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Abstract: The accuracy of speech recognition systems degrades severely when operating in noisy environments, 
mainly due to the mismatch between training and testing environmental conditions. The use of noise 
corrupted training utterances is being used with success in many works. However, as the type and intensity 
of the noise at operation time is unpredictable, the present work proposes a step beyond: the use of the MAP 
method to use samples of the actual audio signal that is being processed to adapt such systems to the real 
noise condition. Experimental results show an increase of almost 2% on average in the recognition rates, 
when compared to systems trained with noisy utterances. 

1 INTRODUCTION 

A fundamental question for the automatic speech 
recognition area is noise robustness: after decades of 
research this is still a big challenge (Furui, 2007). 
One of the reasons for this poor performance is the 
mismatch between the environments in which the 
training utterances were acquired and the one in 
which recognition systems operate. Under such 
conditions, humans perform far better in the task of 
speech recognition when compared to automatic 
systems. This issue is especially important as this 
technology is being more and more incorporated into 
mobile devices. 

Several approaches have been proposed in the 
literature to tackle this question. In rough, they can 
be divided into one of the three classes shown below 
(Grimm and Kroschel, 2007): 

 

 Robust Utterance Representation: if the utterance 
is represented by a parameterization scheme that is 
little affected by noise, it can be assumed that the 
mismatch between the training and testing 
conditions do not differ substantially. The goal 
here is to look for speech characteristics that are 
relatively immune to noise. One common 
assumption for these methods is that the speech 
signal is independent of noise. Among the 
techniques that use this method, we can cite: 
cepstral filtering (liftering), auditive model based 
methods; cepstrum in mel scale, discriminative 

parameterizations, slow variation removal and time 
derivative parameters (delta and delta-delta); 

 Compensation of Noisy Utterance: the goal is to 
reduce the noise captured by the acquisition 
system and use a system trained with clean 
utterances. Parameter mapping, spectral 
subtraction, statistical improvement and clean 
speech model compensation are some of the 
techniques that belong to this class; 

 Model Adaptation: in this case, the recognition 
system parameters are adapted to the actual noise 
condition of the utterance being processed. Some 
of the methods that use this approach are: HMM 
decomposition, state dependent Wiener filtering 
and statistical HMM adaptation. 

 

Figure 1: Compensation of noisy utterance techniques 
focus on the incoming speech signal; on the other hand, 
robust utterance representation techniques act on the 
acoustic parameter extraction block; finally, model 
adaptation techniques try to modify the parameters of the 
acoustic models to improve the system performance under 
noisy conditions. 
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Figure 1 shows a schematic view of where each 
of these methods actuate. 

This work proposes the use of the MAP 
(Maximum a Posteriori) method to adapt the 
parameters of a continuous density HMM system to 
improve the overall performance for the actual noise 
that is corrupting the utterance being recognized. 
Therefore, this method falls in the third category: 
model adaptation. 

The MAP method is briefly described in the next 
section. 

2 MODEL ADAPTATION USING 
MAP 

Instead of hypothesizing the transformation form 
that represents the differences between the training 
and testing acoustic environments, it is possible to 
use statistical approaches to obtain it. A common 
one is the maximum a posteriori (MAP), sometimes 
known as Bayesian adaptation. This technique was 
successfully used for the speaker recognition task 
(Reynolds, 2003), where a canonical model is 
generated from several speakers; the specific model 
for each individual speaker can then be generated 
from this canonical model using only a few training 
data. 

In the present work, the canonical model is 
represented by a continuous density HMM already 
trained with noisy utterances, and transformations 
are used to adapt this canonical model to the actual 
noise condition of the utterance being recognized. 
The MAP adaptation is a two step estimation 
process.  In the first step estimates of the sufficient 
statistics of the noise sample are computed for each 
mixture. In the second step, these new sufficient 
statistic estimates are used to adapt the canonical 
model parameters. 

For each state of an HMM there is an associated 
stochastic process that models the symbol emission. 
For the continuous density HMMs the most common 
approach is to use a mixture of M Gaussian 
densities, each one of dimension d. Each mixture 
component is characterized by a weight coefficient 
wi, a mean vector i and a covariance matrix i

2. 
If it is assumed that the d dimensions are 

independent from each other, the covariance matrix 
assumes a diagonal form. Therefore, it can be 
represented as a vector instead of a matrix. This 
simplification is very common in the literature and it 
was used in the present work. 

Next, the mathematical MAP adaptation 
modelling is presented.  
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,,, 21  be an observation sequence. 
The conditional probability of the Gaussian i given 
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where p(i|xt) is the value of the Gaussian density i at 
point xt. 

With this result, the sufficient statistics, the 
weight (ni), the mean vector (Ei(x)) and the power of 
this noise sample (Ei(x

2)) can be calculated as 
follows: 
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Finally, these statistics are used to update the 
canonical model parameters, creating the adapted 
parameters for the i-th Gaussian density: 
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where the adaptation coefficients i
w, i

m and i
 

that control the balance between the old and new 
estimates for weights, means and variances, 
respectively, are positive numbers in the (0,1) range. 

Observe that the adapted model is a linear 
combination of noise statistics and canonical model. 
The contribution of each one of these models for the 
final model depends on the parameter i: larger 
values of i emphasize the noise statistics, while 
smaller values do not significantly modify the 
canonical model. Thus, the choice of an appropriate 
value for this parameter is fundamental for the 
adapted system overall performance. 

3 EXPERIMENTAL APPARATUS 

In this section, the database and the recognition 
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engine are described. 

3.1 Database 

As the focus of this work is on the quantification of 
the performance difference due to the acoustic 
mismatch between training and testing materials, 
two databases were used: a clean speech database 
and a noise only database. With this arrangement it 
is possible to precisely control the type and amount 
of noise to be added in each situation. These two 
databases are described in the sequel. 

3.1.1 Clean Speech Corpus 

The speech corpus comprises 40 adult speakers (20 
male and 20 female) (Ynoguti, 1999). Each of these 
speakers recorded 40 phonetically balanced 
sentences in Brazilian Portuguese. Therefore, this 
corpus has 1600 utterances. 30 speakers (15 of each 
gender) were used to train the systems (1200 
utterances) and remaining ones were selected for the 
performance tests (400 utterances). 

The sentences were drawn from (Alcaim, 
Solewicz and Moraes, 1992) and comprise 694 
different words. Thus, this database was built for   
continuous speech recognition with speaker 
independence, for a medium vocabulary.  

All the utterances were manually transcribed 
using a set of 36 phonemes. The recordings were 
performed in a low noise environment, with 11025 
Hz sampling rate and coded with 16 bit linear PCM 
per sample. For this work, the sampling frequency 
was lowered to 8 kHz because the noise database 
was acquired at this rate. 

3.1.2 Noisy Speech Corpus 

To generate the noise corrupted versions of the 
speech utterances, the Aurora Database (Pearce and 
Hirsch, 2000) noises were used. This database is 
actually a noise corrupted speech corpus, but it also 
provides recordings of the noises alone. 

The available noise types are: airport, exposition, 
restaurant, street, subway, train, babble and car. All 
noise types were used to train the system. From 
these, only car noise type was used to evaluate the 
performance of the system in order to reduce the 
total simulation time. For each clean utterance of the 
training speech corpus, 8 noise corrupted versions 
were created, combining each noise type with 
signal-to-noise ratios of 15 and 20 dB. Therefore, 
the noise corrupted training speech corpus has now 
1200 clean speech recordings ×	 8	 noise types ×	 2 
SNR levels = 19200 utterances. Similarly, for each 

clean utterance of the testing speech corpus, 1 noise 
corrupted version was created, combining a noise 
type with signal-to-noise ratios from 0 to 20 dB, 
with steps of 1 dB. Therefore, the noise corrupted 
testing speech corpus has now 400 clean speech 
recordings ×	21 SNR levels = 8400 utterances.  

3.1.3 Speech Recognition Engine 

A continuous density HMM based recognition 
engine developed by (Ynoguti and Violaro, 2000) 
was used for the tests. This system uses the One Pass 
(Ney, 1984) search algorithm and context 
independent phones as fundamental units where 
each one of them was modeled with a 3 state 
Markov chain as shown in Figure 2. For each HMM 
state, a mixture of 10 multidimensional Gaussian 
distributions with diagonal covariance matrix was 
used. 

 

Figure 2: Markov chain for each phone model. 

As acoustic parameters, 12 mel-cepstral coefficients, 
together with their first and second derivatives were 
used. Therefore, the feature vectors have dimension 
36. 

Finally, a bigram language model was used to 
improve the recognition rates. 

These choices were chosen based on previous 
tests (Ynoguti and Violaro, 2000). 

3.2 Performance Evaluation Method 

The recognition performance can be determined by 
comparing the hypothesis transcription (recognized 
by the speech recognizer) with the reference 
transcription (correct sentence). 

There are different metrics that are used to 
evaluate the performance of an automatic speech 
recognition system, being the following the most 
common: 
 Sentence error rate: number of correctly 

recognized sentences divided by the total number 
of sentences; 
 Word error rate: for this metric, the word 

sequences are compared using a dynamic 
alignment algorithm based on word chains in order 
to find the deletion (D), substitution (S) and 
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insertion (I) errors. The word error rate (WER) is 
then calculated as follows: 

%100*
)(

N

ISD
WER


  (8)

where N is the number of word in the reference 
transcription.  

The second approach was used in this work. The 
Sclite tool (NIST, 2011) was used to evaluate the 
system performance. Instead of WER, it provides the 
word recognition rate that is simply (100 - WER) %. 
It is important to note that if the WER is too high 
(mainly due a large number of insertion errors), the 
word accuracy can assume negative values. It is 
sometimes observed when recognizing utterances 
that are severely corrupted by noise. 

4 RESULTS 

To test our hypotheses 3 tests were performed: 
 System trained with clean speech and tested with 

noisy utterances (baseline); 
 System trained with noisy speech and tested with 

noisy utterances; 
 System trained with noisy speech, adapted for the 

actual noise of the utterance being recognized. 

4.1 System Trained with Clean Speech 

The baseline performance was established with a 
system trained only with clean speech. This system 
achieved a word accuracy of 75.6 % when tested 
with clean utterances. However, this performance 
dropped dramatically when tested with corrupted 
utterances, as shown in Figure 3. 

 

Figure 3: Recognition rates for a system trained with clean 
speech and tested against noisy utterances. The SNR in the 
horizontal axis refers to the test utterances. 

The confidence interval for each SNR of the 
experimental results for continuous speech 
recognition is shown in Figure 4. 

 

Figure 4: Confidence interval for a system trained with 
clean speech and tested with noisy utterances. 

4.2 System Trained with Noisy 
Utterances 

Given the hypothesis that the acoustic mismatch 
between the training and testing conditions is the 
main reason for the performance loss, a possible 
strategy is to train the system with noisy utterances. 
Considering that the performance for system trained 
with all SNRs is affected when recognizing higher 
SNRs (Valerio and Ynoguti, 2011) presenting just a 
small improvement due to loss speech information, a 
second system was built, trained with utterances 
corrupted with all noise types at higher SNRs only 
(15 dB and 20 dB). The recognition results are 
shown in Figure 5. 

 

Figure 5: Comparison of recognition rates for a system 
trained with clean speech and with utterances of 15 dB and 
20 dB SNRs. 

From Figure 5, the performance of both systems is 
similar for lower SNRs, but the proposed strategy 
produces a better result for higher SNRs.  

The confidence interval for each SNR of the 
experimental results is shown in Figure 6. 
The next step is to test if is it possible to use the 
MAP  adaptation  strategy  to  further  improve   this 
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performance. The results are shown in the sequel. 

 

Figure 6: Confidence interval for a system trained and 
tested with noisy utterances. 

4.3 System Trained with Noisy 
Utterances and Adapted for the 
Specific Noise of the Utterance 
Being Recognized 

To improve the matching between the acoustic 
conditions of the training and testing conditions, an 
excerpt (approximately 500 ms) of the actual noise 
of the utterance being recognized was used to adapt 
the HMM parameters using the MAP strategy. The 
recognition rates for this test are shown in Figure 7. 

 

Figure 7: Recognition rates for a system trained with noisy 
speech, adapted with the actual noise and tested against 
noisy utterances. 

The results show that the adaptation step provides a 
little but consistent improvement of the recognition 
rates over all SNR range. 

The confidence interval for each SNR of the 
experimental results is shown in Figure 8. 
 

 

Figure 8: Confidence interval for a system trained with 
corrupted utterances, adapted for the specific noise of the 
speech being recognized. 

4.4 Analysis 

From the observation of Figures 3, 5 and 7 the 
following analysis can be made: 
 A system trained only with clean utterances has 

poor performance in noisy environments; 
 Training the system with all noise types with 

SNRs of 15 dB and 20 dB improves its  
performance, but this improvement is lower when 
recognizing utterances with lower SNRs; 
 Adapting system parameters to the actual noise 

that is present in the utterance being recognized 
causes a further improvement in the recognition 
rate. 
 

On average, the recognition rate gain over the 
baseline system is shown in Table 1. 

Table 1: Recognition rate gain over the baseline system 
for each strategy. 

Strategy Gain 
Noisy utterances (15 dB and 20 dB) 6.79 % 

Adapted 8.63 % 

5 CONCLUSIONS 

In this work we propose an adaptation scheme of the 
acoustic models of a speech recognition system 
using the MAP method and samples of ambient 
noise. 

This approach allows a single system trained 
with noisy utterances to be modified according to 
the type and level of noise present along with the 
speech signal, using the portions where the speaker 
is not talking. 

The combined strategy of training the 
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recognition system with noise corrupted utterances 
and adapting the system parameters according to the 
specific noise present in the utterance being 
recognized led to an average improvement of 8.63% 
in the recognition rate when compared to the 
baseline system. 

A question that needs further investigation is the 
choice of the  parameter in the adaptation 
equations for each noise type and level. 
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