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Abstract: Fisher proposed a linear discriminant function (LDF) based on the maximization of the variance ratio. If 
data satisfies Fisher’s assumption, the same LDF is easily derived from a variance-covariance matrix. When 
the variance-covariance matrices of two classes are not the same, a quadratic discriminant function (QDF) 
can be used. These discriminant functions have three problems. First, none of them can correctly 
discriminate between xi on the discriminant hyperplane (the unresolved problem of discriminant analysis). 
Second, LDF and QDF cannot always recognize linear separable data, and the number of misclassifications 
(NM) made by these functions is usually higher than that of logistic regression. Third, these functions are 
not obtained if the value of some independent variable is constant, because the inverse matrix cannot be 
calculated. These facts mean that LDF and QDF should not be used for important discriminations. On the 
contrary, a revised Optimal Linear Discriminant Function by Integer Programming (Revised IP-OLDF) 
based on the Minimum NM (MNM) criterion resolves these problems completely. In addition, the mean 
error rate of Revised IP-OLDF is often less than those of LDF, logistic regression, and Support Vector 
Machines (SVM) under 100-fold cross-validation. 

1 INTRODUCTION 

Fisher (1936) described the linear discriminant 
function (LDF), and founded discriminant theory. 
Following this, the quadratic discriminant function 
(QDF) and multi-class discrimination using 
Mahalanobis distance were proposed. These 
functions are based on variance-covariance matrices, 
and are easily implemented in statistical software 
packages. They can be used in many applications, 
such as medical diagnosis, pattern recognition, 
genome discrimination, and rating real estate and 
bonds. However, real data rarely satisfy Fisher’s 
assumptions. Therefore, it is well known that logistic 
regression is better than LDF and QDF, because 
logistic regression does not assume a specific 
theoretical distribution, such as a normal 
distribution. The discriminant rule is very simple: If 
yi*f (xi) > 0, xi is classified to class1/class2 
correctly. If yi*f(xi) < 0, xi is misclassified. There are 
three serious problems hidden in this simplistic 
scenario. 

1) Problem 1. We cannot properly discriminate 
between cases where xi lies on the discriminant 

hyperplane (f(xi) = 0). This unresolved problem has 
been ignored until now. The proposed Revised IP-
OLDF is able to treat this problem appropriately. 
Indeed, except for Revised IP-OLDF, no functions 
can correctly count the NM. These functions should 
count the number of cases where f(xi) = 0, and 
display this alongside the NM in the output.  
 

2) Problem 2. LDF and QDF cannot recognize 
linear separable data (where the Minimum NM 
(MNM) = 0). Therefore, these functions should not 
be used in pattern recognition, medical diagnosis, 
genome diagnosis, etc. This fact was first found 
when IP-OLDF was applied to Swiss bank note data 
(Flury and Rieduyl, 1988). In this paper, the 
determination of pass/fail in exams is used because 
it is trivially linear-separable. We show that, in many 
cases, the NMs of LDF and QDF are not zero. Next, 
100 re-samples of these data are generated, and the 
mean error rates are obtained by 100-fold cross-
validation. The mean error rates of LDF are 6.23% 
higher than that of Revised IP-OLDF in the 
validation samples. 
3) Problem 3. If the variance-covariance matrix is 
singular, LDF and QDF cannot be calculated 
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because the inverse matrices do not exist. The LDF 
and QDF of JMP (Sall, Creighton & Lehman, 2004) 
are solved by the generalized inverse matrix 
technique. In addition to this, RDA is used 
(Friedman, 1989) if QDF causes serious trouble with 
dirty data. However, RDA and QDF do not work 
properly for the special case in which the values of 
independent variables belonging to one class are 
constant. If users can choose proper options for a 
modified RDF developed for this special case, it 
works better than QDF and LDF.  

In this research, two Optimal Linear 
Discriminant Functions (OLDF) based on the MNM 
criterion are proposed. The above three problems are 
solved by IP-OLDF and Revised IP-OLDF 
completely. IP-OLDF (Shinmura, 1998; 2000; 2004) 
reveals the following properties.  

Fact 1) Relation between Linear Discriminant 
Functions and NMs. IP-OLDF is defined on the 
data and discriminant coefficient spaces. Cases of xi 
correspond to linear hyperplanes in the p-
dimensional discriminant coefficient space that 
divide the space into two half-planes: the plus half-
plane (yi*f (xi) > 0) and minus half-plane (yi*f (xi) < 
0). Therefore, the coefficient space is divided into a 
finite convex polyhedron by linear hyperplanes. 
Some interior point bj on this space corresponds to 
the discriminant function fj(x) on the data space that 
discriminates some cases properly and misclassifies 
others. This means that each interior point bj has a 
unique NM. The “Optimal Convex Polyhedron” is 
defined as that with the minimal NM (i.e., the 
MNM). Revised IP-OLDF (Shinmura, 2007) can 
find the interior point of this polyhedron directly, 
and solves the unresolved problem (Problem 1) 
because there are no cases on the discriminant 
hyperplane (f(xi) = 0). If bj is on a vertex or edge of 
a convex polyhedron, however, the unresolved 
problem cannot be avoided because there are some 
cases on f(xi) = 0. 

Fact 2) Monotonous Decrease of MNM. Let 
MNMp be the MNM of p independent variables. Let 
MNM(p+1) be the MNM of the (p+1) independent 
variables formed by adding one variable to the 
original p independent variables. MNM decreases 
monotonously (MNMp >= NMMNM (p+1)), because 
the p-dimensional coefficient space is a subset of the 
(p+1)-dimensional coefficient space (Shinmura, 
2007). If MNMp = 0, all MNMs of discriminant 
functions including p independent variables are zero. 
Swiss bank note data consists of genuine and 
counterfeit bills with six variables. IP-OLDF finds 
that this data is linear-separable according to two 
independent variables (X4, X6). Therefore, 16 
models including these two variables have MNMs = 

0. Nevertheless, LDF and QDF cannot recognize 
that this data is linear-separable, presenting a serious 
problem.  

In this paper, we show that Revised IP-OLDF 
can resolve the above three problems, and is superior 
to LDF, logistic regression, and Soft-margin SVM 
(S-SVM) (Vapnik, 1995) under 100-fold cross-
validation (Shinmura, 2011b; 2013) of the pass/fail 
determinations of exams (Shinmura, 2011a) and 
their re-sampled data. 

2 DISCRIMINANT FUNCTIONS  

2.1 Statistical Discriminant Functions 

Fisher defined LDF to maximize the variance ratio 
(between/within classes) in equation (1). This can be 
solved by non-linear programming (NLP). 
 

MIN=ｂ’(xm1-xm2) (xm1-xm2)’b/b’ ∑b； (1)
 

If we accept Fisher’s assumption, the same LDF is 
obtained in equation (2). This equation defines LDF 
explicitly, whereas equation (1) defines LDF 
implicitly. Therefore, statistical software packages 
adopt this equation. Most statistical users 
misunderstand that discriminant analysis is the same 
as regression analysis. Discriminant analysis is 
independent of inferential statistics, because there 
are no standard errors of the discriminant 
coefficients and error rates. Therefore, the leave-
one-out (LOO) method (Lachenbruch and Mickey, 
1968) was proposed to choose the proper 
discriminant model.  
 

LDF: f(x)={x-(m1+m2)/2}’ ∑-1(m1-m2) (2) 
 

Most real data do not satisfy Fisher’s assumption. 
When the variance-covariance matrices of two 
classes are not the same (∑1≠∑2), the QDF defined 
in equation (3) can be used. The Mahalanobis 
distance (equation (4)) is used for the discrimination 
of multi-classes, and the Mahalanobis-Taguchi 
method is applied in quality control. 

 

QDF: f(x)=x’(∑2
-1- ∑1

-1) x/2 
+(m1’∑1

-1-m2’∑2
-1)x+c 

(3)
 

D=SQRT ((x-m)’ ∑-1(x-m)) (4)
 

These functions are applied in many areas, but 
cannot be calculated if some independent variables 
remain constant. There are three cases. First, some 
variables that belong in both classes are the same 
constant. Second, some variables that belong in both 
classes are different but constant. Third, some 
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variable that belongs to one class is constant. Most 
statistical software packages exclude all variables in 
these three cases. On the other hand, JMP enhances 
QDF using the generalized inverse matrix technique. 
This means that QDF can treat the first and second 
cases correctly, but cannot handle the third case 
properly. In medical diagnosis and pattern 
recognition, discriminant analysis is an important 
statistical method. Recently, the logistic regression 
in equation (5) has been used instead of LDF and 
QDF for two reasons. First, it is well known that the 
error rate of logistic regression is often less than 
those of LDF and QDF, because it is derived from 
real data instead of some normal distribution that is 
liberated from reality. Let ‘p’ be the probability of 
belonging to a group of diseases. If the value of 
some independent variable is increasing/decreasing, 
p increases from zero (normal group) to one (group 
of diseases). This representation is very useful in 
medical diagnosis, as well as for ratings in real 
estate and bonds. On the contrary, LDF assumes that 
cases near to the average of the diseases are 
representative cases of the diseases group. 
 

p=1/(1+exp(-f(x))) (5)

2.2 Before and After SVM 

Stam (1997) summarized Lp-norm research until 
1997, and answers the question of “Why have 
statisticians rarely used Lp-norm methods?” He 
gives four reasons: Communication, promotion and 
terminology; Software availability; Relative 
accuracy of Lp-norm classification methods: Ad hoc 
studies; and the Accuracy of Lp-norm classification 
methods: decision theoretic justification. While each 
of these reasons is true, they are not important. The 
most important reason is that there is no comparison 
between these models with statistical discriminant 
functions, because discriminant analysis was 
established by Fisher before mathematical 
programming (MP) approaches. There are two types 
of MP applications. The first is modeling by MP, 
such as for portfolio selection (Markowitz, 1959), 
and the second is catch-up modeling, such as for 
regression and discriminant analysis. Therefore, the 
latter type should be compared with preceding 
results. No statisticians use Lp-norm methods, 
because there is no research indicating that Lp-norm 
methods are superior to statistical methods. 

Liitschwager and Wang (1978) defined a model 
based on the MNM in equation (6). There are 
several mistakes, but the most important is the 
restriction on the discriminant coefficients. Only one 
discriminant coefficient should be fixed to -1/1. 

There is no need to fix the other (k-1) coefficients in 
the range [-1, 1].  
 

Min=f1g1M
-1Σ(i=1,…,M)Pi + f2g2N

-1Σ(j=1,…,N)Qj 
a1xi1+a2xi2+…+akxik ≦ b+CPi (i=1,2,…,M) 
a1yj1+a2yj2+…+akyjk ≧ b-CQi, (j=1,2,…,N) 
-1+2Dr ≦ar≦1-2Er, (r=1,2,…,k ) 
Σ(r=1,…k)Dr+Σ(r=1,…,k)Er=1 

f1，f2：risk．C : positive constant. 
g1，g2：prior probability． 
M, N：number of cases in both class． 
Pi，Qj：0/1 integers for each ei． 
b：discriminant hyper-plane． 
Dr，Er：0/1 integers 

(6)

 

Vapnik proposed three different SVM models. The 
hard-margin SVM (H-SVM) indicates the 
discrimination of linear separable data. We 
statisticians misunderstand that discrimination of 
linear separable data is very easy. In statistics, there 
was no technical term for linear separable data. 
However, the condition “MNM = 0” is the same as 
being linear-separable. Note that “NM = 0” does not 
imply the data is linear-separable. It is unfortunate 
that there has been no research into linear 
separability. This is defined to maximize the 
distance of the “Support Vector (SV)” in order to 
obtain “good generalization” by NLP, which is 
similar to “not overestimating the validation data in 
statistics.” H-SVM is redefined to minimize (1/ 
“distance of SV”) in equation (7). This is solved by 
quadratic programming (QP), which can only be 
used for linear separable data. This may be why 
investigation of linear separable data has been 
ignored. 

 

MIN = ||b||2/2 ; yi* (xi’b+ b0) >= 1- ei ; 

yi = 1 / -1 for xi ∊ class1/class2. 

xi : p-independent variables. 
b : p-discriminant coefficients. 

ei : 0/1 decision variable. 

(7)

 

Real data are rarely linear-separable. Therefore, S-
SVM has been defined (equation (8)). S-SVM 
permits certain cases that are not discriminated by 
SV (yi*f (xi) < 1). The second objective is to 
minimize the summation of distances of 
misclassified cases (Σei) from SV. These two objects 
are combined by defining some “penalty c.” The 
Markowitz portfolio model to minimize risk and 
maximize return is the same as S-SVM. However, 
the return is incorporated as a constraint, and the 
objective function minimizes risk. The decision 
maker chooses a solution on the efficient frontier. 
On the contrary, S-SVM does not have a rule to 
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determine c properly; nevertheless, it can be solved 
by an optimization solver. (Kernel-SVM is omitted 
from the research.) 
 

MIN = ||b||2/2 + c* Σei ; 
yi* ( xi’b+ b0) >= 1 - ei ; 

c : penalty c to combine two objectives 
(8)

2.3 IP-OLDF and Revised IP-OLDF 

Shinmura and Miyake (1979) developed the 
heuristic algorithm of OLDF based on the MNM 
criterion. This solves the five independent variable 
(5-variable) model of Cephalo Pelvic Disproportion 
(CDP) data that consisted of two groups having 19 
independent variables. SAS was introduced into 
Japan in 1978, and three technical reports about the 
generalized inverse matrix, the sweep operator 
(Goodnight, 1978), and SAS regression applications 
(Sall, 1981) are related to this research. LINDO was 
introduced to Japan in 1983. Several regression 
models are formulated by MP (Schrage, 1991), e.g., 
least-squares problems can be solved by QP, and 
LAV (Least Absolute Value) regression is solved by 
LP. Without a survey of previous research, the 
formulation of IP-OLDF (Shinmura, 1998) can be 
defined as in equation (9). This notation is defined 
on p-dimensional coefficient space, because the 
constant is fixed to 1. In pattern recognition, the 
constant is a free variable. In this case, the model is 
defined on (p+1)-coefficient space, and we cannot 
elicit the same deep knowledge as with IP-OLDF. 
This difference is very important. IP-OLDF is 
defined on both p-dimensional data and coefficient 
spaces. We can understand the relation between the 
NM and the discriminant function f(x) clearly. The 
linear equation Hi(b)=yi*(xi’b+1) = 0 divides p-
dimensional space into plus and minus half-planes 
(yi*(xi’b+1) > 0, yi*(xi’b+1) < 0). If bj is in the plus 
half-plane, fj(x)=yi*(bj’x+1) discriminates xi 
correctly, because fj(xi)= yi*(bj’ xi+1) = yi*(xi’bj+1) 
> 0. On the contrary, if bj is included in the minus 
half-plane, fj(x) cannot discriminate xi correctly, 
because fj(xi) = yi*(bj’ xi+1)= yi*(xi’bj+1) < 0. The n 
linear equations Hi(b) divide the coefficient space 
into a finite number of convex polyhedrons. Each 
interior point of a convex polyhedron has a unique 
NM that is equal to the number of minus half-planes. 
We define the “Optimal Convex Polyhedron” as 
that for which NM is equal to MNM. If xi is 
classified correctly, ei = 0 and yi*(xi’b+1) >= 0 in 
equation (9). If there are cases on the discriminant 
hyperplane, this causes the unresolved problem. If xi 
is misclassified, ei = 1 and yi*(xi’b+1)>= -10000. 
This means that IP-OLDF chooses the discriminant 

hyperplane yi*(xi’b+1) = 0 for correctly classified 
cases, and yi*(xi’b+1) = -10000 for misclassified 
cases according to a 0/1 decision variable. Therefore, 
when fj(x) = yi*(bj’ x+1) corresponds to an interior 
point, the objective function is equal to MNM. On 
the contrary, if fj(x) = yi*(bj’ x+1) corresponds to a 
vertex or edge of the convex polyhedron, the 
objective function may not be equal to MNM. This 
is because the vertex may consist of more than (p+1) 
linear equations Hi (b) = 0. In addition to this defect, 
IP-OLDF must be solved for the three cases where 
the constant is equal to 1, 0, -1, because we cannot 
determine the sign of yi in advance. Combinations of 
yi = 1/-1 for xi ∊ class1/class2 are decided by the 
data, not the analyst. 
 

MIN = Σei ; yi* (xi’b+1) >= - M* ei ; 
M: 10,000 (Big M constant). 

(9) 

 

The Revised IP-OLDF in equation (10) can find the 
true MNM, because it can directly find the interior 
point of the optimal convex polyhedron. This means 
there are no cases where yi*(xi’b+ b0) = 0. If xi is 
discriminated correctly, ei = 0 and yi*(xi’b+ b0) >= 1. 
If xi is misclassified, ei = 1 and yi*(xi’b+ b0) >= -
9999. It is expected that all misclassified cases will 
be extracted to alternative SVs, such as yi*(xi’b+ b0) 
= -9999. Therefore, the discriminant scores of 
misclassified cases become large and negative, and 
there are no cases where yi*(xi’b+ b0) = 0.  

 

MIN = Σei ;
yi* ( xi’b+ b0) >= 1 - M* ei ;  
b0: free decision variables 

(10) 

 

If ei is a non-negative real variable, we utilize 
Revised LP-OLDF, which is an L1-norm linear 
discriminant function. Its elapsed runtime is faster 
than that of Revised IP-OLDF. If we choose a large 
positive number as the penalty c of S-SVM, the 
result is almost the same as that given by Revised 
LP-OLDF, because the role of the first term of the 
objective value in equation (8) is ignored. Revised 
IPLP-OLDF (Shinmura, 2009) is a combined model 
of Revised LP-OLDF and Revised IP-OLDF. In the 
first step, Revised LP-OLDF is applied for all cases, 
and ei is fixed to 0 for cases that are discriminated 
correctly by Revised LP-OLDF. In the second step, 
Revised IP-OLDF is applied for cases that are 
misclassified in the first step. Therefore, Revised 
IPLP-OLDF can obtain an estimate of MNM faster 
than Revised IP-OLDF. 

2.4 Comparison Revised IP-OLDF with 
Revised IPLP-OLDF 

Revised IP-OLDF is compared with Revised IPLP-
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OLDF using four different datasets: Fisher’s iris data 
(Edgar, 1935), Swiss bank note data, CPD data, and 
the student data (Shinmura, 2007). These data are 
used as training samples. A total of 20,000 cases are 
re-sampled from these data sets and are used as 
validation samples. Revised IP-OLDF and Revised 
IPLP-OLDF are applied to both the training and 
validation samples using Optimization Modeling 
Software for Linear, Nonlinear, and Integer 
Programming (LINGO) Ver.10 (Schrage, 2006) 
which was released by LINDO Systems Inc. in 2008. 
Three comparisons were examined. First, we 
compared the elapsed runtime of Revised IP-OLDF 
to Revised IPLP-OLDF for the training and 
validation samples. Second, we compared MNMs of 
Revised IP-OLDF to NMs of Revised IPLP-OLDF 
for the training samples. Third, we compared NMs 
of Revised IP-OLDF to those of Revised IPLP-
OLDF for the validation samples. 

Iris data consisted of 100 cases with four 
independent variables. The object variable consisted 
of two species: 50 versicolor and 50 virginica. All 
combinations of independent variables (15 = 24-1) 
were investigated. This data set is very famous 
evaluation data in discriminant analysis as it satisfies 
Fisher’s assumption. The elapsed runtimes of 
Revised IP-OLDF and Revised IPLP-OLDF of the 
15 models were 446 seconds and 30 seconds, 
respectively; hence, Revised IPLP-OLDF was 
approximately 15 times faster than Revised IP-
OLDF. The NMs for Revised IPLP-OLDF equaled 
the MNMs of Revised IP-OLDF in the training 
sample. All absolute values of the difference of NMs 
of both functions in the validation sample were less 
than or equal to 0.02%.  

The Swiss bank note data consisted of two kinds 
of bills: 100 genuine and 100 counterfeit bills. There 
were six independent variables: X1 was the length of 
the bill (mm); X2 and X3 were the width of the left 
and right edges (mm), respectively; X4 and X5 were 
the bottom and top margin widths (mm), 
respectively; X6 was length of the image diagonal 
(mm). A total of 63 (=26-1) models were 
investigated. According to Shinmura (2007), of the 
63 total models, 16 of them including two variables 
(X4, X6) have MNMs of zero; thus, they are linearly 
separable. The 47 models that remain are not 
linearly separable. This data is adequate whether or 
not linear discriminant functions can discriminate 
linearly separable data correctly. The elapsed 
runtimes of both functions were 133,399 seconds 
and 2,688 seconds, respectively. Revised IPLP-
OLDF was approximately 50 times faster than 
Revised IP-OLDF. The NMs of Revised IPLP-

OLDF was equal to the MNM of Revised IP-OLDF 
in the training sample. Overall, the absolute values 
of the difference of NMs for the validation samples 
were less than 2% for 25 models and greater than 
2% for the remaining 38 models. 

CPD data consisted of two groups: 180 pregnant 
women whose babies were born by natural delivery 
and 60 pregnant women whose babies were born by 
Caesarean section. There were 19 independent 
variables: X1 was the pregnant woman’s age; X2 
was the number of deliveries; X3 was the number of 
the sacrum; X4 was the anteroposterior distance at 
the pelvic inlet; X5 was the anteroposterior distance 
at the wide pelvis; X6 was the anteroposterior 
distance at the narrow pelvis; X7 was the shortest 
anteroposterior distance; X8 was the fetal biparietal 
diameter, and X9 was X7-X8 (small normal random 
noise added); X10 was the anteroposterior distance 
at the pelvic inlet; X11 was the biparietal diameter at 
the pelvic inlet; X12 was X13-X14 (small normal 
random noise added); X13 was the area at the pelvic 
inlet; X14 was the area of the fetal head; X15 was 
the area at the bottom length of the uterus; X16 was 
the abdominal circumference; X17 was the external 
conjugate; X18 was the intertrochanteric diameter, 
and X19 was the lateral conjugate. Because there are 
(219-1) models by all combinations of independent 
variables, only 40 models were selected using the 
forward and backward methods. For the 16-variable 
model, three variables (X4, X7, X14) were dropped 
due to multicollinearity. The elapsed runtimes of 
both functions were 38,170 seconds and 380 seconds, 
respectively. Revised IPLP-OLDF was 
approximately 100 times faster than Revised IP-
OLDF; this large difference in elapsed runtime may 
be due to multicollinearity since Revised IP-OLDF 
requires a long time to check the convergence. The 
NMs of Revised IPLP-OLDF is equal to the MNMs. 
For the validation samples, the absolute values of the 
difference of NMs were less than 2% for 28 models 
and greater than 2% for the remaining 12 models. 

The student data consisted of two groups: 25 
students who pass the exam and 15 students who 
fail. There were five independent variables: X1 was 
the hours of study per day; X2 was spending money 
per month; X3 was number of days drinking per 
week; X4 was sex and X5 was smoking. The elapsed 
runtimes of both functions were 20 seconds and 40 
seconds, respectively. Because all of the variables 
are integers and many values overlapped, Revised 
IPLP-OLDF was slower than Revised IP-OLDF. For 
the training samples, NMs were the same as MNMs. 
For the validation samples, the absolute values of the 
difference were less than 2% for 13 models and 
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greater than 2% for 18 models. If IP-OLDF 
discriminated this data by two variables (X1, X2), 
we had the following linear discriminate function: 
f(X1,X2)=X2-5. There were four pass students 
(X1=3,4,6,9) and four fail students (X1=2,2,3,5) on 
the discriminant hyper plane (X2=5). The minimum 
NM of IP-OLDF was three; however, the true 
MNMs of Revised IP-OLDF was five. LINGO 
Ver.14 (K-Best Option) reveals there are three 
optimal linear discriminant functions in 2013.  

2.5 Comparison Revised IPLP-OLDF 
with LDF and Logistic Regression 

In addition to the above results, the NMs of 135 
Revised IPLP-OLDF models were compared to 135 
NMs of LDF and logistic regression by 100-fold 
cross-validation in Table 1. One hundred re-
sampling samples were generated from four data 
sets. The NMs of Revised IPLP-OLDF were 
compared to those of LDF and logistic regression by 
100-fold cross-validations. Revised IPLP-OLDF was 
coded using LINGO Ver.10. The LDF and logistic 
regression were supported by the JMP division of 
SAS Institute Inc. Japan. All possible models of Iris 
(15 models), Student (31 models), and Swiss bank 
note (63 models) data were computed. Since there 
were (219-1) models of CPD data, only 26 models 
were selected using the forward and backward 
stepwise methods. At first, 100 discriminant 
functions and NMs were computed for 135 different 
models by 100 training samples. Mean error rates 
were also computed. Next, the 100 discriminant 
functions were applied to the validation samples and 
mean error rates were computed for the validation 
samples. Finally, four differences (mean error rates 
of LDF/Logistic regression – those of Revised IPLP-
OLDF) were computed as shown in Table 1. 

Table 1: Comparison of mean of error rates. 

 LDF - IPLP Logistic - IPLP 
135 

models 
Trai. Val.(15) Trai. (3) Val.(33) 
Min Min Min  Min 

Iris 0.55 -0.6(2) 0.59 -0.84(2) 
Bank 0 -0.33(10) 0 -0.3(24) 

Student 1.46 -1.29(3) -2.12 (3) -2.89(7) 
CPD 3.05 2.21 0.13 0.29 
 
Minimum values of 135 different models of 

(LDF – IPLP) in the training samples were over 0%. 
This means that 135 mean error rates of LDF are 
higher than those of Revised IPLP-OLDF in the 
training samples. In the validation samples, 
minimum values of two models of Iris data, ten 
models of Bank data and three models of the student 

data were less than zero. Only 15 models of LDF 
were better than Revised IPLP-OLDF in the 
validation samples. Minimum values of (Logistic – 
IPLP) tell us that only three and 33 models of 
logistic regression were better than Revised IPLP-
OLDF for the training and validation samples, 
respectively.  

3 PASS/FAIL DETERMINATION 

In this research, we discuss Problem 2 and Problem 
3 using linear separable data. It is difficult to obtain 
linear separable data, but the pass/fail determination 
of exam scores makes good research data, because it 
can be obtained easily, and we can find a trivial 
discriminant function. In future research, we plan to 
evaluate the quality of exams and student ability 
each year.  

My theoretical research starts from 1997 and 
ends in 2009 (Shinmura, 2010). My applied research 
began in 2010. I negotiated with the National Center 
for University Entrance Examinations (NCUEE), 
and borrowed research data consisting of 105 exams 
in 14 subjects over three years. I finished analyzing 
the data at the end of 2010, and obtained 630 error 
rates for LDF, QDF, and Revised IP-OLDF. 
However, NCUEE have requested me not to present 
the results on March 2011. Therefore, I explain new 
research results using my statistical exam results. 
The reason for the special case of QDF and RDA is 
found at the end of 2012. My applied research 
concluded in 2012. 

3.1 Details of Lectures and Exams 

The course consists of one 90 min lecture per week 
for 15 weeks. In 2011, the course only ran for 11 
weeks because of power shortages in Tokyo caused 
by the Fukushima nuclear accident. Approximately 
130 students, mainly freshmen, attended the lectures. 
Midterm and final exams consisted of 100 questions 
with 10 choices. Pass/fail determinations were given 
by two discriminations using 100 item scores, and 
four testlet scores as independent variables. Table 2 
shows the four testlet contents and scores. If the pass 
mark is 50 points, we can easily obtain a trivial 
discriminant function (f = T1 + T2 + T3 + T4 – 50). 
If f >= 0 or f < 0, the student passes or fails the exam, 
respectively. In this case, students on the 
discriminant hyperplane pass the exam, because 
their score is exactly 50. This indicates that there is 
no unresolved problem because the discriminant 
rule is decided by independent variables. 
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Table 2: Contents and scores of four testlet. 

 Midterm Exam Final Exam 
T1 Elementary Statics 29 Calculation 26 
T2 Calculation 12 Corr. & Reg. 30 
T3 Normal Distribution 19 Cross Tabu. 21 
T4 JMP 40 JMP 23 

 
Table 3 shows a summary of the exams. We use 

three levels of 10%, 50%, and 90% as pass marks. 
The true pass mark is 10%, because this lecture is a 
compulsory subject. Therefore, we can evaluate 
NMs of LDF, QDF, logistic regression, and Revised 
IP-OLDF by 18 pass/fail determinations. It is 
interesting that R2 of the simple regression (final 
exam scores are predicted by midterm exams scores) 
and the correlation between the two variables were 
very high in 2011 despite the course running for 
only 11 weeks. 

Table 3: Results over three years. 

  2010 2011 2012 
 
 
Mid. 
Exam 

0% 31 25 21 
10% 48 42 37 
50% 66 61 63 

90% 82 79 78 
100% 93 88 88 
Mean 65.1 56.1 58.8 

 
 
Final 
Exam 

0% 22 26 20 
10% 40 43 41 
50% 60 60 58 
90% 82 81 81 

100% 91 99 95 
Mean 59.3 57.1 58.8 

 R2 / r 0.29/0.54 0.49/0.7 0.26/0.51 

3.2 Discrimination by Four Testlets 

Table 4 shows the discrimination of four testlet 
scores as independent variables for a 10% level of 
the midterm exams. ‘P’ denotes the number of 
independent variables selected by the forward 
stepwise method. In 2010, T4, T2, T1, and T3 are 
entered in the model selected by the forward 
stepwise method. The MNM of Revised IP-OLDF 
and NM of logistic regression are zero in the full 
model, which means the data is linear-separable in 
four variables. NMs of LDF and QDF are 9 and 2. 
This means LDF and QDF cannot recognize linear 
separability. In 2011, Revised IP-OLDF and logistic 
regression can recognize that the 3-variable model 
(T2, T4, T1) is linear-separable. In 2012, the 2-
variable model (T4, T2) is linear-separable. T4 and 
T2 contain easy questions, and T1 and T3 consist of 
difficult questions for fail group students. This 
suggests that pass/fail determination using Revised 
IP-OLDF can elicit the quality of the test problems 

and understanding of students in the near future. It is 
concluded that LDF and QDF cannot recognize 
linear separability from these 18 results. 

Table 4: NMs of four discriminant functions by forward 
stepwise in midterm exams at the 10% level. 

Year P Var. MNM Logi. LDF QDF 

2010 

1 T4 6 9 11 11 
2 T2 2 6 11 9 
3 T1 1 3 8 5 
4 T3 0 0 9 2 

2011 

1 T2 9 17 15 15 
2 T4 4 9 11 9 
3 T1 0 0 9 10 
4 T3 0 0 9 11 

2012 

1 T4 4 8 14 12 
2 T2 0 0 11 9 
3 T1 0 0 12 8 
4 T3 0 0 12 1 

 
Table 5 shows a summary of the 18 error rates 

derived from the NMs of LDF and QDF for the 
linear separable model shown in Table 4. Ranges of 
the 18 error rates of LDF and QDF are [2.2%, 
16.7%] and [0.8%, 10.8%], respectively. Error rates 
of QDF are lower than those of LDF. At the 10% 
level, the six error rates of LDF and QDF lie in the 
ranges [4.2%, 11.9%] and [0.8%, 8.5%], 
respectively. At the 50% level, they are [2.2%, 
4.9%] and [2.3%, 5.0%], respectively, and at the 
90% level, they are [3.3%, 16.7%] and [4.5%, 
10.8%], respectively. Clearly, the range at the 50% 
level is less than for the 10% and 90% levels. 
Miyake & Shinmura (1976) followed Fisher’s 
assumption, and surveyed the relation between 
population and sample error rates. One of their 
results suggests that the sample error rates of 
balanced sample sizes are close to the population 
error rates. The above results may confirm this.  

These results suggest a serious drawback of LDF 
and QDF based on variance-covariance matrices. 
We can no longer trust the error rates of LDF and 
QDF. Until now, this fact has not been discussed, 
because there is little research using linear separable 
data. From this point on, we had best evaluate 
discriminant functions using linear separable data, 
because the results are very clear. Heavy users of 
discriminant analysis in medical and economics use 
logistic regression instead of LDF and QDF, because 
they know that the error rates of logistic regression 
are less than those of LDF and QDF. On the contrary, 
there are no stepwise model selection methods or all 
combinations of independent variables (Goodnight, 
1978) in logistic regression and Revised IP-OLDF. 
In genome discrimination, researchers try to estimate 
variance-covariance matrices using small sample 
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sizes and large numbers of independent variables. 
These efforts may be meaningless and lead to 
incorrect results. 

Table 5: Summary of error rates of LDF and QDF. 

  10% 50% 90% 
  LDF QDF LDF QDF LDF QDF 

Mid. 
10 7.5 1.7 2.5 5.0 16.7 9.2 
11 7.0 8.5 2.2 2.3 10.5 6.7 
12 9.9 0.8 4.9 4.8 13.6 7.1 

Final 
10 4.2 1.7 3.3 4.2 3.3 10.8 
11 11.9 2.9 2.9 3.6 3.6 8.6 
12 8.7 2.3 2.3 2.3 13.0 4.5 

3.3 Discrimination by 100 Item Scores 

Table 6 shows the pass/fail determination using 100 
item scores as independent variables at the 10% 
level for midterm exams in 2012. ‘P’ denotes the 
number of independent variables selected by the 
forward stepwise method. The MNM of the 6-
variable model is zero, as is the NM given by 
logistic regression. In 1-variable and 2-variable 
models, NMs of QDF were 14 and 114, respectively. 
This is caused by the following special case. The 
values of X15 for all students in the fail group are 
constant, namely 0. On the contrary, scores of 
students in the pass group are 1/0. In the case that 
the value of some variable (X15) of one class (fail 
group) is constant and the value in the other group 
(pass group) varies, QDF misclassifies all 114 
students of the second pass group into the first fail 
group.  

Inverse matrices of LDF and QDF cannot be 
calculated if some variable is constant in equations 
(2) and (3). Certain statistical software packages 
exclude these variables from the discriminant 
analysis. On the contrary, JMP enhances the LDF 
and QDF algorithms using the generalized inverse 
matrix algorithm, and also offers RDA. If QDF 
detects irregular data such as outliers, JMP 
recommends switching from QDF to RDF. However, 
neither function can treat the special case correctly. 
In this case, both functions misclassify cases of the 
second class into the first class. This may be caused 
by the assumption that cases vary, and the successful 
statistical experience of adjusting the diagonal 
elements of a matrix brings many outcomes. On the 
contrary, if we add a small noise term, such as N(0, 
0.0001), to the constant value, we can resolve this 
problem. Column (*) shows the modified NMs of 
QDF. If users can choose properly the modified 
RDA option supported by this research, we would 
expect to obtain better results than LDF, QDF, and 
RDF. This is a topic for future work. 

Table 6: NMs at the 10% level of midterm exams in 2012. 

P Var. MNM Logi. LDF QDF (*) 
1 X85 10 14 22 14 14 
2 X15 6 6 22 114 28 
3 X68 5 6 13 114 28 
4 X47 3 8 13 114 28 
5 X7 1 1 7 114 9 
6 X32 0 0 7 114 3 
7 X20 0 0 4 114 0 

 

Table 7 shows NMs at the 10% level of midterm 
and final exams over three years. The first row 
shows the results from the 6-variable model in 2010. 
The MNM of Revised IP-OLDF and NM of logistic 
model are zero. NMs of LDF and QDF are 2 and 1, 
respectively. The second row gives the results for 
the 96-variable model, because all students can 
answer four items correctly, and these variables are 
removed from the full model. The MNM of Revised 
IP-OLDF and NMs of logistic regression and LDF 
are zero. NM of QDF is 109, because all pass group 
students are misclassified. The third and fourth rows 
give the midterm exam results in 2011. The third 
row shows that the 12-variable model is linear-
separable, although the NM of QDF is 107. The fifth 
row in 2012 shows that the 6-variable model is 
linear-separable, and NM of QDF is 114. It is 
concluded that QDF misclassifies all pass group 
students into the fail group at the 10% level. 

Table 7: NMs over three years (10% level). 

 Year P MNM Logi. LDF QDF 

Midterm 
Exam 

2010 
6 0 0 2 1 
96 0 0 0 109 

2011 
12 0 0 2 107 
98 0 0 0 107 

2012 
6 0 0 7 114 

100 0 0 0 114 

Final 
Exams 

2010 
12 0 0 5 111 
99 0 0 0 111 

2011 
8 0 0 4 4 
97 0 0 0 110 

2012 
10 0 0 3 115 
97 0 0 0 115 

 
Table 8 shows the NMs at the 90% level over 

three years. The NMs of logistic regression are not 
zero for three linear-separable models. This shows 
that logistic regression is not immune to the 
unresolved problem. In addition to this result, we 
know that all pass group students of QDF are 
misclassified into fail group. There are no special 
cases at the 50% levels for the midterm and final 
exams, because about half of the students belong to 
the pass/fail group can/cannot answer the 100 
questions. On the other hand, there are special cases 
at the 10% and 90% levels, because about 10% of 
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the fail group cannot answer, and about 10% 
students of pass group can answer some items. 

Table 8: NMs of three years (90% level). 

 Year P MNM Logi LDF QDF 
 
 

Mid.  
Exams 

2010  13 0 1 4 13 
 96 0 0 0 13 

2011  9 0 0 6 9 
 98 0 0 0 9 

2012 15 0 1 1 12 
100 0 0 0 12 

 
 
Final 
Exams 

2010 11 0 1 6 13 
99  0  0  4  13 

2011 8 0 0 2 12 
97 0 0 0 12 

2012 9 0 0 6 12 
97 0 0 0 12 

3.4 Discrimination of 44 Japanese Cars 

The special case above is more easily explained by 
the discrimination of 44 Japanese cars. Let us 
consider the discrimination of 29 regular cars and 15 
small cars. Small cars have a special Japanese 
specification. They are sold as second cars or to 
women, because they are cost efficient. The 
emissions and capacity of small cars are restricted. 
The emission rate of small and regular cars ranges 
from [0.657, 0.658] and [0.996, 3.456], respectively. 
The capacity (number of seats) of small and regular 
cars are 4 and [5, 8], respectively. Table 9 shows the 
forward stepwise result. At first, “emission” enters 
the model because the t-value is high. The MNM 
and NMs of QDF and logistic regression are zero. 
LDF cannot recognize linear separability. Next, 
‘price’ enters the 2-variable model, although the t-
value of ‘price’ is less than that of ‘capacity’. The 
MNM and NMs of QDF and logistic regression are 
zero. LDF still cannot recognize linear separability. 
In the third step, QDF misclassifies all 29 regular 
cars as small cars after “capacity” is included in the 
3-variable model. 

Table 9: Discrimination of small and regular cars. 

P Var. t LDF QDF MNM/Logi 
1 Emission 11.37 2 0 0 
2 Price 5.42 1 0 0 
3 Capacity 8.93 1 29 0 
4 CO2 4.27 1 29 0 
5 Fuel -4.00 0 29 0 
6 Sales -0.82 0 29 0 

 

This is because the capacity of small cars is fixed 
to four persons. It is very important that only QDF 
and RDA are adversely affected by this special case. 
LDF and the t-test are not affected, because these are 
computed from the pooled variance of two classes. 

4 K-FOLD CROSS-VALIDATION 

Usually, the LOO method is used for model 
selection with small sample sizes. In this research, 
100-fold cross-validation is proposed, as it is more 
powerful than the LOO method.  

4.1 Hundred-fold Cross Validation 

In regression analysis, we benefit from inferential 
statistics, because the standard error (SE) of 
regression coefficients, and model selection statistics 
such as AIC and BIC, are known a priori. On the 
other hand, there is no SE of discriminant 
coefficients and model selection statistics in 
discriminant analysis. Therefore, users of 
discriminant analysis and SVMs often use the LOO 
method. Let the sample size be n. One case is used 
for validation, and the other (n-1) cases are used as 
training samples. We evaluate n sets of training and 
validation samples. 

If we have a large sample size, we can use k-fold 
cross-validation. The sample is divided into k 
subsamples. We can evaluate k combinations of the 
training and validation samples. On the other hand, 
bootstrap or re-sampling methods can be used with 
small sample sizes. In this research, large sample 
sets are generated by re-sampling, and 100-fold 
cross-validation is proposed using these re-sampled 
data. In this research, 100-fold cross-validation for 
small sample sizes is applied as follows: 1) We copy 
the data from midterm exams in 2012 100 times 
using JMP. 2) We add a uniform random number as 
a new variable, sort the data in ascending order, and 
divide into 100 subsets. 3) We evaluate four 
functions by 100-fold cross-validation using these 
100 subsets. 

Revised IP-OLDF and S-SVM are analyzed by 
LINGO (Appendix), developed with the support of 
LINDO Systems Inc. Logistic regression and LDF 
are analyzed by JMP, developed with the support of 
the JMP division of SAS Japan. 

There is merit in using 100-fold cross-validation 
because we can easily calculate the confidence 
interval of the discriminant coefficients and NMs (or 
error rates). The LOO method can be used for model 
selection, but cannot obtain the confidence interval. 
These differences are quite important for analysis of 
small samples. We now analyze four testlet scores in 
2012. 

4.2 LOO and Cross-validation 

Table 10 shows the results of the LOO method and 
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NMs in the original data. ‘Var.’ shows the suffix of 
four testlet scores named ‘T’. Only 11 models were 
showed, because four 1-variable models were 
omitted from the table. The MNM of the 2-variable 
model (T2, T4) in No. 6 is zero, as are those of the 
4-variable model (T1-T4) in No.1, and the two 3-
variable models of (T1, T2, T4) in No. 2 and (T2, T3, 
T4) in No. 3. The NMs of logistic regression and 
SVM4 (c = 104) are zero in these four models, but 
NMs of SVM1 (c = 101) are 2 and 3 in No.2 and 
No.6, respectively. It is often observed that S-SVM 
cannot recognize linear separablity when the penalty 
c has a small value. The LOO method recommends 
models in No.3 and No.6. 

Table 10: LOO and NMs in original test data. 

No Var. LOO LDF Logi MNM SVM4 SVM1 

1 1-4 14 12 0 0 0 0 

2 1,2,4 13 12 0 0 0 2 

3 2,3,4 11 11 0 0 0 0 

4 1,3,4 15 15 2 2 3 3 

5 1,2,3 16 16 6 4 6 6 

6 2,4 11 11 0 0 0 3 

7 1,4 16 16 6 3 6 6 

8 3,4 14 13 3 3 4 4 

9 1,2 18 17 12 7 7 7 

10 2,3 16 11 11 6 11 11 

11 1,3 22 21 15 7 10 10 

 

Table 11 shows the results given by Revised IP-
OLDF (MNM), SVM4, LDF, and logistic regression 
(Logi.). ‘MEAN1’ denotes the mean error rate in the 
training sample. Revised IP-OLDF and logistic 
regression can recognize linear separability for four 
models. For SVM4, only model No. 1 has an NM of 
zero. The mean error rates of all LDF models are 
over 9.48%. ‘MEAN2’ denotes the mean error rate 
in the validation sample. Only two models (No.2 and 
No. 6) of Revised IP-OLDF have NMs of zero. The 
NMs of other functions are greater than zero, and 
those of LDF are over 9.91%. We can conclude that 
LDF is the worst of these four functions. Most 
statisticians believe that NMs of Revised IP-OLDF 
is less suitable for validation samples, because it 
over fits for the training samples.  On the other hand, 
LDF does not lead to overestimation, because it 
assumes a normal distribution. The above results 
show that the presumption of ‘overestimation’ is 
wrong. We may conclude that real data does not 
obey Fisher’s assumption. To build a theory based 
on an incorrect assumption will lead to incorrect 
results. 

‘Diff.’ is the difference between MEAN2 and 
MEAN1. We think the small absolute value of ‘Diff.’ 
implies there is no overestimation. 

Table11: Comparison of four functions. 

MNM MEAN1 MEAN2 Diff.   

1 0 0.07 0.07   

2 0 0 0   

3 0 0.03 0.03   

4 0.79 2.44 1.65   

5 2.25 4.64 2.39   

6 0 0 0   

7 1.78 3.40 1.62   

8 2.28 3.14 0.85   

9 4.88 6.63 1.75   

10 4.52 6.42 1.90   

11 4.94 7.21 2.27   

SVM4 MEAN1 MEAN2 Diff. Diff1 Diff2 

1 0 0.81 0.81 0 0.74 

2 0.73 1.62 0.90 0.73 1.62 

3 0.13 0.96 0.83 0.13 0.93 

4 1.65 3.12 1.47 0.86 0.68 

5 4.35 5.99 1.65 2.10 1.35 

6 0.77 1.70 0.94 0.77 1.70 

7 2.97 4.24 1.27 1.19 0.84 

8 3.06 3.73 0.66 0.78 0.59 

9 6.45 7.45 1 1.57 0.82 

10 6.85 7.78 0.93 2.33 1.36 

11 6.73 8.02 1.30 1.79 0.81 

LDF MEAN1 MEAN2 Diff. Diff1 Diff2 

1 9.64 10.54 0.90 9.64 10.47 

2 9.89 10.55 0.66 9.89 10.55 

3 9.48 10.09 0.61 9.48 10.06 

4 11.44 12.04 0.6 10.65 9.60 

5 12.36 12.68 0.32 10.11 8.04 

6 9.54 9.91 0.37 9.54 9.91 

7 11.77 12.16 0.40 9.99 8.76 

8 10.81 11.03 0.22 8.53 7.89 

9 13.19 13.46 0.28 8.31 6.83 

10 12.49 12.65 0.16 7.97 6.23 

11 16.28 16.48 0.20 11.34 9.27 

Logi MEAN1 MEAN2 Diff. Diff1 Diff2 

1 0 0.77 0.77 0 0.7 

2 0 1.09 1.09 0 1.09 

3 0 0.85 0.85 0 0.82 

4 1.59 2.83 1.24 0.80 0.39 

5 4.12 5.46 1.34 1.87 0.82 

6 0 0.91 0.91 0 0.91 

7 3.25 4.26 1.01 1.47 0.86 

8 3.68 4.03 0.35 1.40 0.89 

9 6.94 7.78 0.84 2.06 1.15 

10 7.65 8.04 0.38 3.13 1.62 

11 7.05 7.82 0.78 2.11 0.61 

 
In this sense, LDF is better than the other 

functions, because all values are less than 0.16. 
However, only high values of the training samples 
lead to small values of ‘Diff.’ ‘Diff1’ denotes the 
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value of (MEAN1 of other functions - MEAN1 of 
Revised IP-OLDF) in the training samples, and 
‘Diff2’ is the value of (MEAN2 of other functions - 
MEAN2 of Revised IP-OLDF) in the validation 
samples. The maximum values of ‘Diff1’ given by 
SVM4 and logistic regression were 2.33 and 3.13, 
respectively, and the maximum values of ‘Diff2’ 
given by these functions were 1.7 and 1.62, 
respectively. The minimum values of ‘Diff1’ and 
‘Diff2’ given by LDF were greater than 7.97% and 
6.23%, respectively. It is concluded that LDF was 
not as good as Revised IP-OLDF, S-SVM, and 
logistic regression by 100-fold cross-validation. 

In 2014, these results are recalculated using 
LINGO Ver.14. The elapsed runtimes of Revised IP-
OLDF and S-SVM are 3 minutes 54 seconds and 2 
minutes 22 seconds, respectively. The elapsed 
runtimes of LDF and logistic regression by JMP are 
24 minutes and 21 minutes, respectively. 

5 CONCLUSIONS 

In this research, we have discussed three problems 
of discriminant analysis. Problem 1 is solved by 
Revised IP-OLDF, which looks for the interior 
points of the “Optimal Convex Polyhedron” 
directly. Problem 2 is theoretically solved by 
Revised IP-OLDF and H-SVM, but H-SVM can 
only be applied to linear separable model. Error rates 
of LDF and QDF are very high for linear separable 
data. This means that these functions should not be 
used for important discrimination tasks, such as 
medical diagnosis and genome discrimination. 
Problem 3 only concerns QDF and RDA. This 
problem was detected using a t-test after three years 
of investigation, and can be solved by adding a small 
noise term to variables. Now, JMP offers a modified 
RDA, and if we can find clear rules to choose proper 
parameters, it may be better than LDF and QDF.  

However, these conclusions are confirmed by the 
training samples. In many cases, statistical users 
have small sample sizes, and cannot evaluate the 
validation samples. Therefore, a k-fold cross-
validation method for small samples was proposed. 
These results confirm the above conclusion for the 
validation samples. Many discriminant functions are 
developed using various criteria after Warmack and 
Gonzalez (1973). Ibaraki and Muroga (1970) 
defined the same Revised IP-OLDF. The mission of 
discrimination should be based on the MNM 
criterion. Statisticians have tried to develop 
functions based on the MNM criterion, but this can 
now be achieved by Revised IP-OLDF using MIP. It 

is widely believed that Revised IP-OLDF leads to 
overestimations, but LDF is worse for validation 
samples. It is a realistic option for users to choose 
logistic regression if they do not use Revised IP-
OLDF or S-SVM. The evaluation of modified RDA 
is a topic for future work. 
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APPENDIX 

The important part of 100-fold cross-validation by 
Revised IP-OLDF for the iris data (p=4, n=100) is 
explained. “ ! Text strings ; ” is comment. 
 
MODEL: 
! SETS section defines one dimensional  “set_name 
/1..k/ : array_names; ” with k-elememts. SET P1 is 
1-dimensional set with 5 elements including 
constant, and the optimized  discriminant 
coefficients are stored in the array VAR. The 

discriminant scores of the training and validation 
samples are stored in the SCORE and SCORE2. IS 
is a two dimensional  array with (100, 5) elements 
defined by 1-dimensional  two sets of N and P1. The 
training and validation samples are stored on Excel 
and are input by “ IS, ES = @OLE(); in DATA 
section”. MS controls 11 different discriminant 
models. MB defines (11, 5) array named CHOICE 
that defines independent variables in 11 different 
models. ERR defines four (11,100) arrays such as 
IC, EC, IC_2, EC_2 that store NMs in the training 
and validation samples. ; 
SETS: 
P/1..4/:;  P1/1..5/: VAR; P2/1..6/:; 
N/1..100/: SCORE, E; N2/1..10000/: SCORE2; 
MS/1..11/ : ; G100/1..100/ :; MS100/1..1100/ : ;  

 D(N, P1): IS; D2(N2, P2): ES; 
 MB(MS,P1): CHOICE;  
 ERR(MS, G100): IC, EC, IC_2, EC_2; 
ENDSETS  
! DATA defines the values of penalty c and Big M, 
and  input the data of CHOICE, IS and ES from  
Excel by “ CHOICE, IS, ES =@OLE( ) function ”. ; 
DATA:  
 penalty=10000; bigm=10000; 
 CHOICE, IS, ES=@OLE( ); 
ENDDATA 
! Define Revised IP-OLDF or S-SVM in this section. 
“ @SUM(N(i): ” equals to ∑ . “ @FOR(N(i): ” 
defines 100 constraints and 100 binary integer e(i) 
by SET N(i). ; 
SUBMODEL RIP:  
 MIN=ER; ER=@SUM(N(i): E(i)); 

@FOR(N(i): @SUM(P1(j):IS(i,j)*VAR(j)* 
CHOICE(k,j)) >= 1-BIGM*E(i)); 

 @FOR(N(i): @BIN(E(i))); 
 @FOR(P1(j): @FREE(VARK(j)));  

 ENDSUBMODEL 
! CALC control optimization models 
( @SOLVE( ) ) by programming language using 
@WHILE loops. NMs in the training samples (IC, 
EC) and NMs in the validation samples (IC_2, 
EC_2) are output by “ @OLE( )=IC, EC, IC_2, 
EC_2; ”. K controls 11 models and F controls 100-
fold cross-validation. ; 
CALC:  
K=1; MSend=11;  
@WHILE( K #LE# MSend: F=1; 

 @WHILE( F #LE# 100 : …… 
 @SOLVE(RIP); …..; 
F=F+1;);  K=K+1); 

ENDCALC 
DATA:  
@OLE()=IC, EC, IC_2, EC_2; ENDDATA  
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