
Activity Recognition Using Non-intrusive Appliance Load Monitoring

Olaf Wilken, Oliver Kramer, Enno-Edzard Steen and Andreas Hein
University of Oldenburg, Oldenburg, Germany

Keywords: Activity Recognition, Non-intruisve Appliance Load Monitoring.

Abstract: The recognition of sequences via non-intrusive appliance load monitoring has an important part to play for
various applications in healthcare. In our work, we present a system for the detection of daily activities based
on the use of appliances. The objective of our activity monitoring system is to maximize the time elder people
can stay in their own domestic environment. We propose a system that is able to detect comparably complex
activities that may be interrupted by other activities. In the experimental part of our work, a one-month and a
half-year field study demonstrate the capabilities of the proposed approach.

1 INTRODUCTION

In the context of the demographic change, new tech-
nologies become more and more important to pre-
serve the independence of elder people. Here, the
focus lies on the recognition of activities of daily liv-
ing (ADL, e.g. toileting) (Katz et al., 1963) and in-
strumental activities of daily living (IADL, e.g. cook-
ing) (Katz, 1983) and the detection of deviations from
these usual activities. When deviations are detected,
the alert states can be used to inform assistants like
relatives or nurses. The main objective of such a sys-
tem is to let elder people live in their domestic envi-
ronments independently as long as possible.
Various approaches for activity recognition with dif-
ferent types of sensors are known in literature: body-
worn sensors as RFID reader (Philipose et al., 2004),
ambient intrusive sensors as vision sensors (Nguyen
et al., 2005; Oliver et al., 2002) or microphones (Chen
et al., 2005) or ambient non-intruisve sensors as mo-
tion sensors (Virone et al., 2008; Barger et al., 2005;
Guralnik and Haigh, 2002), state sensors (Kasteren
et al., 2008) or power sensors (Noury et al., 2011).
The classification of the sensor types in the above cat-
egories is given in (Ni Scanaill et al., 2006). Fur-
thermore all systems, which are not based on vision
sensors are called sensor-based activity recognition
systems. A detailed overview of sensor-based ac-
tivity recognition systems is given in (Chen et al.,
2012). An overview of vision-based systems is given
in (Poppe, 2010; Moeslund et al., 2006). Most ac-
tivity recognition systems try to infer predefined ac-
tivities with the help of probabilities. Therefore, un-

known individual activities can be filtered out by pre-
defined activities. This can lead to a loss of infor-
mation. Furthermore, a lot of systems were evalu-
ated by simplified scenarios with single activities, but
in the real world the activities are complex (paral-
lel/interrupting activities) (Chen et al., 2012). The
system we propose in this work detects daily indi-
vidual activities without inference of any predefined
activities and the evaluation was executed in two field
studies. The activity recognition based on power sen-
sors installed in a fuse box that first classifies ap-
pliances by decomposition of total load. These sys-
tems are called non-intrusive appliance load moni-
toring (NIALM) cf. (Hart, 1992). Our algorithm is
able to detect possible activities without specified pre-
settings. In most cases, the labels of detected activi-
ties can be inferred with the help of the associated ap-
pliances. Furthermore, the developed system is able
to handle noisy data, e.g., wrong classified appliances
or little variations in the sequences of the same activ-
ities, and is able to detect complex activities, which
can be interrupted by other activities and can also
recognize parallel/interrupting activities. The main
components of the system are NIALM and activity
recognition. In contrast to the system we propose in
this work, the approach by Noury etal (Noury et al.,
2011) requires the manual specification of activities
with the association of appliances for each installa-
tion and one sensor for each appliance to be classi-
fied is used (called intrusive appliance load monitor-
ing (IALM) cf. (Hart, 1992)).

This work is structured as follows. The NIALM pro-
cedure of our system is introduced in Section 2 de-
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scribing the sensors, the edge detection and the appli-
ance recognition procedure. Section 3 describes our
approach to detect activities as sequences of switch-
ing events. In Section 4, the behavior of our system is
shown in two field studies. The article closes with a
summary of the most important results in Section 5.

2 NON-INTRUSIVE APPLIANCE
LOAD MONITORING

2.1 Sensor

From the employed power sensor (CRD5110 from
CR Magnetics (Magnetics, 2013)), the electrical pa-
rameters voltage (VRMS), current (IRMS) and real
power (P) are streamed with a sampling rate of 5 Hz.
In Figure 1, the typical signal of an active appliance
is shown. The signal has a transitive noise (transient)
at the turn-on phase. Afterwards, a plateau (steady
state) follows with only small variations in contrast to
the transient. The turn-off phase is only an edge.
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Figure 1: A signal of a running appliance from power sen-
sor.

2.2 Edge Detection

The edge detection module recognizes switchings of
appliances with real power P(k) above a threshold q2
in the steady state. This threshold separates events
generated by appliances from noise. In order to deter-
mine the real power in the steady state, two different
thresholds q1 and q2 and two time slots of different
lengths (s1 and s2) are employed. The first thresh-
old q1 determines the beginning of a possible switch-
ing. For the determination of q2, two time slots are
used, one for the turn-on phase and the other for the
turn-off phase. The turn-on time slot is longer, be-
cause the corresponding transient noise takes longer
time. For example, the noises (signal one, two and

five) in Figure 2 are filtered out, and the correct
switches from the third signal will be detected by this
procedure. The detection of turn-on and turn-off is
computed with equation 1, where “1” represents turn-
on and “-1” represents turn-off. For a robust detec-
tion of turn-offs, two time slots with the same size are
used. In order to eliminate noise in the stable state,
the median is computed over a short period of one
second.
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Figure 2: Example data for edge detection from turn-on/off
event of an appliance (q1 = 25 W , q2 = 45 W ,s1 = 10 data-
points, s2 = 5 datapoints, ). The length of the turn-on phase
is s1 and the length of turn-off is s2, respectively.

f (k) =

8>>>>><>>>>>:

1 P(k+1)�P(k)� q1^
P(k+s1)�P(k)� q2

�1 P(k+1)�P(k)��q1^
P(k�s2)�P(k+s2)� q2

0 else (no switch)

(1)

For each data point step with a switch event, the de-
vice recognition module is run.

2.3 Feature Extraction

The device classification is described in the following.
The question arises, which features are appropriate
for the device recognition task. The streamed elec-
trical parameter voltage VRMS is not stable enough:
if appliances are running in parallel, the voltage
varies (voltages variations have also been detected by
Hart (Hart, 1992)). After each switching of an appli-
ance, the voltage changes a little bit. This has neg-
ative implications for the recognition of the second
appliance. As the power P(k) depends on the voltage,

P(k) =VRMS(k) � IRMS(k) � cosa (2)

with phase shift a, it is no appropriate stable fea-
ture. In contrast, the voltage-independent effective
resistance R(k) is a suitable feature for the appliance
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recognition problem. It can simply be computed from
the sensor data with

R(k) =
VRMS(k)

IRMS(k) � cosa
=

V 2
RMS(k)
P(k)

: (3)

This equation is also employed for the values of
the turn-on/turn-off signal from a running appliance.
However, if two or more appliances are running si-
multaneously, the computation of effective resistance
values RA has to consider that the appliances are con-
nected in parallel. Therefore, the following equation
has to be applied:

RA(k) =
1

1
R(k) �

1
R(k0�2)

;k 2 [k0 +2;k0 +n] (4)

RA(k) =
1

1
R(k) �

1
R(k1+2)

;k 2 [k1;k1�n] (5)

with data point k0 for the beginning of turn-on, data
point k1 for the beginning of turn-off and n 2 N0. In
order to distinguish appliances with similar effective
resistance (and similar real power), the resistance val-
ues after the turn-on are not sufficient. Since the sen-
sor (cf. Figure 1) provides a transient signal when
an appliance is turned on, it can be used for a bet-
ter distinction. During the analysis of the transient
signals from our appliances, we observed that the
first two measurements after different turn-ons of the
same appliance can be disturbed and vary too much.
Therefore, they are unsuitable for a robust recognition
and left out in the classification process. Mean value
and standard deviation of the turn-on phase are em-
ployed for classification of similar appliances. Turn-
off events do not have transient signals. The median
of the last measured values before turn-off is used
in combination with the information, which device is
running, i.e., the turn-on information. In contrast to
feature extraction real power for edge detection is suf-
ficient because the impact of variations is here not so
important.
For the classification process, K-nearest-
neighbors (Cover and Hart, 1967), naı̈ve
Bayes (Mitchell, 1997) and decision
trees (C4.5) (Quinlan, 1993) have been used. A
comparison of the employed classifiers will be shown
in the experimental section.

3 ACTIVITY RECOGNITION

The activity recognition is based on sequence recog-
nition. A sequence is an order of letters which repre-
sent classified appliance switchings. Each appliance
switching ASi is coded by a letter in the sequence. An

uppercase letter represents a turn-on event, and the
corresponding lowercase represents a turn-off. For
example, the coded letters for the event “toaster on” is
T and for the event “toaster off” is t. The information
that an appliance switching pair (turn-on/turn-off) can
directly be mapped to an activity is considered as sim-
ple and robust case (e.g. turn-on/turn-off of “TV” are
associated to activity “watching television”). Activi-
ties can be divided into two types:
1. A simple activity is represented by an interlaced

sequence containing complete pairs of appliance
turn-on and corresponding turn-off events that be-
long together. For example, in Figure 3 S2 is a
simple activity (closed sequence).

2. A complex activity contains at least two non-
closed sequences, with a begin sequence and an
end sequence. The begin sequence contains at
least one turn-on event, but no corresponding
turn-off. The end sequence contains all missing
turn-off events. Figure 3 shows an example. Se-
quence S1 is a begin sequence, S3 is a intermediate
sequence, and S4 is an end sequence of a complex
activity. S2 is a parallel/interrupting activity.

The steps of the activity recognition process are de-
scribed in the following.

3.1 Detection of Sequences

Our observations show that a sequence with a large
number of switching events corresponds to an activ-
ity. Hence, switching events that occur in quick suc-
cession potentially belong to the same sequence. A
switching event AS j is assigned to a sequence Si em-
ploying the following criterion:

fAS j 2 Si j time(AS j)�time(AS j�1)<T ^AS j�1 2 Sig
(6)

with threshold T being the maximum time between
two switchings that belong to the same sequence. Af-
ter this time-based clustering, each sequence is clas-
sified as closed or not. Again, Figure 3 illustrates the
creation of sequences.

3.2 Detection of Related Sequences

In this section, the begin sequences BSi, the end se-
quence ESi and intermediate sequences ISi of the
complex activity candidates CACi are determined.
The result of the created structure from the complex
activity candidates is

CACi =

8><>:
BS j

i j BS j 2 fS1; : : : ;Sng
ESk

i j ESk 2 fS1; : : : ;Sng
fISp

i ; : : : ; ISs
ig j fISp; : : : ; ISsg � fS1; : : : ;Sng:

(7)
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Figure 3: Example data for creation of sequences. F = “ceil-
ing light (living room)” on; D = “TV (living room)” on; A
= “table lamp (living room)” on; T = “standard lamp (liv-
ing room)” on; M = “ceiling light (floor)” on; O = “ceil-
ing light (bathroom)” on. The lowercase letters represent
turn-off events. Sequences S1, S3 and S4 represent the com-
plex activity “watching TV & reading” and S2 represents
the simple activity “toileting”.

Every closed sequence is a candidate for a simple ac-
tivity EACi. In Figure 4, an example of two complex
activity candidates CAC1, CAC2 and one simple activ-
ity candidate EAC1 is shown. In this example the de-
teremined candidates are the ground truth, but it may
occur in real situations that the complex activity may
contain the two complex activity candidates CAC1,
CAC2 (transitive dependency), and the sequence S2
can be an intermediate sequence of a complex activ-
ity. These dependencies are solved in the following
steps.

time

CAC1 
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M O o m
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CAC2 

k
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ES1 

BS2 
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IS2 
1

2 4 4

5 5

6

EAC1 

d

S3

IS1 
3

Figure 4: Example data for detected start sequences, inter-
mediate sequences and end sequences of two complex ac-
tivity candidates. The letters represent the same appliance
switchings as in Figure 3 with additonal K = “desk lamp”
on and complex activity “desk work” consisting of S4 and
S6.

3.3 Clustering of Sequences

In this section, all sequences are clustered based on
the feature similarity considering variations of the
same sequences. For example, the variations can be
wrong classified appliances, permutations of switch-
ings or missing events. For the detection of such vari-
ations, the distance of two sequences is computed by
an extended edit distance (Oommen, 1997). The edit
distance is defined as the transformation from one se-
quence to another sequence with a minimum number
of operations (Levenshtein, 1966). The operations are

deletion, insertion, and replacement. With the ex-
tended edit distance the additional operation transpo-
sitions allows the detection of adjacent transpositions.
Furthermore, the extended edit distance supports sub-
stitution matrices to recognize wrong classified appli-
ances, and the weights of all operations can be chosen
freely. It is computed employing dynamic program-
ming techniques. The two sequences S1 and S2, which
have to be compared, constitute columns and rows of
a matrix D defined as

Di; j =min

8>>>>>>>>><>>>>>>>>>:

Di�1; j +Wd (deletion)
Di; j�1 +Wi (insertion)
Di�1; j�1 + s(S1(i);S2( j)) S1(i) 6= S2( j)
Di�1; j�1 S1(i) = S2( j)
Di�2; j�2 S1(i) = S2( j�1)

^
S1(i�1) = S2( j)

(8)
with n = jS1j and m = jS2j. Function s(�) computes
the weights of replacements (e.g. from the substitu-
tion matrix), and Wd ;Wi are weights of the operations
deletion and insertion. The matrix is initialized with
D0;0 = 0;Di;0 = i;1 � i � m and D0; j = j;1 � j � n.
The entry Dm;n defines the distance computation.
The agglomerative hierarchical clustering method is
used for the clustering process. The distance measure
that we employ computes the relation of similarity be-
tween two sequences with the help of the extended
edit distance

d = 1�
Dm;n

max(j S1 j; j S2 j)�max(Wd ;Wi;Ws)
(9)

with weights Ws of replacement. The results of the
clustering step are similarity activity clusters ACli =
fS j : : :Sng. For example when complex activity from
Figure 3 appears on different days then all three dif-
ferent sequences are in three different clusters.

3.4 Detection of Activity Candidate
Clusters

Not all sequences in a similarity activity cluster ACli
have to be associated with the same activity. For ex-
ample, a start sequence of a complex activity candi-
date CAC1 may be an element of ACli, and the associ-
ated end sequence may be element of ACl j. Another
start sequence of CAC3 may also be element of ACli,
but the associated end sequence is element of AClk.
Hence, the two complex activity candidates are as-
sociated with different activities (cf. Figure 5). The
correct association activity is solved by computing ac-
tivity candidate cluster CACCl

i with

j fCACi j BSm
i 2 ACl j;ESq

i 2 ACllg j� H: (10)
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The threshold H is the minimum number of occur-
rence of a daily activity. Furthermore, it can happen
that a similar activity cluster ACli may contain either
closed sequences that are associated to a simple ac-
tivity candidate or contain non-closed sequences that
can be associated with a complex activity candidate.
These clusters are simple activity candidate clusters
EACCl

i , if all closed sequences exceed the threshold
SE and all sequences, except the sequences which are
associated to a complex activity candidate, on differ-
ent days are larger than threshold H. The result of the
correct solved association is shown in Table 1. In the
next step, intermediate sequences of complex activity
candidate clusters are determined.
Table 1: Assignments of similarity cluster and activity can-
didates.

Activity candidate cluster Similitary activity Activity candidate
CACCl

p ACli;ACl j fCACk ; : : : ;CACmg
CACCl

q ACli;AClr fCAC f ; : : : ;CACng
. . . . . . . . .

EACCl
t ACl j fEACw; : : : ;EACzg

F D T t

ACli

F D T t

F D T t

AClj

f d 

AClk

f d 

K d f k 

K d f kF D T t

{ACli,AClk}

{ACli,AClj}

CAC1

CAC2

CAC3

CAC4

BS1

BS4

ES1

ES4

p

q t

s

days

time

Figure 5: Example data for correct association of similarity
activity clusters (CAC1,. . . ,CAC4) with two different com-
plex activity candidate clusters. The letters represent the
same appliance swichtings as in Figure 4. CAC1 and CAC2
are associated to activity (candidate cluster) “watching TV
at night” and CAC3 and CAC4 are associated to “watching
TV & desk work at afternoon”.

3.5 Detection of Activities

In the last step, the intermediate sequences, which can
also be activity candidate clusters, are determined.
All the activity candidate clusters, which either are
not associated to another activity candidate cluster or
in which all the dependencies, the intermediate se-
quences, are solved, are the result activities Ai (simple
activities EAi or complex activities CAi). First, every
intermediate sequence of CACi 2CACCl

j is examined,
if it is element of all other CACn 2 CACCl

j . Figure 6
shows the sequence d 2 AClt that is associated to all

CACn. The number of elements in AClt is equal (or
approximately equal) to elements of CACCl

j , there-
fore, AClt with its elements is associated to CACCl

j .
However, the sequence Kk 2 ACl is not associated to
CACCl

j , because this one occurs only once. Second,

F D 

AClj

F D 

CACi

BSi

BSn

ESi

ESn

:

CACn

f 

AClm

f
:

d 

AClt

d
: :

K k 

ISi

K k 

AClz

K k

:

ISi

p

q

l
s

r

v

CACj
Cl

days

time

Figure 6: Example data for association of intermediate
sequences to complex activity candidate cluster CACCl

j .
The letters represent the same appliance switchings as in
Figure 4. Here the sequence “Kk” (representing activ-
ity “desk work”) is a parallel/interrupting activity in CACi.
CACi,. . . ,CACn represent the complex activity “watching
TV”.

the transitive dependencies are recursively solved, but
this never ocurred in our executed studies. Further-
more, an element of detected activities is parallel or
interrupting, if it sometimes occurs in another activ-
ity. For example, in Figure 6, the sequence Kk can be
a parallel/interrupting activity.

4 EVALUATION

For the experimental evaluation of the system, we
conducted two field studies. The first study was car-
ried out in a two-room apartment (cf. Figure 7), the
second study in a three-room apartment (cf. Figure 8).
In every apartment, an elderly person over 70 years
old lived alone during the study. For every electric
circuit, a power sensor was installed in the fuse box.
Eighteen appliances in the two-room apartment and
twenty-two appliances in the three-room apartment
were monitored (cf. Table 2). Appliances under the
threshold of P = 35 W have not been monitored (i.e.,
a radio and two energy saving bulbs in the first study,
and eight energy saving bulbs in the second study).
During the installation of the system, each appliance
was learned by two or three training data in a su-
pervised way. Every resident was asked to log the
switchings of appliances and the corresponding ac-
tivities (e.g. “meal preparation”). Since the logs are
usually incomplete (Kasteren et al., 2008), a wireless
motion sensor was installed in every room for further
manual labeling of appliance switchings. In the first
study, 28 days and in the second study, 18 days of
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activities have manually been labeled. For the activi-
ties ground truth does not exist, because the logs were
incomplete and the activities could not manually be
labeled in contrast to switching appliances.

Table 2: Overview of the installations used in the field stud-
ies.

Apartments 2-room apartment 3-room apartment
No. of electric circuit 3 4
No. of appliances 18 22
Period of data collection 5 months 1 month

Figure 7: Floor plan of 2-room apartment. The acronyms
represent appliances and the shapes (e.g. circle) the associ-
ated electric circuits.

Figure 8: Floor plan of 3-room apartment. The acronyms
represent appliances and the shapes the associated electric
circuits.

4.1 Appliance Classification

In both field studies, the same thresholds (q1 = 35 W,
q2 = 20 W with window sizes s1 = 3 s (turn-on) and
s2 = 1 s (turn-off)) are used for edge detection. The

thresholds have been determined empirically in dif-
ferent tests. In the first study, 40 appliance switch-
ings of 2;661 manually labeled switchings were not
detected correctly. In the second study, the detection
of seven switchings of 1;518 manually labeled have
failed. The reason for the larger number of failures
in the first study was that two different light switches
were installed closely together. The test person could
execute two switchings of different appliances within
three seconds. But the edge detection can only detect
one switching within three seconds (due to the win-
dow size). The high number of appliance switchings
in first study was related to a defect refrigerator. This
one was active (turn-on/turn-off) every hour.
First, we compare the three classifiers K-nearest-
neighbors with K = 1 (1-NN) (Cover and Hart,
1967), naı̈ve bayes (Mitchell, 1997) and decision
trees (C4.5) (Quinlan, 1993). For the classifier C4.5
Weka framework was used and the other both classi-
fiers have been implemented. Tables 3 and 4 show the
recognition accuracies w.r.t. different training sets.
In the first column of both tables, only the training
patterns generated during installation are used. For
the test data, all manually labeled patterns are used.
Here, the 1-NN classifier shows the best results with
over 96% accuracy. With an increase of the training
set size (second and third column), the precision of
1-NN only increases slightly in contrast to the other
classifiers. But in both studies, 1-NN achieves the
best results for each training set size. Since the gen-
eration of labeled training data during installation is a
realistic scenario, we emphasize that these results are
relevant in practice.

Table 3: Classification accuracy of the three classifiers w.r.t.
different training sets in the first experimental study (train-
ing data/test data). Training data from installation does not
contain the not detected edges (40 switchings).

2 - 3 training data
per appliance

(92/2621)

data of 1
week

(801/1912)

data of 2
weeks

(1454/1259)
1-NN 96.9% 97.9% 97.9%
C4.5 80.6% 96.6% 97.2%

naı̈ve bayes 91% 93.9% 94.2%

Table 4: Classification accuracy of the three classifiers
w.r.t. different training sets in the second experimental
study (training data/test data). Training data from installa-
tion does not contain the not detected edges (7 switchings).

2 - 3 training data per
appliance (122/1511)

data of 1 week
(816/817)

1-NN 96.2% 96.36%
C4.5 78.1% 95.96%

naı̈ve bayes 91.4% 94.14%
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With the extension that the turn-off events are clas-
sified depending on known turn-on events, the pre-
cision of the 1-NN classifier based on the installa-
tion training set is increased. The precision in the
first field study becomes 97.62%, the corresponding
value in the second study achieves 96.4%. Sensi-
tivity, specificity, positive predictive value (ppv) and
negative prediction value (npv) have been determined
for measure of performance fom 1-NN classifier with
extension. Specificity and negative prediction value
were between 97% and 100% for all appliances in
both studies. In the first study, there are three ma-
jor outliers in the sensitivity and positive predictive
value (cf. Figure 9). Appliance “table lamp” was
often wrongly classified as “shelf lighting” and vice
versa. The reason for this was that the two appliances
were very similar and the turn-on of “table lamp” was
often interrupted by noise of appliance “TV”. Further-
more, appliance “extracted hood” from first and sec-
ond study (cf. Figure 10) are rarely used (three in first
study and five times in second study). This appliance
was often wrong classified.
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Figure 9: Sensitivities and positive predictive value of all
appliances from first study.
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Figure 10: Sensitivities and positive predictive value of all
appliances from second study.

4.2 Activity Recognition

The activity recognition procedure is evaluated with
the complete data from both studies. The first study

contains data collect on 140 days (about five months),
the second study contains data from 27 days. The
number of different days with a daily activity (thresh-
old H of the activity recognition procedure) has been
determined empirically. This threshold was set to 100
days of 140 days in the first study and 17 days of 27
days in the second study, respectively. The two appli-
ances “table lamp in living room” and “shelf lighting
in living room” (cf. Figure 9) are often mixed up by
the appliance recognition (probability from the confu-
sion matrix). This was considered in the substitutions
matrix, cf. Equation 8.

Table 5: Simple activities of the first study (b = bathroom; f
= floor).

No. inferred activities appliances
A1 toileting during day ceiling light (f) on; mirror lamp (b)

on; mirror lamp (b) off; ceiling
light (f) off

A2 toileting during day mirror lamp (b) on/off
A3 toileting during night bedside lamp on; mirror lamp (b)

on/off; bedside lamp off;
A4 afternoon tea kettle on/off
A5 various activities ceiling light (f) on/off

The threshold for the similarity of sequences (cf.
Equation 9) was set to 70% for both studies. The
times for creating sequences (threshold T of Equa-
tion 6) was determined by histograms. The his-
tograms of both studies (cf. Figure 11) represent the
average number of appliances in sequence by time.
The average number of appliances was computed for
every time with the help of equation 6. For the thresh-
old T the times (bars from histograms) which show
the smallest distance of two adjacent bars have been
chosen (for first study T = 7 minutes and for second
study T = 8 minutes). Furthermore, stand-alone run-
ning appliances (e.g., the refrigerator) are filtered out
manually. Tables 5 and 6 show the detected simple
activities of both studies. In Tables 7 and 8 the de-
tected complex activities are shown with the associ-
ated similarity clusters ACli. The tables also show
the positions (rooms) of some appliances for a clear
identification. The names of the activities are inferred
from the protocols and the involved appliances in the
tables. The order of the appliances in each activ-
ity is only one representative of several that have oc-
curred in reality. Some activities are recognized mul-
tiple times. For example, the simple activity “toilet-
ing during day” has been detected twice, because the
same activity is executed with different appliances.
The algorithms cannot distinguish between both ac-
tivities. Furthermore, two different activities can be
detected as one, e.g., the detected complex activity A7
of the second study is in fact divided into the activities
“preparing morning coffee” and “preparing evening

PECCS�2014�-�International�Conference�on�Pervasive�and�Embedded�Computing�and�Communication�Systems

46



1,60

1,98

2,40
2,67

3,01
3,17 3,22 3,23 3,26 3,31

3,36 3,40 3,43 3,50
3,57

0,00

0,50

1,00

1,50

2,00

2,50

3,00

3,50

4,00

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

minutes

M
ea

n
 n

u
m

b
er

 o
f 
a
p

p
la

in
ce

s 
in

 
s
e
q

u
e
n

ce
s

(a)

1,38
1,55

1,92
2,10 2,14 2,18

2,25 2,31 2,32
2,37

2,49 2,60
2,65 2,71

2,78

0,00

0,50

1,00

1,50

2,00

2,50

3,00

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

minutes

M
e
a
n

 n
u

m
b

e
r 

o
f 
a
p

p
lia

n
c
e
s
 in

  
s
e
q

u
e
n

c
e
s

(b)
Figure 11: Histograms with an average number of appli-
ances in sequences at different times: (a) first study; (b)
second study.

Table 6: Simple activities of the second study (b = bath-
room; be = bedroom; f = floor).

No. inferred activities appliances
A1 toileting during night ceiling light (be) on; ceiling light

(b) on; ceiling light (b) off; ceiling
light (be) off

A2 toileting during day ceiling light (f) on; ceiling light (b)
on; ceiling light (b) off; ceiling

light (f) off
A3 preparation for sleep ceiling light (f) on; ceiling light (b)

on; ceiling light (b) off; ceiling
light (be) on; ceiling light (f) off;

ceiling light (be) off
A4 various activities ceiling light (be) on/off
A5 various activities ceiling light (f) on/off

coffee”. For these activities, the same appliances are
used. This confusion can be solved by considering
the time of the day. It is possible that one similar-
ity cluster (ACli) belongs to different activities, e.g.,
the detected complex activities A9 and A10 share the
same ACli. If these two activities should be recog-
nized as one activity, the algorithm can be adapted
easily. Furthermore, only a few recognized activities,
which are named as various activities in the tables,
cannot be inferred to an unambiguous activity name,
because they appear in different activities. Finally,
there are sometimes larger variations (transpositions)
of elements in the same sequences, especially in long
sequences (e.g., A3 in Table 6). The algorithm can
only detect adjacent transpositions. This issue is cur-
rently solved via the threshold H.
As parallel/interrupting activities, activity “toileting
during day” (A1 of the first study) appeared in the ac-

Table 7: Complex activities of the first study (b = bathroom;
be = bedroom; f = floor; l = living room).

No. Inferred activities cluster appliances
A6 breakfast ACl1 ceiling light (l) on; kettle on;

kettle off
ACl2 ceiling light (l) off

A7 afternoon nap ACl1 bedside lamp on
ACl2 bedside lamp off

A8 afternoon TV ACl1 TV on
ACl2 TV off

A9 evening TV,
reading and

puzzles

ACl1 ceiling light (l) on

ACl2 TV on; table lamp (l) on
ACl3 TV off; table lamp (l) off
ACl4 ACl1 of A10

A10 preparation for
sleep

ACl1 mirror lamp (b) on; mirror
lamp (b) off; ceiling light (l)

off; ceiling light (be) on;
bedside lamp on; ceiling light

(be) off;
ACl2 bedside lamp off

A11 various activities ACl1 ceiling light (f) on
ACl2 ceiling light (f) off

Table 8: Complex activities of the second study (k =
kitchen).

No. Inferred activities cluster appliances
A6 breakfast ACL1 ceiling light (k) on; kettle on;

toaster on; kettle off; toaster
off

ACl2 ceiling light (k) off
A7 preparing morning

coffee/ evening
coffee

ACl1 ceiling light (k) on; kettle
on/off

ACl2 ceiling light (k) off
A8 preparing meal ACl1 hood light on

ACl2 hood light off

tivities (A8 and A9) with longer duration. In the sec-
ond study, no parallel/interrupting activities were de-
tected. This is certainly associated with the fact that
the detected complex activities had a shorter duration.

5 CONCLUSIONS

In our two experimental studies, we were able to
demonstrate the capabilities of our system for activ-
ity recognition based on appliance switchings. The
approach is capable of detecting simple and complex
activities. Furthermore, the algorithm can detect par-
allel/interrupting activities and can consider noise as
wrong classified appliances. A major problem eval-
uating the activity detection occured in verifying the
ground truth since the logs were incomplete. Further-
more, evening activities could not be recognized in
the second study since energy saving bulbs have been
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used. They can not be detected by the appliance de-
tection. An increased use of saving bulbs could lead
to future problems of activity recognition, because
the recognized activities of the two studies often in-
clude lamps. Furthermore, when at the beginning and
at the end of the day an appliance is switched (e.g.
“aquarium lighting”) the presented algorithm for ac-
tivity recognition would identify the various activities
during the day as one activity. This case did not oc-
cur in the two studies. One approach to solve this
could be a maximum time duration that a valid activ-
ity can have. Some recognized activities can be easily
determined by specifying significant appliances (e.g.
activity “breakfast” often contains appliance “toaster”
and “kettle”). But other activities that are not previ-
ously known or are very individual turn out to be dif-
ficult to detect (e.g. “afternoon nap”). The presented
approach is able to recognize such activities in an un-
supervised kind of way. In future works, we plan to
investigate, if the number of days with daily activi-
ties can be increased by recognizing larger transpo-
sitions of elements in sequences instead of only ad-
jacent transpositions. Furthermore, it will be inves-
tigated, how stand-alone running appliances, e.g., re-
frigerators, can be detected automatically.
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