherwise
Dicty1 = DictU{z}. The matrixKgét+l is updated
as follows:

—G
1

1 1

error Kpig
Dicte1 ™ error

e ] 1)

3 ONLINE KERNEL-BASED L SPI

Online kernel-based LSPI (KBLSPI) is a kernelised
version of online-LSPI and the pseudocode is given
in Figure 2. Given the basis function sit the initial
learned policyry, the accuracy parameterand the
initial states;. At each time step, online-KBLSPI
uses the KG exploration policy, the algorithm in Fig-
ure 1. to select the actios in the states; (step: 4)
and observes the new state; and reward;. The
actionag;1 in 11 is chosen by the learning policy
;. The algorithm in Figure 2 performs the ALD test,
Section 2.5 on the basis functions pfandz, 1 to
provide feature selection (steps: 7-14), wheris the
state-action paifs,a) at time stept andz.1 is the
state-action paifs1,a+1) at time steg + 1. If the
basis functions of a given state-action pair, zeand
Z.1 can not approximated by the basis functions of
the elements that stored in the dictiondic;, then

the given state-action pair will be added to the dic-
tionary, the inverse kernel matrik —1 will be up-
dated, the number of columns and rows of the ma-
trix Awill be increased and the number of dimensions
of the vectorb will be increased (step: 11). Other-

wise, the given state-action pair will not be added to
the dictionary (step: 12). Then, online-KBLSPI up-
dates the matriXA and the vectob (steps: 15-16).
After few sample%(g obtained from the environment,
online-KBLSPI estimates the weight vect@® inder
the current policyrg (step: 18) and approximates the
corresponding state-action value functiQff (step:
19), i.e.approximate policy evaluatiormhen, online-
KBLSPI derives an improved new learned poligy 1
which is a greedy one (step: 20), i.approximated
policy improvementThis procedure is repeated until
the end of playind- steps which is the horizon of an
experiment.

4 EXPERIMENTS

In this section, we describe the test domain, the ex-
perimental setup and the experiments where we com-
pare online-LSPI and online-KBLSPI using KG pol-
icy. All experiments are implemented in MATLAB.

4.1 Test Domain/Experimental Setup

Thetest domairconsists of 5 MDPs as shown in Fig-
ure 3, each with discount factqr= 0.9. The first
three domains are the 4-, 20-, and 50- chain. The 4-,
and 20-domain are also used in (Lagoudakis and Parr,
2003; X. Xu and Lu, 2007) and the 50-chain is used
in (Lagoudakis and Parr, 2003). In general, the x-
open chain which is originally studied in (Koller and
Parr, 2000) consists of a sequence of x states, labeled
from s; to s. In each state, the agent has 2 actions,
either GoRight(R) or GoLeft(L). The actions suc-
ceed with probability ® changing the state in the in-
tended direction and fail with probability. D chang-

ing the state in the opposite direction. The reward
structure can vary such as the agent gets reward for
visiting the middle states or the end states. For the
4-chain problem, the agent is rewarded 1 in the mid-
dle states, i.es; andsz, and 0 at the edge states, i.e.
s1 andsy. The optimal policy is R in states and

s and L in states; andsy. (Koller and Parr, 2000)
used a policy iteration method to solve the 4-chain
and showed that the resulting suboptimal policies os-
cillate between RR RRand L L L L. The reason is
because of the limited approximation abilities of basis
functions in policy evaluation. For the 20-chain, the
agent is rewarded 1 in states andspg, and 0O else-
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1. Input: |S;]|A];discount factor y;accuracy v,
set of basis functions ®={@,---,@};initial
| earned policy To;length of trajectory L;
policy inprovenent interval Kg;reward

r~ N(W,02); initial state s.

2. Intialize: A« 0,b« 05 Dicc={ }
Kisaxjsg =< @7, ® > Kpg, = [ Qsg 0

For t=1, ---
a «— KG

S, &; Observe:r Syi;fy @1 < Th(Si1)
z < ()*|Al+a, Zyr+ (S11) *|Al+an
For z €{z, 7.1}
kT(*Z):[k(:LZ)**k(J~Z)77k(|DICt|*Z)L
c(z) = Kpig, * K(.,2)

9. error(z) =k(z,z)—K'(.,.z)* c(z)

10. If error(z) > v

11. Dicyp + DictU z;

o 1 (ermor@)Ksh  —c(@)).
error(z) _C(Z)T 1 )

Ao (G oy be ()

L

N O~ ®

—1
KDiCt+1

12. Else Dicyq < Dic; Kpi,, + Kpig
13. End if

14. End for

15. A+ A+K(,z)K(,z) =Y K(.,z)]"
16. bry1 ¢ bi4k(,z)n,

k(72():[k(1~2{)77k(J7Z()~~k(‘DICH~l‘7Z()}T

17. 11 t=(1+1)Kq then

18. W + Ajbi

19. for z=2z, 2, -+, Zsy
K(.,2) = [k(1,2),---,k(]j,2),--, k(|Dict;1/,2)]"
Q'@ =W+ Kk(.2)

end R

Ty < argmax Q (s,a)Vee s Tk ¢ Ty | 141

End if

S S+

End for

20.
21.
22.
23.

24, Qutput: At each tinme step t, note down:

the reward ry and the |earned policy T

Figure 2: Algorithm: (Online-KBLSPI).

where. The optimal policy is L from statesthrough
si0 and R from states;; throughsyg. And, for the
50-chain, The agent gets reward 1 in stagsand
s41 and O elsewhere. The optimal policy is R from
states; through states;o and from statesyg through
statesqo, and L from states;; through states;s and
from statesy; through statessg (Lagoudakis and Parr,
2003). The fourth and fifth MDPs, the giidnd grig
worlds, are used in (Sutton and Barto, 1998). The
agent has 4 actiorSo Up, Down, LefandRightand

for each of them it transits to the intended state with
probability Q7 and fails with probability @ chang-

1234 1l
||

(a)  4-Chain

1 10 | 11
- - | -

11|
—-

20-Chain

4 41
e

20
-

(b)

26
-

50-Chain

25 S0
-— -

(c)

(a) The chain domains

(b) The gric, domain

(c) The gricb domain

Figure 3: Subfigured) is the chain domains, in the red cells,
the agent gets rewards. Subfigubg i€ the grid with 280
states and 188 accessible states. Subfigrres ¢he grig

with 400 states and 294 accessible states. The arrows show
the optimal actions in each state.

the wall, and O elsewhere.

Theexperimental setus as follows: For each of
the 5 MDPs, we compared online-LSPI and online-
KBLSPI using knowledge gradient KG policy as an
exploration policy. For number of experime®X Ps
equals 1000 for the chain domains, 100 for the grid
domain and 50 for the griddomain, each one with
lengthL. The performance measures are: 1) the av-
erage frequency at each time step, i.e. at each time
stept for each experiment, we computed the proba-
bility that the learned policy (step: 19) in Algorithm 2
reached to the optimal policy, then we took the aver-

ing the state to the one of other directions. The agentage ofE XPsexperiments to give us the average fre-

gets reward 1 if it reaches the goal statd, if it hits

10

quency at each time step. 2) the average cumulative
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frequency at each time step, i.e. the cumulative aver-
age frequency at each time stegfMahadevan, 2008)
used the 50-chain domain with length of trajectories

L equals 5000, therefore, we used the same horizon.

For other MDP domains we adapted the length of tra-
jectoriesL according to the number of states, i.e. as
the number of states is increasedyill be increased.
For instancel._ is set to 18800 for the grid world.

KG policy, needs estimated standard deviation and

estimated mean for each state-action pair. Therefore,

we assume that the reward has a normal distribution.
For example, for the 50-chain problem, the agent is
rewarded 1 if it goes to state 10, therefore, we set the
reward insyo to N(uy,02), whereyy = 1. And, the
agent is rewarded O if it goes &, therefore, we set
the reward td\l(uz,og), wherep, = 0. 04 is the stan-
dard deviation of the reward which is set fixed and
equal for each action, i.ec, = 0.01,0.1,1. More-
over, KG exploration policy is a full optimistic pol-
icy, therefore, we set the policy improvement inter-
val Kg to 1. For each run, the initial statg was
selected uniformly, randomly from the state sp&ce
We used the pseudo-inverse when the maisnon-
invertible (Mahadevan, 2008).

For online KBLSPI, we define a kernel function
K on state-action pairs, i.& : |SA x |[SA — R, we
composed into a state kerné{s, i.e. Ks: | x |[§] —

R and an action kerné{y, i.e. Ky : Al x |A| = R

as (Y. Engel and Meir, 2005). Therefore, the ker-
nel functionK is K = Ks® K5 where® is the Kro-
necker productK is a kernel matrix becaud€, and

Ka are kernel matrices, we refer to (Scholkopf and
Smola, 2002) for more details. The kernel stite

is a Gaussian kernel, i.&(s,s) = exp Is=I%/(25%)
whereoys is the standard deviation of the kernel state
function, s is the state at timé ands' is the state at
timet+1. And, the action kernel is a Gaussian kernel,
i.e.k(a,a)=exp * #I/=k whereoy, is the standard
deviation of the kernel action functioa,s the action

at timet anda is the action at timé¢ + 1. s ands),
anda anda’ are normalized as (X. Xu and Lu, 2007),
e.g. for 50-chain with number of statgg) = 50 and
number of action$A| = 2,s,5 € {1/s,---,59/5} and
a,a € {0.5,1}. oxs andoy, are tuned empirically and
set to 055 for the chain domains and?5 for the grid
world domains (grid and grig) We set the accuracy
v in the approximated kernel basis t@®001.

For online-LSPI, we used Gaussian basis func-
tions @ = exp115=6l1?/(20%) where ¢ is the basis
functions for states with center nodegc;); ; which
are set with equal distance between each other, an
Og is the standard deviation of the basis functions
which is set to (5. The number of basis functions
n equals 3 for 4-chain, 5 for 20-chain, and 10 for
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Figure 4: Performance of the average frequency by the KG
policy in online-LSPI in blue and KG in online-KBLSPI in
red. Subfigured) shows the performance on the 4-chain
using standard deviation of reward = 0.01. Subfigure

(b) shows the performance on the 20-chain using standard
deviation of rewaradr; = 1. Subfigure €) shows the perfor-
mance on the 50-chain usimg = 0.1.

50-chain as (Lagoudakis and Parr, 2003) and 40 for
the gridy and grig domains as (M. Sugiyama and Vi-
jayakumar, 2008).

&2 Experimental Results

The experimental results on the chain domains, i.e.
4-, 20-, and 50-chain show that the online-KBLSPI
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L e R e P optimal policies, i.e. the performance of the online
Online KEL P! KBLSPI is increased. Although, the performance of
the online LSPI is better in the beginning and this is
because the online LSPI uses its all basis functions,

WM while online KBLSPI incrementally constructs its ba-

sis functions by the kernel sparsification method.
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4.3 Statistical M ethodology

Average frequency of optimal policy

o

We used a statistical hypothesis test, i.e. students t-
test with significance leveis; = 0.05 to compare the

0 L L L L L L L L L
0 2000 4000 G60DD 8OO0 10000 12000 14000 16000 18000

L performance of the average frequency of optimal pol-
(a) Performance on griddomain icy that results from the online-LSPI and the online-
_ KBLSPI at each time step t. The null hypothekig
""" i P is the online-KBLSPI average frequency performance
oe (AFksLsp) larger than the online-LSPI average fre-
0s Bt s et i o i guency performanceAf spy) and the alternative hy-

pothesisH; is AFkgLsp) less or equalAF sp. We
wanted to calculate the confidence in the null hypoth-
esis, therefore, we computed the confidence probabil-
ity p-value at each time step The p-value is the
probability that the null hypothesis is correct. The
confidence probability converges to 1 for all standard
deviation of reward, i.ec, = 0.01,0.1, and 1 and for

w1 155 z 2o - all domains, i.e. the 4-, 20-, and 50-chain domains
(b) Performance on griddomain and the grid world domains. _Flgure 6 shows how

the p-value converges to 1 using the 50-chain, and
Figure 5: Performance of the average frequency by the KG the gridy domain with standard deviation of reward
policy in online-LSPI in blue and KG in online-KBLSPI g, = 0.1. Thex-axis gives the time steps (the length
in red. Subfigured) shows the performance on the grid  of trajectories). Thg-axis gives the confidence prob-
domain using standard deviation of rewargl=0.01. Sub- 4ty je. p-value. Figure 6 shows the confidence
figure () shows the performanfe on the gridbmain using in the online kernel-based LSPI performance is very
standard deviation of rewam}, = 1. . .
high, where the-value converged quickly to 1.
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outperforms the online-LSPI according to the average

frequency and cumulative average frequency of op-

timal policy performances for all values of the stan- 5 CONCLUSIONSAND FUTURE
dard deviation of reward, i.e. 05 = 0.01,0.1 and 1. WORK

Figure 4 shows how the performance of the learned

policy is increased by using online-KBLSPIl on the 4- \we presented Markov decision process which is a
chain, 20-chain and 50-chain. mathematical model for the reinforcement learning.
The experimental results on the gridlomain  We introduced online and offline least squares policy
show that the online-KBLSPI outperforms the online- iteration (LSPI) that find the optimal policy in an un-
LSPI according to the average frequency and cumu- known environment. We presented knowledge gradi-
lative average frequency of optimal policy perfor- ent KG policy to be used as an exploration policy in
mances for all values of the standard deviation of the online learning algorithm. We introduced offline
rewardo, i.e. 05 = 0.01,0.1 and 1. And, the ex-  kernel-based LSPI (KBLSPI). We also introduced ap-
perimental results on the gedlomain show that the  proximate linear dependency (ALD) method to select
online-KBLSPI performs better than the online-LSPI feature automatically and get rid of tuning empirically
for standard deviation of reward equals 1. Figure 5 the center nodes. We proposed online-KBLSPI which
shows how the performance of the learned policy is uses KG exploration policy and ALD method. Fi-
increased by using online-KBLSPI on the grind  nally, we compared online-KBLSPI and online-LSPI
grid> domains. and concluded that the average frequency of opti-
The results clearly show that online-KBLSPI usu- mal policy performance is improved by using online-
ally converges faster than online-LSPI to the (near) KBLSPI. Future work must compare the performance
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Figure 6: The confidence probabilify-value that the av-
erage frequency of optimal policy performance of online-
KBLSPI performs better than online-LSPI. Subfigueg (
shows thep-value of the 50-chain using standard deviation
of rewardoa = 0.1. Subfigurelf) shows thep-value of the
grid domain using standard deviation of rewarg= 0.1.

of online-LSPI and online-KBLSPI using other types

of basis functions, e.g. the hybrid shortest path basis
functions (Yahyaa and Manderick, 2012), must com-

pare the performance using continuous MDP domain,
e.g. Interval pendulum and must prove a convergence

analysis of the online-KBLSPI.
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