
Model-Driven GUI Generation and Navigation 
for Android BIS Apps 

Luís Pires da Silva2 and Fernando Brito e Abreu1,2 
1DCTI, ISCTE-IUL, Avª das Forças Armadas, 1649-026, Lisboa, Portugal 

2CITI, FCT/UNL, Campus da Caparica, Quinta da Torre, 2829-516, Caparica, Portugal 

Keywords: Model-driven Generative Programming, Model-driven Navigation, Android GUIs, Usability in Mobile 
Apps. 

Abstract: This paper presents our approach for producing graphical user interfaces (GUIs) for functionally rich 
business information system (BIS) prototypes, upon a mobile platform. Those prototypes are specified with 
annotated UML class diagrams. Navigation in the generated GUIs is allowed through the semantic links that 
match the associations and cardinalities among the conceptual domain entities, as expressed in the model. 
We start by reviewing the Android scaffolding for producing flexible GUIs for mobile devices. The latter 
can present rather different displays, in terms of size, orientation and resolution. Then we show how our 
model-based generative technique allows producing prototypes that match both the Android GUIs 
requirements, while implementing our model-driven approach for user navigation. 

1 INTRODUCTION 

The burst on the availability of smart phones based 
on the Android platform calls for cost-effective 
techniques to generate mobile apps for general 
purpose, cloud-based, business information systems 
(BIS). What drove us in doing this research was the 
need to find a better solution for the time consuming 
app creation problem, as recognized in (Parada and 
Brisolara, 2012). 

To mitigate this problem our research aims at 
applying model-driven techniques to automatically 
generate usable prototypes with a sound, 
maintainable, architecture. Our generative approach 
is targeted to Android devices and produces GUIs 
that allow a conceptual navigation based on the 
relationships among domain entities (as described in 
a UML class diagram) and a few navigation genders. 
The GUI architecture can reach several screen sizes, 
resolutions, orientations and implements basic 
behavioural settings without any code repetition. 

This paper is structured as follows: section two 
introduces the syntax used to describe the models 
and the proposed approach; section three introduces 
the Android and its characteristics and shows how 
we apply our approach to it; section four presents the 
tool that enables the solution; section five validates 
and compares our solution to related work; finally, 

in section six, we draw our conclusions and forecast 
future work. 

2 GENERATIVE APPROACH 

2.1 Model Specification 

Our model specifications have two concrete 
syntaxes: graphical (UML class diagram) and 
textual. Annotations (functions starting with a “@”) 
are only allowed in the textual representation. Let us 
consider the example shown in Figure 1 as our base 
model. The following example code shows the  
 
@StartingPoint (NameToDisplay="Workers", 
ImageToDisplay="") 
@list (nickname="1") 
@creation (nickname="1",salary="2") 
@display (nickname="1",salary="2") 
@unique (nickname="1",salary="2") 
@domain() 
class Worker 
 attributes 
  nickname: String 
  salary: Integer 
end 
association Employs between 
 Company[0..1] role employer 
 Worker[1..*] role employees 
end

400 Pires da Silva L. and Brito e Abreu F..
Model-Driven GUI Generation and Navigation for Android BIS Apps.
DOI: 10.5220/0004715504000407
In Proceedings of the 2nd International Conference on Model-Driven Engineering and Software Development (MODELSWARD-2014), pages 400-407
ISBN: 978-989-758-007-9
Copyright c 2014 SCITEPRESS (Science and Technology Publications, Lda.)



 

Figure 1: Projects World class diagram. 

corresponding Worker class in textual format. Notice 
that the latter contains all the information deployed 
in the class diagram, plus the annotations, which are 
not depicted graphically. Annotations are used to 
describe functionalities and to assign purposes to 
specific attributes. 

2.2 Prototype Navigation 

Our navigation paradigm is based on a 
homomorphism between the traversal of the domain 
space and the GUI navigation space. We will now 
describe the three most important situations 
regarding GUI navigation: the starting point, 
navigation through associations and navigation 
aspects related to inheritance. 

 

Figure 2: Projects World generated starting screen. 

2.2.1 Starting Point 

When the app is launched, the starting screen 
(Figure 2) presents the links to a set of preselected 
domain classes (using the @StartingPoint 
annotation). The rationale is granting a customizable 
entry point that will depend on the semantics of the 

app domain. For instance, it would not make sense 
to have in the entry screen the “many” side of a 
UML composition such as ReceiptLine, without 
going first to the Receipt class and selecting (or 
creating) its desired instance.  

When the app user selects a domain entity 
(represented by a domain class annotated with 
@domain annotation) in the entry screen, the 
corresponding activity is rendered in one or two 
panes (e.g. Figure 3), depending on the device type. 
On the selected domain entity the app user can 
perform the usual CRUD operations or navigate to 
other related entities (by means of the top row 
navigation bar). 

 

Figure 3: Training screen (2x one pane on smart phone). 

Other present annotation will also fulfil a 
specific requirement namely: both @unique and 
@holder annotations are used for persistency 
purposes (they are explained elsewhere, since the 
topic of persistency is outside the scope of this 
paper); the @list annotation is used to specify which 
attributes will be shown in the list view (in this case 
only the nickname attribute will appear) and in what 
order; the @display annotation is used to specify the 
attributes that will be shown in the detail view, and 

Model-Driven�GUI�Generation�and�Navigation�for�Android�BIS�Apps

401



 

also their order; and lastly the @creation annotation 
is also used to specify which attributes are shown in 
an insert or update view, as well as their order. 

Besides views generation, the previous specified 
attributes are also used to generate standard 
validation techniques (e.g., the view for an Integer 
attribute only accepts a natural number. 

2.2.2 Navigating through Associations 

Associations are the semantic pathways among 
domain entities and therefore we use them to 
navigate in the GUI. We have identified a limited set 
of domain traversal (navigation) genders and we 
assigned an icon to each one, as shown in Table 1. 
These icons are used in the navigation bar to provide 
semantic advice to the user, on where to move to. 

Each domain traversal gender corresponds to a 
single movement from one domain entity to another, 
towards a UML association end (e.g. with 
cardinality one or many) or inheritance relation end 
(towards the parent or the children classes). For 
instance, in a hotel reservation app, while standing 
in the Hotel form, we would a get a “to many” icon 
for navigating to Room and a “to one” icon for 
navigating to City. 

Table 1: Navigation icons. 

Icon Navigation Gender 

 

To one 

 

To many 

 

To associative 

 

To super 

 

To sub 

2.2.3 Effect of Inheritance on Navigation 

Each domain entity is directly coupled to a few 
others. This direct coupling can be seen as a 
semantic pathway and we use it for identifying the 
allowable navigations from one entity to the others. 
 

 

Figure 4: Navigation example. 

In the example shown on Figure 4, the allowable 
navigations (target entities where the app user can 
navigate to), given the current context, are those 
represented in Error! Not a valid bookmark self-
reference.. 

Table 2: Navigation targets, for a given context. 

Context Navigation Targets 

A B, B1, B2, C, D 

B A, B1, B2 

B1 B, A 

B2 B, A 

C A 

D A 

When the user navigates to B, we can have two 
situations: we get a read-only screen if B is abstract 
or a read-write one if B is not abstract. 

2.2.4 Action based Navigation (Associating) 

If instead of a normal click, the user does a long 
click over any choice in the navigation bar, the 
navigation process will still happen, but it will be for 
the creation of an association, i.e. the new screen 
will appear in write-mode (instead of the normal 
CRUD operations, only two options are available the 
confirm button and the add button) with all the 
selected entity instances, and from here the user can: 
(i) create a new instance that will automatically be 
associated with the previously selected instance; or 
(ii) associate to an already existing instance by 
selecting it and confirming the choice.  

Finally, the server button with the cloud icon on 
the top-right corner in Figure 2 is used to 
synchronize data. If pressed, the user will be 
presented with two choices: 
(i) synchronize, that allows synchronizing the local 

database with the one in the server; 
(ii) send changes, that will send to the server every 

action performed in the session (since the app 
was launched or since the last “send. 

3 MODEL-DRIVEN GUI 
GENERATION  
AND NAVIGATION 

3.1 Android Architecture 

Android follows a Model View Controller (MVC) 
architecture (Burbeck, 1987). The view is described 
in XML files. In the controller we have the so-called 

MODELSWARD�2014�-�International�Conference�on�Model-Driven�Engineering�and�Software�Development

402



 

“activities”. One activity holds and inflates (renders) 
one or more XML files in one screen. 

An Android application has many activities. 
Navigating means switching from one activity to 
another (i.e., from one screen to another). Activities 
are responsible for controlling every aspect of user 
interaction. This was the scenario until fragments 
were released, enabling the support for more 
dynamic and flexible GUI designs on larger screens. 

A fragment is a modular section of an activity, 
which has its own lifecycle, can inflate XML files as 
well, receives its own input events, and can be added 
or removed while the activity is running. It also can 
be reused in different activities, thus providing a 
better support for a more organized application. 
Nevertheless, activities can still be considered the 
“screen”, since they hold the fragments. 

The native language support for Android apps is 
Java but only a few Java libraries are supported, as 
listed in the Android website (Google, 2013). Views 
are usually based on the aforesaid XML files, but 
they can also be made dynamic if written in Java. 
However, that is discouraged by Google, because 
XML-based views make the application run faster. 

3.2 Screen Size and Orientation 

There is a great diversity in screens available in 
mobile devices, regarding their resolution and size. 
For instance, Google (see Table 3 in section 
Supporting Multiple Screens in (Google, 2013)) 
categorizes a set of prototypical screen sizes (small 
screen, normal screen, large screen, extra-large 
screen) and screen resolutions (low density, medium 
density, high density, extra high density). For 
instance, a small screen with low density can have a 
240x320 resolution, while an extra-large screen 
with extra high density can have 2560x1600 pixels. 

Besides the aforementioned combinations, we 
have the issue of screen orientation (portrait and 
landscape), which doubles the number of situations 
that an application needs to adapt to. In the absence 
of such an adaptation, apps will still work, but the 
views may suffer anamorphic distortion. 

Summing up, it is very hard and time consuming 
to adapt mobile application GUIs to that variability. 
To reduce time-to-market, Android application 
developers often just provide support to the most 
common sizes, and disable screen rotation, a well-
known fact for a frequent Android user. 

3.3 Android Static Architecture 

Android offers a set of default folders under the res 
folder (Figure 5) that hold configuration data 
required to automate screen rendering, depending on 
the mobile device being used, thus handling their 
different screen sizes and orientations. Since our 
goal is to generate these static user interfaces, by 
means of model-driven techniques, we have 
selected, as starting point, the default folders since 
they are a better fit to most configurations. Later, we 
plan to add the remaining options like sw720dp. 

Inside the res folder there are five subfolders, 
each with a different purpose. The layout folder 
holds the XML files dedicated to the main interface 
description (i.e., the layout of the user interfaces and 
the components to be shown and their sizes). 

The menu folder holds the XML files that 
describe the main menu view or in more recent 
Android versions the ActionBar.  

The values folder holds the XML files that 
normally are used to store raw data. For instance, we 
can have a static list written in one XML as an array 
of values, and then bind (in Java) a list view with 
this  array,  thus  granting  extra  flexibility  (e.g. for 

 

Figure 5: Android support for multiple layouts and resolutions.

Model-Driven�GUI�Generation�and�Navigation�for�Android�BIS�Apps

403



customization or internationalization purposes). 
The drawable folder holds any media file and/or 

XML files dedicated to drawing views. Finally, the 
anim folder holds XML files related to animations. 

To illustrate how these folders are used in 
runtime, consider a mobile device with normal size. 
While in portrait orientation, the values-normal-port 
sub-folder is chosen but, if rotated to landscape, the 
values-normal-land sub-folder is chosen instead, if 
available. Otherwise, the default folder values-
normal is selected. If the latter is missing, then the 
most basic folder (values) is selected. 

A similar logic is applied to the other folders, 
although the drawable folder deserves further 
explanation, since this automatic reconfiguration 
capability relates to the screen resolution instead of 
size. For instance, if the mobile device has a low 
resolution screen, the drawable-ldpi folder is 
selected, while the drawable-hdpi is chosen if the 
screen is switched to high resolution. Therefore, it is 
normal in Android to see projects with media with 
the same content, but with different resolutions. 

All mentioned folders and their contents (mostly 
XML files) are generated automatically in our 
generative, model-driven approach. 

3.4 Different Layouts 

Domain models are made of conceptual constructs 
understood by users, hereinafter called domain 
entities. For a hotel booking app we have entities 
such as Room, Hotel, Reservation, Period or City.  

Domain entities are the first-class citizens of our 
generative approach. We create a form for each 
entity on the domain model (represented as a class 
type in a UML class diagram). For each form we 
consider two possible layouts: two panes for tablets 
and one pane for phones. A pair of XML files, one 
for each of the aforementioned layouts, is then 
generated for each domain entity. Their names are 
Type_layout_onepane.xml for one pane layouts and 
Type_layout_twopane.xml for two panes, where 
 

 “Type” should be replaced by the name of the 
corresponding domain class, as for instance in 
Receipt_layout_twopane.xml. 

We use a master-detail flow logic. On the one 
pane layout (phones), the default is showing the 
navigation bar and a list of objects. To get the detail 
of an object, the user makes a long-press click in it: 
the list of objects is hidden and the detail on the 
selected object is shown (e.g. as shown in Figure 3). 
On the two pane layout (tablets), both the list and the 
details of the currently selected object are shown 
simultaneously. This control logic is managed in the 
corresponding activity.  

3.5 Presentation/ Navigation Logic 

Data to be presented in forms, namely the view used 
for listing objects, is also defined by automatically 
generated XML files, one for each domain entity (as 
aforementioned): the Type_view_list.xml files 
control the representation of the object list views, the 
Type_form XMLs are merge-able XMLs – Android 
merge tag allows to create XMLs with the intent of 
being integrated in other XMLs, these files cannot 
used as views by themselves – and are responsible 
for the state representation (only attributes) of the 
object, while the Type_view XMLs files will hold 
the given forms, as shown in Figure 6. 

The last two model-based generated XML files 
are the Type_string.xml, which contain raw data to 
be used by other XML files and, finally, the 
Type_view_navigationbar.xml files that show the 
navigation possibilities. 

3.6 Enforcing Separation of Concerns 

In a model-driven approach we work with an 
abstract representation of an object. This means that 
this object can present itself with different values. 
Therefore, we need to bind these values to the static 
GUI that  we  already  introduced. To  do  so,  while 
enforcing   a   good   separation    of    concerns   for 

 

Figure 6: XML files generation and structure. 

MODELSWARD�2014�-�International�Conference�on�Model-Driven�Engineering�and�Software�Development

404



maintainability sake, a fragment-based approach 
was used, as advocated in the “Building a dynamic 
GUI with fragments” section of (Google, 2013). 
Thus the Model View View-Model (MVVM) was 
the chosen architecture. The MVVM is a more 
recent pattern, based on the MVC and developed by 
(Gossman, 2005) and based on the Presentation 
Model (Fowler, 2004), since both feature an 
abstraction of a View, which contains a View’s state 
and behaviour, the difference is that Gossman 
presented the MVVM as a standardized way to 
leverage core features of the Windows Presentation 
Foundation (WPF) and Silverlight, in order to 
simplify the creation of user interfaces. Of course 
some adaptions had to be made in order to fully 
implement our solution in the Android platform, 
namely by passing every dynamic behavioural 
responsibility to the fragments classes (component 
listeners). 

The proposed architecture is represented in 
Figure 7. Except for the ListFragmentController, 
every file presented is specific to one type of object, 
because the ListFragmentController represents a 
generic list with settable features, which can be 
settled by the main controller (the activity). So, 
regarding run-time code, we create two different 
fragments (box in Figure 7) for each domain model 
class, and a class that represents the object view in 
the list. The latter follows the ViewHolder pattern 
(Guy and Powell, 2010), since it improves 
performance significantly. 

Since we have static ids in the correspondent 
components (the ones  that  we  defined  earlier),  we 

 

Figure 7: Proposed architecture: view and control layers. 

use them when generating these classes. All the rest 
follows the template-based generation process. 
Let us consider a TextView component to see the 
binding process. First, all the fragments must have 
two attributes defined: (i) the object that they 
workwith and (ii) the rootView of the type View, 
which represents all the views that the fragment 

works with. Then, each fragment will also have 
defined an instance of every component that it will 
need to show (due to the existence of dynamic data), 
but instead of creating an object, we bind with the 
proper static component by using the corresponding 
id. After binding the rootView, we have access to the 
components defined in it and we bind them as well. 

The binding process must follow an adequate 
execution order. For that purpose, Android offers 
several methods. This is where a model-driven 
generation helps, since it properly adds the right 
code in the proper methods. If adjustments are 
required, the developer can do them without 
worrying with this type of side-effects since each 
fragment is responsible and can handle its own 
purpose, therefore increasing maintainability.  

4 GENERATOR 
ARCHITECTURE 

Our generative approach is implemented on top of 
USE (Gogolla et al., 2007), an open-source tool 
developed at Bremen University. We have chosen 
this tool because it has a robust model compiler, 
supports model instantiation, annotations and, 
mainly, OCL (Object Constraint Language) for 
specifying model constraints (invariants, pre and 
post-conditions). Since USE is a standalone tool, 
with a GUI and other components of its own that we 
do not require for our model-driven approach, we 
have developed a façade component for USE named 
J-USE (Brito e Abreu, 2011) that allows accessing 
USE services conveniently. 

We dubbed JUSE4Android our Android app 
generator that, from a domain model specified as 

 

Figure 8: Architecture and Requirements of USE4Android. 

Model-Driven�GUI�Generation�and�Navigation�for�Android�BIS�Apps

405



 

described in the previous section, generates a full 
working prototype supporting the model-based 
navigation metaphor exploited in this paper. 
 Figure 8 presents the architecture of 
JUSE4Android. The visitor pattern was used in the 
code generator component. The link to the source 
code will be made available in the camera-ready 
version of this paper. 

5 VALIDATION/ RELATED 
WORK 

5.1 Related Work 

Some related generative tools for Android exist. 
Basic4Android (Uziel) and App Inventor (MIT) 
follow a “visual programming” style. These are not 
model-driven tools and, in both cases, developing an 
app for a moderate sized domain would require a lot 
of effort. In our case, for an available model, the 
effort is very small, since it will mainly consist in 
defining a few annotations. 

A closer related work, since it is also model-
driven, can be found in (Parada and Brisolara, 2012). 
The input model is expressed through a UML class 
diagram and sequence diagrams, thus encompassing 
an increased modelling effort. The generation 
process itself requires advanced Android knowledge 
(i.e. the input for generation is not a plain PIM like 
in our case). A similar approach, suffering similar 
drawbacks, can be found in (Kraemer, 2011). 

Last, but not the least, we have the IBM Rational 
Rhapsody (IBM) (D. Holstein, 2011) that presents 
itself as a complete model-driven solution for 
generating Android apps. However, in order to 
properly generate an app, every detail must be 
specified, making the code generation almost a 
mapping 1-to-1, thus encompassing a strong burden 
on the developer’s side. 

5.2 Case Study 

We present herein our preliminary validation effort 
based on a case study – the Projects World project 
(Figure 1). Even for such a moderate small sized 
model, the output is considerably large, in both 
number of files and code length, even when applying 
the aforementioned code reuse techniques. In Table 
3 is shown our tool full generative capabilities, i.e. 
besides outside the scope of this paper the tool also 
generates other layers with the exact same model. If 
this source code were produced manually, it would 
certainly corroborate the “time-consuming app 

creation problem” that we referred to in the 
introduction (Parada and Brisolara, 2012). 

Table 3: Code generated for the Projects World exemple. 

Layer Type Files LOC 
Business Layer(Model) Java 17 4517 
Control Layer (View-

Model) 
Java 4 420 

Presentation Layer (View 
and View-Model) 

XML 
Java 

117 
28 

3345 
8365 

Persistency Layer Java 1 230 
 

It is worth mentioning that more than two thirds 
of the source code relates to the presentation layer, 
this is mainly due to the need of supporting a 
considerable range of screen sizes and resolutions 
for both orientations that characterize the multiple 
mobile devices that run Android nowadays. Without 
adequate code generation facilities like the one we 
presented herein, Android app programmers face 
“massive” code development. 

Our goal to support different screens sizes and 
two different layouts (one pane for smart phones and 
two panes for tablets), both following the Master-
Detail Flow, was met. Finally, by implementing 
proven techniques, namely by the usage of the 
default_layout_styles.xml and pane_decider.xml files 
separately, we provide an independent and feasible 
way to change resolutions, sizes and layouts to more 
specific goals outside the presented standard scope. 

6 CONCLUSIONS & FUTURE 
WORK 

On this paper we presented our GUI generation 
principles and navigability approach, aiming at 
producing BIS apps. We do not require the 
description of every possible scenario to generate a 
lot of screen sizes for both orientations and different 
devices running Android. We have shown how 
easily we can change one view for all possible 
configurations, based upon a UML class diagram 
and a template, thus avoiding “massive” code 
development. 

Our MVVM-based architecture grants a 
separation of concerns that increases maintainability, 
namely by granting a “strong separation between 
data, behavior, and presentation, making it easier to 
control the chaos that is software development” 
(Smith, 2009). 

We could not find any related work applying 
MVVM in the context of Android. Our architecture 
seems to  be a  good  choice by comparison  to  other  

MODELSWARD�2014�-�International�Conference�on�Model-Driven�Engineering�and�Software�Development

406



 

mobile related implementations. 
A set of problems are open for future research, 

namely the support for business rules and 
internationalization. 

BIS applications require the definition of business 
rules. The latter can be as simple as setting a lower 
limit for marriage age or as complex as the 
preconditions for granting a bank loan or being 
refunded by the insurance in case of an auto 
collision. Thus, any BIS app generative approach 
will be incomplete unless that support is provided. 
At the model side we will use enrich our UML class 
diagrams with OCL clauses to specify the required 
BIS rules. Some interesting research problems then 
arise regarding where those rules will be verified 
(client or server) and how to grant state consistency 
on a distributed environment. Another issue will be 
generating automatic error dialogs with context-
sensitive help. 

Regarding internationalization, we basically need 
to provide support for different languages at the GUI 
side. As shown previously, we can change the layout 
in a single XML (corresponding to a domain entity) 
and that change will be propagated to all screen sizes 
and orientations. We intend to apply the same 
approach to the language support, since different 
languages will require different styles to adjust, 
namely in size, due to different average word lengths 
and desired verbosities (e.g. in contextual help). 

We also plan to perform a systematic comparison 
of available generative approaches for Android, by 
using the same initial model as input and then assess 
the effect of requirements volatility. We are 
particularly concerned with the efforts required for: 
(i) producing the input specification; 
(ii) generating a baseline app; 
(iii) adding extra requisites or removing existing 

requisites from the baseline app; 
(iv) understanding the code of generated apps for 

maintenance sake. 
Other aspects worth comparing include the 

usability of produced apps and their installability. 

ACKNOWLEDGEMENTS 

This work was partly supported by grant PEst-
OE/EEI/UI0527/2011 of Centro de Informática e 
Tecnologias da Informação (CITI/FCT/UNL). 
 
 

REFERENCES 
 

Brito e Abreu, F. 2011. J-USE [1.0]. Google Code: 
Google. Available at:  https://code.google.com/p/j-use/  
[Accessed: 12/10/2013]. 

Burbeck, S. 1987. Applications Programming in 
Smalltalk-80: How to Use Model-View-Controller 
MVC. Available at: http://st-
www.cs.uiuc.edu/users/smarch/st-docs/mvc.html 
[Accessed: 12/10/2013]. 

D. Holstein, B. 2011. Speed Delivery of Android Devices 
and Applications with Model-Driven Development. 
Available at: 
http://www.ibm.com/developerworks/rational/library/
model-driven-development-speed-delivery/model-
driven-development-speed-delivery-pdf.pdf 
[Accessed: 12/10/2013]. 

Fowler, M. 2004. Presentation Model. Available at: 
http://martinfowler.com/eaaDev/PresentationModel.ht
ml [Accessed: 12/102013]. 

Gogolla, M., Buttner, F. & Richters, M. 2007. USE: A 
UML-Based Specification Environment for Validating 
UML and OCL. Science of Computer Programming, 
69, pp. 27–34. Elsevier. 

Google. 2013. Android Developers. Available at: 
http://developer.android.com/ [Accessed: 2013-01-07]. 

Gossman, J. 2005. Model-View-ViewModel. Available at: 
http://blogs.msdn.com/b/johngossman/archive/2005/1
0/08/478683.aspx [Accessed: 12/10/2013]. 

Guy, R. & Powell, A. 2010. Google I/O 2010 - The World 
of ListView. Google. Available at: 
http://www.youtube.com/watch?v=wDBM6wVEO70 
[Accessed: 12/10/2013]. 

IBM. Rational Rhapsody. Available at: http://www-
03.ibm.com/software/products/us/en/ratirhapfami 
[Accessed: 12/10/2013]. 

Kraemer, F. A. 2011. Engineering Android Applications 
Based on UML Activities. Proceedings of 14th 
International Conference on Model Driven 
Engineering Languages and Systems, pp. 183-197. 
Springer-Verlag. 

MIT. App Inventor. Available at: 
http://appinventor.mit.edu/ [Accessed: 12/10/2013]. 

Parada, A. G. & Brisolara, L. B. d. 2012. A Model Driven 
Approach for Android Applications Development. 
Brazilian Symposium on Computing System 
Engineering (SBESC'2012). Natal, Brazil. 

Smith, J. 2009. WPF Apps With The Model-View-
ViewModel Design Pattern. MSDN Magazine. 
Available at: http://msdn.microsoft.com/en-
us/magazine/dd419663.aspx. 

Uziel, E. Basic4android. Available at: 
http://www.basic4ppc.com/ [Accessed: 12/10/2013]. 

Model-Driven�GUI�Generation�and�Navigation�for�Android�BIS�Apps

407


