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Abstract: Images with high visual quality are often generated by a ray tracing algorithm. Despite its conceptual simplic-
ity, designing an efficient mapping of ray tracing computations to massively parallel hardware architectures
is a challenging task.In this paper we investigate the performance of state-of-the-art ray traversal algorithms
for bounding volume hierarchies on GPUs and discuss their potentials and limitations. Based on this analysis,
a novel ray traversal scheme called batch tracing is proposed. It decomposes the task into multiple kernels,
each of which is designed for efficient parallel execution. Our algorithm achieves comparable performance to
currently prevailing approaches and represents a promising avenue for future research.

1 INTRODUCTION

Ray tracing is a widely used algorithm to compute
highly realistic renderings of complex scenes. Due to
its huge computational requirements massively paral-
lel hardware architectures like modern graphics pro-
cessing units (GPUs) have become attractive target
platforms for implementations. We investigate high
performance ray tracing on NVidia GPUs, but many
of our contributions and analysis may also apply
to other wide-SIMD hardware systems with similar
characteristics. In this paper, we use bounding vol-
ume hierarchies (BVHs) as acceleration structure for
ray traversal and we solely focus on the task of inter-
secting a ray with a scene containing geometric prim-
itives only and do not include shading and other oper-
ations into our discussion.

In general, we evaluate our algorithms on ray
loads generated by a path tracer with a fixed maxi-
mum path length of 3. Our test scenes contain only
purely diffuse materials, from which rays bounce off
to a completely random direction of the hemisphere.
So, the generated ray data covers a broad spectrum
of coherency ranging from coherent primary rays to
highly incoherent ones after two diffuse bounces.
For a diligent performance assessment, we use a di-
verse set of NVidia GeForce GPUs consisting of a
low-end Fermi chip (GT 540M), a high-end Fermi
chip (GTX 590) and a high-end Kepler-based prod-
uct (GTX 680).

Our paper has the following structure: First, we
provide an analysis of the state-of-the-art ray tracing
algorithms and their characteristics that seem to leave
significant room for improvement. We subsequently
discuss our novel algorithmic approach called batch
tracing that addresses the current problems. Finally,
we analyze the practical implementation as well as
some optimizations and point out possible directions
for future research.

2 PREVIOUS WORK

This paper targets massively parallel hardware archi-
tectures like NVidia’s Compute Unified Device Ar-
chitecture (CUDA) that was initially presented by
Lindholm et al. (Lindholm et al., 2008). CUDA hard-
ware is based on a single-instruction, multiple-thread
(SIMT) model, which extends the commonly known
single-instruction, multiple-data (SIMD) paradigm.
On SIMT hardware, threads are divided into small,
equally-sized groups of elements called warps (cur-
rent NVidia GPUs batch 32 threads in one warp).
Contrary to SIMD, execution divergence of threads
in the same warp is handled in hardware and thus
transparent to the programmer. To avoid starvation
of the numerous powerful computing cores of GPUs,
L1 and L2 caches were introduced with the advent
of the more recent generation of hardware called
Fermi (NVIDIA, 2009). The latest architecture of
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GPU hardware termed Kepler (NVidia, 2012) con-
tains several performance improvements concerning
atomic operations, kernel execution and scheduling.

In 2009, Aila et al. (Aila and Laine, 2009) pre-
sented efficient depth-first BVH traversal methods,
which still constitute the state-of-the-art approach for
GPU ray tracing. Their implementation uses a sin-
gle kernel containing traversal and intersection, that is
run for each input ray in parallel. More recently they
presented some improvements, algorithmic variants
to increase the SIMT efficiency and updated results
for NVidia’s Kepler architecture in (Aila et al., 2012).
They also reported that ray tracing potentially gen-
erates irregular workloads, especially for incoherent
rays. To handle these uneven distributions of work,
compaction and reordering have been employed in
the context of shading computations (Hoberock et al.,
2009), ray-primitive intersection tasks (Pantaleoni
et al., 2010) and GPU path tracing (Wald, 2011).
Garanzha et al. propose a breadth-first BVH traver-
sal approach in (Garanzha and Loop, 2010), which is
implemented using a pipeline of multiple GPU ker-
nels. While coherent rays can be handled very ef-
ficiently using frustra-based traversal optimizations,
the performance for incoherent ray loads significantly
falls below the depth-first ray tracing algorithms as
reported in (Garanzha, 2010).

3 THE QUEST FOR EFFICIENCY

While the SIMT model is comfortable for the pro-
grammer (e.g. no tedious masking operations have
to be implemented), the hardware still has to sched-
ule the current instruction for all threads of the warp.
Diverging code paths within a warp have to be se-
rialized and lead to redundant instruction issues for
non-participating threads. If code executed on SIMT
hardware exhibits much intra-warp divergence, a con-
siderable amount of computational bandwidth will be
wasted. In accordance with Section 1 of (Aila and
Laine, 2009), we use the term SIMT efficiency, which
denotes the percentage of actually useful operations
performed by the active threads related to the total
amount of issued operations per warp to quantify this
wastage in our experiments. As computational band-
width continues to increase faster than memory band-
width, SIMT efficiency is one of the key factors for
high performance on current and most probably also
future GPU hardware platforms.

Beside computational power, memory accesses
and their efficiency are a crucial issue too. Threads
of a warp should access memory in a coherent fash-
ion, in order to get optimal performance by coalescing

their requests. However, traditional ray tracing algo-
rithms (as well as many others) are known to gener-
ate incoherent access patterns that potentially waste
a substantial amount of memory bandwidth as dis-
cussed in (Aila and Karras, 2010). The caches of
GPUs can help to improve the situation considerably
as discussed by Aila et al. in (Aila and Laine, 2009)
and (Aila et al., 2012), where they describe how re-
cent improvements of the GPU cache hierarchy affect
the overall ray tracing performance.

In general, GPUs are optimized for workloads that
distribute the efforts evenly among the active threads.
As reported in (Aila and Laine, 2009), ray tracing al-
gorithms generate potentially unbalanced workloads,
especially for incoherent rays. This fact poses sub-
stantial challenges to the hardware schedulers and can
still be a major source for inefficiency as noted by
Tzeng et al. (Tzeng et al., 2010). To support the
scheduling hardware and achieve a more favorable
distribution of work, compaction and task reorder-
ing steps are explicitly included in algorithms. This
paradigm has been successfully applied to shading
computations of scenes with strongly differing shader
complexity (Hoberock et al., 2009), where shaders of
the same type are grouped together to allow more co-
herent warp execution. In the context of GPU path
tracing, Wald applied a compaction step to the rays
after the construction of each path segment in order
to remove inactive rays from the subsequent compu-
tations (Wald, 2011).

3.1 Depth-first Traversals

The most commonly used approach for GPU ray trac-
ing is based on a depth-first traversal of a BVH as dis-
cussed in (Aila and Laine, 2009). Their approach is
based on a monolithic design, which combines BVH
traversal and intersection of geometric primitives into
a single kernel. This kernel is executed for each ray
of an input array in massively parallel fashion. Given
two different rays contained in the same warp, poten-
tial inefficiencies now stem from the fact that either
they require different operations (e.g. one ray needs
to execute a traversal step, while the other ray needs
to perform primitive intersection) or the sequences of
required operations have a different length (e.g. one
ray misses the root node of the BVH, while the other
ray does not). These two fundamental problems have
a negative impact on SIMT efficiency and lead to an
uneven distribution of work, especially for incoherent
ray loads.

To mitigate the effects of irregular work dis-
tribution, Aila et al. investigated the concept of
dynamic work fetching. Given a large number of
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Figure 1: Ray tracing-based renderings of our test scenes approximating diffuse illumination. From left to right: Sibenik (80K
triangles), Conference (282K triangles) and Museumhall (1470K triangles).

Table 1: SIMT efficiency percentages for traversal (T) and intersection (I) as well as kernel’s warp execution efficiency
(K) of the two best performing ray tracing kernels f ermi speculative while while (from (Aila and Laine, 2009)) and
kepler dynamic f etch (from (Aila et al., 2012)) using different thresholds of active rays for dynamic fetching of work. The
numbers are averages of multiple views taken of the Sibenik and the Museum scene for different generations of rays.

Scene Rays while-while dyn-fetch 25% dyn-fetch 50% dyn-fetch 75%
T I K T I K T I K T I K

Sibenik
1. gen 87.0 61.3 80.1 86.4 59.9 79.2 86.4 60.0 79.4 86.3 60.0 79.1
2. gen 46.7 27.7 40.5 49.2 30.1 43.0 49.7 30.5 43.3 50.4 31.4 43.9
3. gen 38.4 23.6 33.8 41.0 26.2 36.2 42.1 27.6 37.2 42.5 28.2 37.6

Museum
1. gen 65.4 45.8 59.0 66.2 46.2 59.4 66.8 47.1 60.3 65.9 47.7 59.8
2. gen 32.6 19.8 28.8 37.9 28.7 34.8 39.7 31.7 36.6 40.3 33.2 37.2
3. gen 27.8 16.6 24.5 33.6 25.8 31.2 35.3 28.7 32.9 36.3 30.3 33.9

input tasks, the idea is to process them using an
(usually significantly smaller) amount of worker
threads that fetch new input items until all input
elements have been processed. In this paradigm, the
fetching of a new task can happen immediately after
the current one has been finished or depending on a
more general condition (e.g. all threads of a warp
have completed their tasks). This dynamic software
scheduling was introduced in Section 3.3 of (Aila
and Laine, 2009) called persistent threads, where
they used dynamic fetching on a per-warp basis to
balance the shortcomings of the hardware scheduler
on Tesla generation hardware. In (Aila et al., 2012)
they suggest fetching new rays on Kepler hardware, if
more than 40% of the threads of a warp have finished
their work. It is important to note that dynamic
fetching of work attempts to increase warp utilization
and thus potentially SIMT efficiency at the expense
of memory bandwidth, because it tends to generate
incoherent access patterns when fetching single or
only a few new work items.

To have a baseline for our further exper-
iments, we evaluated the SIMT efficiency of
the two best performing ray tracing kernels
f ermi speculative while while (from (Aila and
Laine, 2009)) and kepler dynamic f etch (from
(Aila et al., 2012)) using different thresholds for
the dynamic fetching paradigm. We directly used

large parts of Aila et al.’s kernels with minor adap-
tations for our evaluation framework. Table 1 shows
SIMT efficiency percentages of the traversal and
the intersection code parts and the kernel’s overall
warp execution efficiency as reported by the CUDA
profiler obtained by averaging over multiple views
of the test scenes. The SIMT efficiency for traversal
and intersection have been computed by inserting
additional code into the kernel, which counts the
number of operations that are executed by the kernel
and that are actually issued on the hardware using
atomic instructions. However, the percentages in
Table 1 vary from what Aila et al. reported in Table 1
of (Aila and Laine, 2009), since we use different view
points and a different BVH builder. In (Aila et al.,
2012), Aila et al. note that fine-grained dynamic
work fetching on Kepler improves the performance
by around ten percent, especially for incoherent rays.
This fact can be well explained by looking at the
corresponding efficiency percentages in Table 1. For
coherent primary rays the percentages are already
quite high and hardly change, so there is no notable
overall performance gain. Incoherent ray loads,
however, definitely benefit from this optimization.
A newly fetched ray can either require the same se-
quence of operations as the others and thus increases,
or require a different sequence of operations and thus
decreases the SIMT efficiency of a warp. Assuming
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equal probabilities for traversal and intersection, it is
therefore probable that low percentages of incoherent
rays are increased as indicated by the measurements.

We also experimented with speculative traversal
as proposed in Section 4 of (Aila and Laine, 2009)
using a postpone buffer of small size of up to three el-
ements. Comparing ordinary and speculative traver-
sals, we observed an increase in traversal efficiency
of up to 10% for coherent and up to 50% for inco-
herent rays, which becomes smaller for larger buffer
sizes. Please note that the kernels shown in Table 1
already use a fixed size postpone buffer of one ele-
ment. So, enlarging the speculative buffer yields just a
slight increase of up to 10% in traversal efficiency for
incoherent rays, but no overall performance improve-
ment in our experiments. Also, we noted a slight de-
crease in intersection efficiency for buffer sizes larger
than one for ray tracing kernels based on the while-
while paradigm, which is in accordance with the re-
sults in Table 1 of (Aila and Laine, 2009). These re-
sults hint that in a monolithic design, SIMT efficiency
of traversal and intersection are correlated and cannot
be increased arbitrarily without adversely impacting
the other. Pantaleoni et al. (in Section 4.4 of (Pan-
taleoni et al., 2010)) address this problem by redis-
tributing intersection tasks of the active rays among
all rays of the warp. After the intersection they per-
form a reduction step to obtain the closest intersec-
tion for each ray. This structural modifications of the
monolithic approach result in a significantly increased
SIMT efficiency of intersection (50%-60% instead of
about 25%), but is used only for specialized spherical
sampling rays in an out-of-core ray tracing system.

3.2 Breadth-first Traversals

A radically different approach to GPU-based ray trac-
ing was presented by Garanzha et al. in (Garanzha
and Loop, 2010). They implemented a ray tracing al-
gorithm that traverses their specialized BVH structure
in a breadth-first manner including some key modi-
fications. In a first step before the actual traversal,
the input rays are sorted and partitioned into coherent
groups bounded by frusta. Then, traversal starts at the
root node. At the currently processed tree level, all
active frustra (active means intersecting a part of the
BVH) are intersected with the inner nodes and these
results are propagated to the next lower level. Traver-
sal stops at the leaf nodes and yields lists of inter-
sected leaves for each frustum. Subsequently, all rays
of each active frustum are tested for intersection with
the primitives contained in each leaf to obtain the fi-
nal results. As described in (Garanzha, 2010), each of
these steps is implemented using multiple kernels re-

sulting in a rather long pipeline. Although we did not
provide an actual implementation of their algorithm,
we still want to note several important characteristics
of their approach.

First of all, we argue that large parts of their imple-
mentation can be assumed to exhibit high SIMT effi-
ciency. Each kernel is carefully designed to perform
a single task (e.g. frustum intersection) and com-
plex operations are broken down into smaller compo-
nents (e.g. ray sorting exploiting existing coherency),
which can again be efficiently implemented. Sec-
ondly, this approach also tends to generate workloads
that are significantly more coherent and regular than
the ones of depth-first traversal. There appear to be no
sources for such major inefficiencies in the traversal
phase and persistent threads are used to balance the
workloads in the intersection stage, since the length
of the corresponding list of leaf nodes may vary sig-
nificantly. We believe that the performance wins over
monolithic traversals reported on rather coherent rays
are not only due to potentially efficient multi-kernel
implementation, but also largely due to their clever
frusta-traversal based optimization.

Despite these favorable properties, the approach
also possesses a major algorithmic inefficiency. In the
traversal stage, a complete traversal of the accelera-
tion structure is performed for each frustum regard-
less of the number of the actually necessary opera-
tions. Thus, a lot of likely redundant work per ray is
carried out, since the ray may intersect a primitive that
is referenced by the first leaf that is encountered in
traversal. This node over-fetching potentially leads to
a lot of redundant instructions and memory accesses.
For coherent rays, this drawback apparently does not
outweigh the benefits from the efficient traversal and
intersection stages. For incoherent rays, however, the
set of the traversed nodes grows considerably and the
node over-fetching dominates the all aforementioned
benefits resulting in a significantly reduced overall
performance.

4 MULTI-KERNEL BATCH
TRAVERSAL

Based on the room for improvement that is left by
current state-of-the-art ray tracing algorithms, we pro-
pose a novel approach called batch traversal. It is de-
signed to achieve the following objectives:

� Given the low percentages for incoherent rays of
depth-first traversals shown in Table 1, our algo-
rithm should notably increase SIMT efficiency.
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Figure 2: High-level system designs for monolithic depth-first (left), breadth-first (middle) and our batch tracing approach
(right). Batch tracing consists of multiple phases, which are repeatedly executed until all rays have terminated. Blocks denote
logical parts of the algorithms, black arrows denote the control flow.

� Unlike breadth-first traversal, the algorithm
should not exhibit substantial inefficiencies in
handling ray loads of varying coherency.

The components of our algorithm and their interplay
are shown in Figure 2 (right) together with depth-first
(left) and breadth-first (middle) traversals. Like in
breadth-first traversal, our approach splits the ray trac-
ing task into several algorithmic stages implemented
in multiple kernels to increase SIMT efficiency of the
single code parts. During leaf collection stage, the ray
traverses the BVH similar to depth-first traversal and
collects a number of intersected leaf nodes called in-
tersection candidates. In the subsequent phase, the
collected intersection candidates are reorganized to
achieve efficient execution of the intersection stage
and the active rays are compacted for the next exe-
cution of the traversal stage. In the intersection phase
the primitives contained in the intersection candidates
are tested for intersection with the ray and the results
are used to update the rays. These stages are executed
in a loop until all input rays have terminated. Con-
trary to breadth-first traversal, our approach performs
partial BVH traversals and intersection testing alter-
nately in order to avoid collecting a large number of
redundant intersection candidates.

4.1 Leaf Collection

As mentioned before, the leaf collection stage per-
forms a partial depth-first traversal of the BVH similar
to the monolithic ray tracing algorithms and is imple-
mented in a single kernel. If a leaf is encountered dur-
ing traversal, it is stored into the buffer of the corre-
sponding ray and traversal continues immediately as
shown in Algorithm 1. A ray terminates this stage if

the whole BVH has been traversed or a certain maxi-
mum number of collected leaves has been found. The
efficiency of this stage depends on the number of in-
tersection candidates that have to be expected for a
given ray. The second crucial question is how the col-
lection of these leaves should be distributed optimally
among the various iterations.

Algorithm 1 Leaf Collection Stage

while ray not terminated do
while node is inner node do

traverse to the next node
end while
store leaf into buffer
if maximum number of leaves collected then

return
end if

end while

As the overall number of collected leaves for a ray
is influenced by many factors (e.g. input ray distri-
bution and scene geometry), we provide probabilis-
tic bounds backed up by experiments. To estimate
the size of the intersection candidate set, we assume
a uniformly distributed ray load and that our input
scene consists of N objects Oi. Each Oi is enclosed
by a bounding box Bi and all objects are enclosed by
a scene bounding box W . Furthermore, let B=[Bi be
the union of all bounding boxes and p(n) be the prob-
ability for a random line to intersect n objects, given
it intersects W . Using Proposition 5 from (Cazals
and Sbert, 1997), a tight upper bound for p(n) is then
given by Equation 1 (SA denotes surface area).

p(n)� SA(B)
nSA(W )

(1)
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This probabilistic bound shows that the size of a
set of intersection candidates for a random ray can be
expected to be reasonably small. In practice, we can
hope for an even smaller candidate set, because we
are only interested in intersections occurring before
the first hit of the ray.

To assess the quality of these theoretical consider-
ations in practice, we have evaluated the size of the in-
tersection candidate set for multiple views of our test
scenes. The obtained results prove our probabilistic
assumption that for a large number of rays the size
of the candidate is small (< 4 for 70% and < 8 for
90% of the rays) regardless of their distribution. Fig-
ure 3 shows a histogram of the size of the intersection
candidate set for different ray generations for a view
of the Sibenik and a view of the Museumhall scenes.
Firstly, the histogram varies significantly for small set
sizes (e.g. up to 8 for Figure 3) depending on the
distribution of the input rays (e.g. viewpoint). How-
ever, the distribution of the larger candidate set sizes
exhibits no dependence on the input ray distribution
approaching zero for all scenes and viewpoints. Ad-
ditionally, the overall shape of the histogram curves is
also similar for all tested ray loads and input scenes.
Although specific ray-geometry configurations might
cause exceptionally large intersection candidate lists,
these cases can still be handled by our implementation
in a reasonably efficient manner.
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Figure 3: Histogram of size of the intersection candidate
set for rays of different generations (1-3) for a view of the
Sibenik (Sib) and a view of the Museumhall (Mus) scene.
The intersection candidate set of a ray consists of all leaves
that are pierced by this ray from its origin to its first hit
point. The X axis shows the size of the intersection candi-
date set, the Y axis displays the corresponding number of
rays. The graphs for larger candidate set sizes all are very
close to the X axis, thus only set sizes up to 10 are shown.

The second important open issue that remains is,
how the collection of the leaves should be distributed
among the various passes. It is challenging to provide
a short and optimal solution, since choosing the num-
ber of intersection candidates per iteration is a trade-
off. Collecting a large number of leaves per iteration

reduces the total number of required passes and thus
potentially increases overall performance. However,
a lot of potentially redundant traversal and intersec-
tion operations might be introduced, since most of the
rays have only got a small candidate set. To counter
this effect, a small number of intersection candidates
per pass can be chosen to minimize the overhead, po-
tentially increasing the total number of iterations re-
quired. We finally came up with the following heuris-
tic, which is backed up by numerous experiments: We
start with a small number (e.g. 2 for GT 540M) in the
first pass and increase the size of the intersection can-
didate set gradually over the next few passes. This
avoids much redundant work in the first passes and
also keeps the number of total passes in an acceptable
range.

4.2 Compaction and Reordering

The compaction and reordering stage performs vari-
ous housekeeping tasks in a single kernel. Firstly, we
perform a compaction of the rays that remain active
after the execution of the leaf collection stage. We
simply map the active rays to consecutive slots us-
ing parallel reduction based on atomic instructions for
shared and global memory. This removes already ter-
minated rays and helps to maintain a high efficiency
during the leaf collection stage. Additionally, this
stage is responsible for managing the leaf collection
buffer. At the start of our batch tracing algorithm, this
buffer is allocated once with a size that is a fixed mul-
tiple of the number of input rays (e.g. number of rays
times eight elements).

In each leaf collection pass we partition this buffer
in equal parts among the remaining active rays. This
layout can flexibly accommodate a wide range of
thresholds for the number of collected leaves with-
out the need to perform costly memory reallocations.
Secondly, a parallel grid-wide reduction is made to
compute the total number of intersection tasks and to
assign these tasks to threads for the subsequent in-
tersection stage. Again, rays, which have collected
leaves during the previous stage, are mapped to con-
secutive slots for efficiency reasons. For storing the
different mappings generated by work compaction,
index arrays are allocated at the start of the algorithm.
They keep track of the original indices for all active
rays and intersection tasks and help to save costly
movements of larger data structures (e.g. input ray
data or traversal stacks).
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4.3 Intersection

Our implementation of the intersection stage maps the
intersection tasks of one ray to one thread, which it-
eratively processes its array of collected leaves. For
each leaf, all contained primitives are intersected with
the ray and the results are stored for use in the subse-
quent phases of the algorithm.

5 RESULTS AND DISCUSSION

In this section, we evaluate the previously discussed
batch tracing algorithm and discuss some optimiza-
tions. To see how the total running time is distributed
we profiled our implementation for different scenes
and ray loads. Around 70% of the time is spent in the
leaf collection, which makes this stage the primary
target for optimizations. Intersection computations
constitute 25% of total time and compaction and re-
ordering 5%, while negligible overhead is caused by
memory allocations and CPU-GPU communication.

5.1 Optimized Leaf Collection

In order to assess the efficiency of the leaf collection
stage, we analyzed the resulting distribution of work-
loads. As the number of operations for different rays
may vary considerably, we implemented an optimized
version that uses dynamic fetching of work to counter
the effects of this imbalance. If the SIMT efficiency of
a warp drops below a certain threshold, already termi-
nated rays get replaced with new input rays. We ex-
perimented with different threshold percentages and
empirically determined an optimal threshold of 25%
for the GTX 590. For the GT 540M dynamic fetch-
ing is only beneficial if performed on a per-warp ba-
sis, i.e. when the last active ray of a warp termi-
nates, a whole group of new 32 work items is fetched.
For a detailed comparison with monolithic traver-
sal approaches we implemented an extended ker-
nel based on f ermi speculative while while that uses
dynamic fetching of rays in the sense of (Aila et al.,
2012). Table 2 shows the ray tracing performance for
the Museum scene of our monolithic dynamic fetch
kernel (DF), the batch tracing baseline implementa-
tion (Batch) and its improved variant using dynamic
fetching (Batch+DF) relative to the performance of
the f ermi speculative while while kernel. Our opti-
mized batch tracing algorithm (Batch+DF) achieves
comparable performance on the 540 GT, but is con-
sistently outperformed on the 590 GTX by our mono-
lithic dynamic fetch kernel. The low-end card with
few compute cores seems to benefit from our batch

Table 2: Ray tracing performance for our monolithic
dynamic fetch kernel (DF), the batch tracing base-
line implementation (Batch) and its improved variant
using dynamic fetching again (Bt+DF). Numbers are
relative to the performance of our implementation of
f ermi speculative while while and were averaged over
multiple views of the Museum scene. The largest speed-ups
are shown in bold numbers.

GPU Ray Type DF Batch Bt+DF

GT 540M
1. gen 1.13 0.97 1.04
2. gen 1.46 1.42 1.54
3. gen 1.55 1.42 1.55

GTX 590
1. gen 1.09 0.78 0.79
2. gen 1.42 1.10 1.17
3. gen 1.51 1.12 1.21

tracing approach especially in combination with per-
warp dynamic fetching, because irregular workloads
can be hardly balanced out by the hardware. On Ke-
pler hardware batch traversal is around 70% slower
than our fastest monolithic kernel regardless of the
coherency of the input rays.

While dynamic fetching increases the perfor-
mance of the monolithic ray traversal notably,
only small speedups (up to 10%) are achieved
for the leaf collection stage. Contrary to the
obtained results, we expected larger benefits (at
least in a range similar to the difference between
f ermi speculative while while and its dynamic work
fetching variant) from this optimization: Since the
leaf collection kernel contains no intersection code,
dynamic fetching should deliver large increases in
SIMT efficiency and also improve overall perfor-
mance. In order to find a plausible cause for this
discrepancy, we measured the warp execution effi-
ciency of the leaf collection stage. Table 3 shows the
percentages obtained by batch tracing using different
variants of dynamic fetching (per-warp and using dif-
ferent thresholds) in comparison to the highest SIMT
efficiency values for traversal achieved by state-of-
the-art monolithic kernels in the Museum scene. As
we expected, the efficiency of the BVH traversal is
slightly increased for primary rays (up to 10%) and
substantially enhanced for high order rays (up to al-
most 60%).

Since these improvements do not result in an over-
all performance win, we decided to profile our im-
plementation comprehensively. The analysis revealed
that using dynamic fetching for our leaf collection
kernels results in an increased number of instruction
issues due to memory replays. This fact strongly hints
that the performance of this stage is limited by the
caches of the GPU. As the available DRAM band-
width is not entirely used up, we believe that the unex-
pected results are caused by the unfavorable memory
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Table 3: SIMT efficiency percentages for traversal of mono-
lithic kernels (Mono) and for the leaf collection stage of
batch tracing using dynamic fetching per-warp (Warp DF)
and with different thresholds (DF 25% and DF 50%) in the
Museum scene. For the first column, we use the highest
percentages achieved by any monolithic kernels, including
all variants of dynamic fetching (see also Table 1).

Ray Type Mono Warp DF DF 25 DF 50
1. gen 66.8 66.5 72.1 69.3
2. gen 40.3 36.7 52.3 56.8
3. gen 36.3 32.6 50.3 54.6

access pattern resulting from traversal of incoherent
rays. This leads to an exhausted cache subsystem that
cannot service all the memory requests on time result-
ing in severe latency that nullifies most of the benefits
of the increased SIMT efficiency.

To verify the aforementioned assumptions exper-
imentally and to identify primary performance lim-
iters we use selective over-clocking of the process-
ing cores and the memory subsystem (e.g. the perfor-
mance of memory-bounded kernels will benefit from
an increased memory clock rate). In fact, our leaf col-
lection kernels hit the memory wall much earlier than
we expected, given the fact that they perform no inter-
section computations and thus have a smaller memory
working set compared to monolithic traversal. While
we obtained an optimal threshold of 25% for dynamic
fetching on the GTX 590, it only decreases perfor-
mance on the Kepler hardware. In our opinion, this
shows a drawback of separating traversal and inter-
section: Leaf collection kernels cannot hide the oc-
curring memory latencies as well as a monolithic ker-
nel, which can potentially schedule additional opera-
tions while waiting for memory fetches (e.g. execute
primitive intersection while waiting for a BVH node
memory access). These observations raise the ques-
tion for alternative memory layouts and acceleration
structures, which better suit this kind of traversal al-
gorithm.

5.2 Traversal Performance Limiters

However, the analysis of our monolithic ray tracing
kernels revealed that memory performance becomes
a major challenge for this kind of algorithms, too. As
discussed by Aila et al. (Aila and Laine, 2009), tra-
ditional depth-first traversal are commonly believed
to be compute-bound. This is confirmed by our re-
sults and and holds for Fermi hardware regardless of
whether dynamic fetching is used or not. The Kepler-
based GTX 680, however, provides a significantly in-
creased amount of computational power, while mem-
ory bandwidth has grown only moderately in com-
parison. Our speculative depth-first traversal kernel

is apparently still compute-bound as shown in Fig-
ure 4. The kepler dynamic f etch kernel similarly
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Figure 4: Kernel performance limiter analysis for mono-
lithic ray traversals on Kepler-based 680 GTX. We evaluate
our fastest monolithic kernel (WW) using different thresh-
olds for dynamic fetching (DF25 and DF50). Series suf-
fixed with ”-instr” denote that processor clock has been in-
creased by 20%, ”-mem” means that the memory clock has
been over-clocked by 20%. The graphs show obtained per-
formance relative to the default settings of the device.

exhibits compute-bound behavior for coherent ray
loads. With diminishing coherence of the input rays,
dynamic fetching overcharges the cache subsystem
with incoherent memory requests, which in turn be-
comes the dominating factor. Contrary to the spec-
ulations in (Aila et al., 2012), this shows that mono-
lithic state-of-the-art traversal already tends to be lim-
ited by cache and memory performance, at least for
incoherent rays. Since a significant decrease in the
instruction-to-byte ratio in future GPUs cannot be ex-
pected, memory bandwidth and cache throughput will
become the primary limiter for traditional algorithms.

5.3 Intersection Stage

Table 4 shows the SIMT efficiency of our implemen-
tation of the intersection stage in comparison to the
highest numbers that have been achieved by mono-
lithic traversals. Our approach improves the effi-

Table 4: SIMT efficiency percentages of primitive intersec-
tion for monolithic kernels (Mono) and our batch tracing
implementation (Batch) for the Museum scene.

Ray Type Mono Batch
1. gen 47.7 58.3
2. gen 33.2 47.1
3. gen 30.3 45.4

ciency of primitive intersection notably which is now
in the range of what has been achieved by intersection
task reordering (Pantaleoni et al., 2010). As the leaf
collection pass usually submits an amount of redun-
dantly collected leaves to the traversal stage, we tried
to avoid all unnecessary primitive tests by storing the
entry distance of a ray along with every intersection
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candidate. The ray always examines this value before
any contained primitives are tested. However, this
optimization yielded no noticeable performance im-
provements and might pay off only for more complex
geometric primitives. Our basic mapping which lets
one ray work on one intersection candidate set gener-
ates potentially uneven workloads, since the number
of primitives contained in a single leaf may vary as
well as the size of the intersection candidate set. Mea-
surements hint that our intersection implementation is
memory-bounded and we suppose that it would ben-
efit significantly from a more elaborate reordering of
the intersection tasks.

6 CONCLUSIONS AND FUTURE
WORK

Given our comprehensive analysis of current ray
traversal algorithms, we believe that state-of-the-art
approaches leave a lot of room for future algorithmic
improvements. A prominent example is the SIMT
efficiency of depth-first traversal algorithms, which
waste a considerable amount of computational band-
width when dealing with incoherent rays. However,
also the limits of traditional paradigms become ob-
vious, which puts the research focus on alternative
traversal methods like the batch tracing algorithm pro-
posed in this paper.

Although the provided implementation cannot
quite compete with mature and heavily optimized
monolithic traversal, our multi-kernel method pos-
sesses appealing characteristics, which makes it an at-
tractive direction for further research. A central point
is to find an acceleration structure that permits in-
creased traversal performance to make our approach
more beneficial. Furthermore, we would like to op-
timize the intersection stage of our algorithm and in-
vestigate efficient handling of multiple types of geo-
metric primitives.
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