
A Language for Enabling Model-Driven Analysis of Business Processes

Paolo Bocciarelli, Andrea D’Ambrogio and Emiliano Paglia
Department of Enterprise Engineering, University of Rome Tor Vergata, Rome, Italy

Keywords: Business Process, BPMN, Model Transformation, Domain-specific Language, Simulation, Performance.

Abstract: The use of simulation-based approaches for the analysis of business processes enables the design-time
prediction of the process behavior and/or the operation-time process reconfiguration. However, the
effectiveness of BP simulation is still limited for several reasons (e.g., lack of simulation know-how of BP
analysts, simulation model parameters that can be hard to gather, large semantic gap between the business
process model and the simulation model). To overcome such limitations, this paper introduces a model-
driven method to automatically build the executable simulation code of a business process from its abstract
definition in BPMN, the standard language for specifying business processes. The simulation code is specified
in eBPMN, a novel domain-specific language that has been designed and implemented according to the BPMN
execution semantics.

1 INTRODUCTION

Modern enterprises are increasingly interested in
analyzing and optimizing the business processes
(BPs) that define the set of tasks executed to deliver
services and/or produce goods. A BP is defined by the
set of tasks that are orchestrated for delivering value
to customers and commercial partners.

In this context, business analysts claim for
methods and tools to specify business goals, analyze
the model of a BP and predict at design time
its behavior to assess whether or not the business
goals can be achieved. It is thus essential to
quantitatively analyze a specified BP to study the
characteristics affecting its overall quality. The most
relevant example of BP quantitative analysis is the
performance analysis (van der Aalst et al., 2010).

In (Kamrani et al., 2010; Hook, 2011; van der
Aalst et al., 2010) simulation has been identified as a
key technique for BP performance analysis. However,
the effectiveness of BP simulation is still limited,
mainly for the following reasons:

� lack of simulation know-how of BP analysts;

� costs and difficulties in retrieving and analyzing
the data required for simulation model parameter-
ization;

� large semantic gap between the business process
model and the simulation model;

� use of models that may be (partially) incorrect or
may not be at the right level of abstraction.

In order to overcome such limitations, we have
proposed a model-driven method for the generation of
executable simulation code from BP models specified
by use of the BPMN (Business Process Model and
Notation) language (Bocciarelli and D’Ambrogio,
2012; Bocciarelli et al., 2012). The method has been
used to generate queueing-based analysis models of
the BP under study. The simulation-based analysis of
such models, which are specified by use of the EQN
(Extended Queueing Network) formalism, yields the
design-time prediction of the BP behavior, to assess
whether or not it meets the required constraints.

In this work we propose a significant extension
of the previous contribution. Specifically, we
introduce a model-driven method that exploits a novel
language, named eBPMN, to automatically build BP
executable simulation code from standard BPMN
models. eBPMN is a domain-specific language that
has been designed and implemented according to
the BPMN execution semantics, thus obtaining a
compact and precise executable model of the input
BP model, without the need of introducing addi-
tional formalisms, such as queueing-based modeling
languages. As a consequence, it can be effectively
used by business analysts who do not have specific
queueing theory skills.

The proposed method exploits both PyBPMN
(Bocciarelli and D’Ambrogio, 2011b), a BPMN
extension to specify performance-related properties
of a BP, and SimArch (Gianni et al., 2011), a
layered infrastructure to ease the specification and the

325Bocciarelli P., D’Ambrogio A. and Paglia E..
A Language for Enabling Model-Driven Analysis of Business Processes.
DOI: 10.5220/0004712603250332
In Proceedings of the 2nd International Conference on Model-Driven Engineering and Software Development (MODELSWARD-2014), pages 325-332
ISBN: 978-989-758-007-9
Copyright c
 2014 SCITEPRESS (Science and Technology Publications, Lda.)



implementation of discrete event simulation models.
Finally, the proposed approach overcomes the

limitations of the several commercially-available
BPM tools that show a low degree of customizability
(or result not customizable at all), being tied to
the specific implementation technologies adopted for
modeling and simulating (or often simply animating)
the BP behavior.

The rest of the paper is structured as follows.
Section 2 reviews relevant contributions dealing with
BP analysis. Section 3 briefly provides an overview
of the technical background at the basis of this
work. Section 4 describes eBPMN, while Section
5 illustrates the proposed model-driven method that
yields the executable eBPMN simulation code from
the abstract BPMN model. Finally, Section 6 outlines
the conclusions.

2 RELATED WORK

This section reviews the existing literature dealing
with BP analysis. In this respect, as stated in
Section 1, this work extends and improves our
previous contributions (Bocciarelli and D’Ambrogio,
2012; Bocciarelli et al., 2012), which introduce a
model-driven method for the generation of executable
queueing-based simulation code from BPMN models.
Similarly to such contributions, this work exploits
model-driven techniques and the SimArch architec-
ture to ease the automated generation of executable
simulation code of the BP under study. Differently,
this work introduces eBPMN, a novel simulation
language built on top of SimArch and based on the
BPMN 2.0 execution semantics.

Approaches that deal with the use of executable
models can be found, e.g., in (Tatibouet et al., 2013;
Weyprecht and Rose, 2011). The use of fUML
in simulation processes is discussed in (Tatibouet
et al., 2013), which proposes new mechanisms for
delegating the execution control, in order to provide
a basic support for discrete-event simulation. The
limitations of the reference implementation of fUML
are discussed in (Weyprecht and Rose, 2011), which
states that fUML does not include the concept of time
and does not provide mechanisms to observe elements
during the simulation. A new implementation of
fUML is then synthetically discussed, which aims
to provide all the features required to effectively use
fUML for simulation purposes. Such aforementioned
approaches are founded on the adoption of the
fUML notation. In this respect, it should be noted
how fUML could be easily reused in the BPM
context, according to the following considerations:

i) (White, 2004) states that fUML activity diagrams
and BPMN models can be considered semantically
equivalent; ii) the abstract BP model can be specified
as a fUML activity diagram either directly or
transforming a BPMN model by use of existing
model-driven approaches, as discussed in (Bocciarelli
and D’Ambrogio, 2012). Nevertheless, as underlined
in (Tatibouet et al., 2013; Weyprecht and Rose, 2011),
fUML shows several limitations and the reference
implementation needs to be extended in order to
be used in real-world simulation cases. Differently
from contributions that make use of fUML, this
work is founded on the use of a domain-specific
simulation language, built according to the BPMN 2.0
specification.

The optimization of BPs by use of performance-
based simulation or analytical techniques can be
found in (Kamrani et al., 2010; Yang et al., 2010;
Grefen et al., 2000). A BPMN extension to
enable the association of performance information
to task and activity constructs is introduced in
(Kamrani et al., 2010). The proposed approach
exploits such extension to estimate an overall measure
of the BP performance by simulating a model
of human agents performance. The performance
metrics are finally used to optimize the allocation
of tasks to agents. The application of discrete
event simulation to workflows is discussed in (Yang
et al., 2010). The paper proposes a framework for
process simulation based on multi-agent systems to
support flexible activity scheduling. Differently from
the aforementioned contributions, this work makes
use of the eBPMN language for implementing and
executing the corresponding simulation. Moreover,
the proposed approach concretely exploits SimArch
and model-driven core standards, such as MOF, XMI
and QVT, to obtain a significant reduction of the effort
needed for implementing the relevant simulation.

3 BACKGROUND

In order to provide a clear understanding of the
technical basis of this paper work, the following sub-
sections briefly outline both the PyBPMN extension
and the SimArch architecture.

3.1 Performability-enabled BPMN

BPMN is a standard notation for the high-level
representation of business processes and is typically
used at the early stages of the business process
lifecycle. Despite its pervasiveness and completeness,
BPMN does not support the characterization of the

MODELSWARD�2014�-�International�Conference�on�Model-Driven�Engineering�and�Software�Development

326



BP in terms of non functional properties, such
as performance or reliability (Saeedi et al., 2010).
Currently, BPMN descriptions cannot be used to
specify overall performance constraints (e.g., the
response time associated to the entire BP execution)
or task properties (e.g., execution time of a single
process task). To overcome such limitations we
have introduced PyBPMN (Performability-enabled
BPMN), a lightweight BPMN extension that ad-
dresses the specification of performance and reliabil-
ity properties of a BP (Bocciarelli and D’Ambrogio,
2011b; Bocciarelli and D’Ambrogio, 2011a).

More specifically, PyBPMN is obtained as a
BPMN metamodel extension that provides annota-
tions to specify workloads, performance properties
and reliability properties. In this work PyBPMN
is specifically used to drive the generation of
performance-oriented simulation models of BPs, by
use of the following metaclasses:

� ClosedPattern: to represent the workload in terms
of a fixed number of active or potential users/jobs.

� OpenPattern: to represent the workload in terms
of a stream of requests that arrive at a given rate
in some predetermined pattern.

� PaService: to represent the execution demand of
tasks. It is specified by a set of attributes, such
as unit, which describes the unit of measure, and
value, which specifies the service time value.

A detailed description of PyBPMN can be found
in (Bocciarelli and D’Ambrogio, 2013).

3.2 SimArch

SimArch is a layered software architecture that pro-
vides a general-purpose and event-based simulation
infrastructure upon which domain-specific simulation
components can be implemented and seamlessly used
in local or distributed execution environments (Gianni
et al., 2011).

The architecture, depicted in Figure 1, consists
of five layers: distributed computing infrastructure
(Layer 0), distributed discrete event simulation
services (Layer 1), discrete event simulation services
(Layer 2), simulation components (Layer 3) and
simulation model (Layer 4). SimArch users specify
simulation models at Layer 4 by use of a domain-
specific simulation language. Currently, SimArch is
provided with jEQN, a Java-based simulation library
that implements a domain-specific language for the
specification of EQN models.

Layer 0 is the distributed computing infras-
tructure, which can be either a simulation-specific
infrastructure, such as the High Level Architecture

Layer 4
Simulation Model Layer

Layer 3
Simulation Components Layer

Layer 2
Discrete Event Simulation 

Layer
Layer 1

Distributed Discrete Event 
Simulation Layer

Layer 0
Distributed Computing 

Infrastructure Layer

Distributed Infrastructure Implementation

Figure 1: Simarch layered architecture.

(HLA), or a general-purpose infrastructure, such as
a cloud-based platform. Layer 1 implements an
abstraction of a distributed discrete event simulation
and contributes to make the specific distributed
infrastructure transparent to the uppermost layer.
Layer 1 provides typical distributed simulation
services such as synchronization or event dispatching,
used by Layer 2 to provide a transparent discrete event
simulation abstraction on top of local or distributed
execution environments.

Layers from 0 to 2 constitute the backbone of the
SimArch architecture and provide services to build
discrete event simulations that can be transparently
executed either in local or distributed execution con-
texts. Upper levels are instead committed to specify
and implement domain-specific simulation systems.
Specifically, Layer 3 contains the implementation of
a domain-specific simulation language, which is used
ad Layer 4 to define specific simulation models.

Currently, the Layer 2 implementation supports
the process interaction simulation paradigm and is
founded on the following concepts:

� simulation engine, which is the engine that
executes the simulation system;

� simulation entity, which represents a building
block used to build simulation systems;

� port, which belongs to a simulation entity and
constitutes its interaction point; ports allow the
exchange of events among entities;

� link, which represents the logical connection
among entity ports;

� event, which represents something that occurs at
a particular instant in time and affects the state of
the system.

A�Language�for�Enabling�Model-Driven�Analysis�of�Business�Processes

327



Interested readers are referred to the SimArch
website (https://sites.google.com/site/
simulationarchitecture) for additional details.

4 eBPMN

eBPMN is a domain specific simulation language
built according to the BPMN 2.0 execution semantics
(OMG, 2011) and thus close to the domain experts
knowledge. Similarly to jEQN, eBPMN is built on
top of SimArch and its implementation is composed
of a set of Java-based primitives. Each primitive
implements the execution semantics of a given BPMN
construct. With regards to the SimArch layered
architecture (see Figure 1), eBPMN is positioned
at Layer 3 and uses/extends the Layer 2 services,
classes and interfaces to enable the specification of
BP simulation models at Layer 4. An architectural
view of the eBPMN implementation is summarized in
the class diagram depicted in Figure 2, where classes
provided by the SimArch reference implementation
are shown in gray background color.

According to the SimArch specification, a
Layer 3 implementation is centered around the
ComponentLevelEntity class that implements the
Layer2toLayer3Interface and provides the simu-
lation and synchronization services to manage events
and to control the component execution. Table 1
summarizes a description of the eBPMN primitives
that implement a subset of the elements provided by
the BPMN 2.0 notation. As specifically described in
Subsection 4.1, this work is a first step toward a full
coverage of the BPMN 2.0 specification.

4.1 Implementation Assumptions

In order to simplify the space of the problem and,
ultimately, to limit the implementation of the first
release to the core BPMN elements, the currently
available eBPMN version is built on top of the
following assumptions:

� interactions among several participants must be
expressed in terms of a collaboration. The
use of a choreography model is not currently
supported;

� the use of both multiple incoming and outgoing
sequence flows is not permitted. Converging and
diverging flows must be explicitly represented by
use of gateway elements;

� each Pool must include either a start event
element or a receive task element that activates the
related process execution;

� conditions associated on outgoing sequence flows
of inclusive and exclusive gateways must be
expressed in terms of either the branching
probability or the number of iterations to be
performed;

� Event-based gateways are not currently sup-
ported.

5 MODEL-DRIVEN METHOD
FOR BP SIMULATION

Figure 3 illustrates the method that exploits eBPMN
to automate the simulation-based analysis of BPs.
The proposed method has been built upon our
previous work (Bocciarelli and D’Ambrogio, 2011b;
Bocciarelli and D’Ambrogio, 2012), which has
been revised and extended to achieve the following
objectives:
� Use of eBPMN: methods proposed in previous

contributions adopt a two steps approach that first
generates an intermediate and abstract model (i.e.,
a UML Activity Diagram) and then uses such
a model to generate a performance model based
on queueing-based formalisms, such as EQN.
Differently, this work integrates and exploits the
eBPMN language and does not require any UML
intermediate model. Moreover, being sternly
linked to the BPMN 2.0 specification, eBPMN
contributes to provide a more accurate simulation
of the BP behavior.

� Use of Visual Tools: in order to allow the
specification of the non-functional properties of
BPs and to drive the automated execution of the
simulation-based analysis, methods proposed in
our past works are founded on the lightweight
PyBPMN extension. One of the most relevant
limitation of such an approach is the unavailability
of visual tools to represents PyBPMN models. In
this respect, this work introduces a novel model
transformation that allows BP analysts to specify
the BPMN model by use of BPMN-compliant
visual tools and effortlessly annotate the model by
use of the PyBPMN extension.
With regards to the use of visual tools, it

should be underlined that alternative solutions based
on the BPMN native extension mechanism (OMG,
2011) have been evaluated. Even though such
an approach is promoted as the standard BPMN
extension mechanism, it is affected by the following
limitations (Stroppi et al., 2011):
� it does not define a methodological approach to

design the extension;

MODELSWARD�2014�-�International�Conference�on�Model-Driven�Engineering�and�Software�Development

328



Table 1: Description of the eBPMN primitives.

Class Name Description
FlowObject The building block of a BPMN model.

Activity

The execution of an Activity object starts as a token incomes. To model the execution
of a process step, an Activity object holds the incoming token for the time required
to execute the related process step and send it through the outgoing sequence flow. The
Activity class constructor is parameterized according to the performance annotations
specified in the PyBPMN model.

ServiceTask

An automated step that is executed by invoking an external web service. As the
PyBPMN annotations are used to specify web service request and response messages,
the behavior of the ServiceTask object takes into consideration the time required to
send, receive and elaborate such messages.

SendTask
Upon activation, a SendTask object sends a message through the outgoing
MessageFlow that causes the notification of an IncomingMessage event at the recipient
side, then it terminates its execution.

ReceiveTask

A ReceiveTask class can be used either as an intermediate task or as an initial node. In
the former case the ReceiveTask creates a new Token object and routes it through the
outgoing SequenceFlow. In the latter case it waits until an IncomingMessage event
occurs.

StartEvent
A source for a process execution and instantiation of a new Token object within the
process workflow. The StartEvent class constructor is parameterized according to
the workload annotations specified in the PyBPMN model.

EndEvent A sink for all incoming tokens.
Gateway Probability-based and iteration-based branching conditions.

ParallelGateway
Synchronization of multiple concurrent flows (i.e., join behavior) and activation of new
concurrent threads on outgoing sequence flows (i.e., fork behavior).

ExclusiveGateway

Upon activation, the ExclusiveGateway class routes the incoming token to one of
the associated outgoing SequenceFlow elements, according to the related condition
that must be expressed in terms of either the branching probability or the number of
iterations that have to be carried out.

InclusiveGateway

Upon execution, the incoming tokens are consumed and some tokens are generated and
routed to a subset of the outgoing sequence flows. The branching condition must be
expressed in terms of either the branching probability or the number of iterations that
have to be carried out.

Pool
A thread of simulation execution that groups the elements associated to each participant
and allows to collect process-related statistic data.

SequenceFlow
Connection link between two ObjectFlow classes, in order to allow the routing of
tokens within the simulation model.

MessageFlow
Connection link between a SendTask class and a ReceiveTask class, in order to route
Message elements

Data Interface that specifies the payload of exchanged events.
Message Data exchanged by a pair of SendTask and ReceiveTask elements

Token
The Token class manages the activities execution flow. It owns two attributes:
currentTime, which stores the current value of the simulation time, and bornTime,
which holds the simulation time value at the moment of the object instantiation.

EventType

The handling of events in eBPMN is fully based on the SimArch reference
implementation. The EventType enumeration implements the two types of events that
have to be managed by the underlying DES engine for the BP simulation purposes (i.e.,
Incoming token and Incoming message).

A�Language�for�Enabling�Model-Driven�Analysis�of�Business�Processes

329



<<interface>>

SimJEntity

LocalEntity

<<interface>>

SimJEvent

PLocalEvent

Layer 2

Layer 3

ComponentLevelEntity

Layer3ToLayer2Interface
<<enum>>

EventType

incomingToken
incomingMessage

Event

<<interface>>

Data

Message Token

SequenceFlow MessageFlow

PoolEventNodeGateway

ExclusiveGateway InclusiveGateway ParallelGatewayTask

SendTask ReceiveTask

Activity

ServiceTask

LocalProcessEngine

<<interface>>

Link
<<interface>>

Port

BasicPortBasicLink

1

1

1

1

1

1

1*

*
*

inputPort

outputPort
1 1

1 1

FlowObject *

1

Figure 2: eBPMN architecture.

� the BPMN specification does not provide any
visual notation to represent the extension.

As a consequence, the concrete support of the
extension mechanism by open source and commercial
tools is still limited in practice. The Eclipse
Foundation provides a well documented method to
build a plugin, based on the BPMN Modeler (Eclipse
Foundation, 2013), whose implementation is based
on the BPMN native extension mechanism. In such
an approach, the BPMN extension is provided as
an Ecore metamodel that is in turn used to create
the Java code to define novel BPMN flow object.
Differently, the proposed method (and specifically
the PyBPMN extension) implementation leverages
model-driven standards and tools so that it can be
easily customized to fit specific needs.

According to Figure 3, at the first step, the
business analyst gathers both functional and non-
functional requirements of the BP under study and
specifies the relevant BPMN model. While the
functional requirements are used to define the flow
of tasks and activities that constitute the BPMN
model, the non-functional requirements are included
as comments associated to the related Activity and
Process objects. Such comments have to be specified
according to the following syntax:

MetaclassName:AttributeName={tag1=value1,
tag2=value2,...}

Flow of 
documents

Control flow

BPMN
model

Business Process
Analyst

PyBPMN
model

Service
Specification

(WSDL/Q-WSDL)

Candidate
Configurations

(PyBPMN models)

Business Process Simulation

Functional 
requirements

Non-functional 
requirements

Business Process
Specification

eBPMN execution

BPMN-to-PyBPMN
Model-to-Model 
transformation

PyBPMN-to-eBPMN
Model-to-Text

transformation

eBPMN
code

Service
Discovery & Selection

Simulation 
results

Figure 3: Model-driven BP simulation method.

where metaclasses and attributes are specified ac-
cording to the PyBPMN extension and tags are
parameters that quantify the attribute according to

MODELSWARD�2014�-�International�Conference�on�Model-Driven�Engineering�and�Software�Development

330



given datatypes, as specified in (Bocciarelli and
D’Ambrogio, 2013).

As an example, a task that requires 200 ms to
be executed is specified by attaching the following
comment to the corresponding Task element.

PaQualification:serviceTime = {value=200,
unit=’ms’, source=’est’, dir=’decr’,
statQ=’max’}

where the tags value, unit, source, dir and statQ
give the value, the unit of measure, the origin, the type
of order relation used for values comparison and the
type of statistical value of the attribute, respectively.

Then the BPMN-to-PyBPMN model-to-model trans-
formation is executed in order to derive the PyBPMN
model that corresponds to the BPMN input model.

A service discovery may also take place to
retrieve the descriptions of concrete web services1

that match the abstract service interfaces specified in
the PyBPMN model.

The method proceeds with the simulation of
the BP, which is carried out by first executing
the PyBPMN-to-eBPMN model-to-text transformation,
which takes as input the PyBPMN model and yields
as output the eBPMN simulation code, and then
executing the eBPMN code on top of the SimArch
simulation engine.

The simulation results are finally used by the
business analyst to evaluate design trade-offs or what-
if scenarios and also to assess at design time the
satisfiability of non-functional requirements.

5.1 Model Transformations

As stated in the previous section, the proposed
method makes use of the BPMN-to-PyBPMN model-
to-model transformation and the PyBPMN-to-eBPMN
model-to-text transformation.

The BPMN-to-PyBPMN transformation has been
implemented by use of the standard QVT-Operational
(QVT-O) language (OMG, 2008) and it is carried out
to transform a BPMN model into a PyBPMN model.

Specifically, the transformation maps the an-
notation elements that describe the non-functional
properties of the BP under study (e.g., task service
time and process workload characterization) to the
corresponding PyBPMN elements (e.g., PaService,
OpenPattern and ClosedPattern elements).

1The proposed method assumes that the tasks compos-
ing a BP are executed by automated resources implemented
as web services and is fully compliant with both the
standard WSDL description language and the performance-
oriented Q-WSDL description (D’Ambrogio, 2006).

As an example, let us consider the mapping of a
performance-related annotation. The QVT-O trans-
formation engine parses the BPMN model (in XMI
format) looking for well-formed TextAnnotation
elements to be mapped to PaService elements in
the target PyBPMN model. Then the transformation
retrieves, from the input model, the Association
element that links the TextAnnotation to the
related Activity element, in order to associate the
PaService element to the proper Activity element
in the target model. Finally, the TextAnnotation
is parsed to instantiate the serviceTime attribute in
the target model and to assign a value to the related
tagged values.

The PyBPMN-to-eBPMN transformation is a
model-to-text transformation specified by use of
the OMG’s Model to Text (M2T) language and
implemented on top of the Eclipse platform. The
M2T language makes use of a template-based
approach, in which placeholders for data to be
extracted from models are used. These placeholders
are expressions specified over metamodel entities.

As an example, the logic to instantiate a Task
object is as follows:

[template public generateTask(t : Task)]
Task [t.id] = new Task();
[t.id].setName([t.name]);
// Other setters
[/template]

During the transformation the template
generateTask (delimited by template and
/template tags) is invoked for each t element of
type Task that is in the source PyBPMN model. In
order to avoid the creation of more than one object
with the same name, the id attribute, which is unique
throughout the model, is used as a reference to the
object. The name attribute (which is not required
to be unique) is used to set the name of the object
through a setter method, as well as for the remaining
attributes of the eBPMN object.

6 CONCLUSIONS

This paper has introduced a model-driven method
for automating the transformation of BPMN models
into simulation code specified by use of eBPMN, a
domain-specific language for BP simulation.

Specifically, the proposed method first executes a
model-to-model transformation, which takes as input
the BPMN model of the BP under study and yields as
output the corresponding PyBPMN model, and then
executes a model-to-text transformation, which takes

A�Language�for�Enabling�Model-Driven�Analysis�of�Business�Processes

331



as input the PyBPMN model and yields as output the
eBPMN executable simulation code, which is finally
executed on top of the simulation engine provided by
the underlying SimArch infrastructure.

The current eBPMN implementation includes a
subset of the complete BPMN notation and represents
a first step towards the implementation of a full-
featured BP simulation-based analysis environment.
Ongoing work includes both the implementation
of additional BPMN constructs and an extensive
experimentation and validation campaign on real-
world cases.

REFERENCES

Bocciarelli, P. and D’Ambrogio, A. (2011a). A BPMN
Extension for Modeling Non Functional Properties of
Business Processes. In Proceedings of the Symposium
on Theory of Modeling and Simulation, DEVS-TMS
’11.

Bocciarelli, P. and D’Ambrogio, A. (2011b).
Performability-oriented Description and Analysis
of Business Processes. In Beckmann, J. A., editor,
Business Process Modeling: Software Engineering,
Analysis and Applications. Nova Publishers.

Bocciarelli, P. and D’Ambrogio, A. (2012). Automated
performance analysis of business processes. In Pro-
ceedings of the Symposium On Theory of Modeling
and Simulation, DEVS-TMS ’12.

Bocciarelli, P. and D’Ambrogio, A. (2013). A Model-driven
Method for Enacting the Design-time QoS Analysis of
Business Processes. Software & Systems Modeling.

Bocciarelli, P., Pieroni, A., Gianni, D., and D’Ambrogio,
A. (2012). A Model-driven Method for Building Dis-
tributed Simulation Systems from Business Process
Models. In Rose, O. and Uhrmacher, A. M., editors,
Winter Simulation Conference, page 227. WSC.

D’Ambrogio, A. (2006). A model-driven wsdl extension for
describing the qos of web services. In Proceedings of
the IEEE International Conference on Web Services,
ICWS ’06, pages 789–796, Washington, DC, USA.
IEEE Computer Society.

Eclipse Foundation (2013). BPMN2 modeler. Website:
http://www.eclipse.org/bpmn2-modeler/ documenta-
tion.php.

Gianni, D., D’Ambrogio, A., and Iazeolla, G. (2011).
A software architecture to ease the development
of distributed simulation systems. Simulation,
87(9):819–836.

Grefen, P., Aberer, K., Hoffner, Y., and Ludwig, H.
(2000). Crossflow: Cross-organizational workflow
management in dynamic virtual enterprises. Com-
puter Systems Science & Engineering, 1(5):277–290.

Hook, G. (2011). Business process modeling and
simulation. In Jain, S., Jr., R. R. C., Himmelspach, J.,
White, K. P., and Fu, M. C., editors, Winter Simulation
Conference, pages 773–778. WSC.

Kamrani, F., Ayani, R., and Karimson, A. (2010).
Optimizing a business process model by using
simulation. In IEEE Workshop on Principles of
Advanced and Distributed Simulation (PADS), pages
1–8, Atlanta, GA.

OMG (2008). Meta object facility (mof) 2.0 query/view/-
transformation, version 1.0.

OMG (2011). Business Process Modeling
Notation (BPMN), version 2.0,
http://www.omg.org/spec/BPMN/2.0/.

Saeedi, K., Zhao, L., and Sampaio, P. R. F. (2010).
Extending bpmn for supporting customer-facing
service quality requirements. Web Services, IEEE
International Conference on, 0:616–623.

Stroppi, L. J. R., Chiotti, O., and Villarreal, P. D. (2011).
Extending bpmn 2.0: Method and tool support. In
Dijkman, R. M., Hofstetter, J., and Koehler, J., editors,
BPMN, volume 95 of Lecture Notes in Business
Information Processing, pages 59–73. Springer.

Tatibouet, J., Cuccuru, A., Gérard, S., and Terrier, F. (2013).
Principles for the realization of an open simulation
framework based on fuml (wip). In Proceedings of
the Symposium on Theory of Modeling & Simulation -
DEVS Integrative M&S Symposium, DEVS 13, pages
4:1–4:6, San Diego, CA, USA. Society for Computer
Simulation International.

van der Aalst, W., Nakatumba, J., Rozinat, A., and Russell,
N. (2010). Business Process Simulation: How to
get it right? In Handbook on Business Process
Management, International Handbooks on Informa-
tion Systems, pages 317–342. Springer-Verlag.

Weyprecht, P. and Rose, O. (2011). Model-driven
development of simulation solution based on sysml
starting with the simulation core. In Proceedings
of the 2011 Symposium on Theory of Modeling
& Simulation: DEVS Integrative M&S Symposium,
TMS-DEVS ’11, pages 189–192, San Diego, CA,
USA. Society for Computer Simulation International.

White, S. A. (2004). Process Modeling Notations and
workflow patterns. Workflow Handbook, pages 265-
294.

Yang, F., Shen, W., Tan, W., and Ghenniwa, H. (2010). A
framework for service enterprise workflow simulation
based on multi-agent cooperation. In Proc. of
the IEEE Int. Conference on Systems, Man and
Cybernetics, Istanbul, Turkey, 10-13 October 2010,
pages 2587–2594. IEEE.

MODELSWARD�2014�-�International�Conference�on�Model-Driven�Engineering�and�Software�Development

332


