
A Bare-Hand Gesture Interaction System for Virtual Environments

Benjamı́n Hernández1 and Alejandro Flores2

1Computer Sciences Department, Barcelona Supercomputing Center, Barcelona, Spain
2R&D Department, Espora Estudio, Mexico City, Mexico

Keywords: Hand Gesture Recognition, Real Time, Hand Based Interaction, Virtual Environments, Depth Sensor.

Abstract: Hand-based gestures provide direct mappings of user actions to 3D UI tasks; they are becoming a more
attractive interaction alternative than keyboards, mice, controllers, among others. In this paper, we present
a fast algorithm for hand gesture recognition for interaction in virtual environments. The method applies
mathematical morphology operators (binarization and dilation) to acquire a clean segmented hand image from
a depth data stream on which a curvature-metric and K-means algorithm is applied to detect the fingertips,
then using fingertip and palm positions together with anthropomorphic metrics and a rule based system we
perform gesture recognition. In addition, the intermittence gesture spotting problem is reduced using a digital
integrator. Finally, a set of virtual environments were designed to demonstrate the performance, reliability and
feasibility of our method.

1 INTRODUCTION

As Sturman and Zeltzer stated, our primary physical
connection to the world is through our hands (Stur-
man and Zeltzer, 1994). Hand gestures enhance or
even substitute oral communication between people.
Using our hands as an input device provides a more
direct mapping of our actions to interaction tasks;
therefore, we can apply all our intellect to those tasks.
In this sense, commodity depth cameras have enabled
simpler ways of interaction known as natural user in-
terface (NUI). This interface is primarily based on
tracking and recognition of body motions and ges-
tures; however, hand based interaction remains an
open problem.

Hand based interaction has three main challenges:
hand detection, hand tracking and gesture recogni-
tion. Hand detection and tracking, intimately related,
consists in capturing the hand features (i.e. the palm,
fingers and/or fingertips) and position over time while
hand gesture recognition generates semantical infor-
mation from tracking. Seminal works based on the
use of glove technology (DeFanti and Sandin, 1977;
Zimmerman et al., 1987) offered a solution to the
hand tracking problem. However, wearing a glove
may be intrusive, in particular when users need to ma-
nipulate tools.

Vision based techniques using video cameras are
an unobtrusive alternative to glove technology; they

focus mainly on hand detection and tracking using so-
phisticated algorithms to overcome the limited optical
features of these devices. Commodity depth cameras
provide distance range information that can be used
to design computationally inexpensive algorithms.

Lightweight and robust algorithms for hand based
interaction are crucial for virtual environments. Com-
puter generated environments make intensive use of
complex algorithms for collision detection, lighting,
particle systems simulation, visualization, among oth-
ers. Rendering should maintain a steady refresh rate
of 33 ms while interaction response should take 0:1s
for the user to feel that the system is reacting instan-
taneously.

Contribution. Enabling computers to understand
the user’s actions is the main problem that hand de-
tection, tracking and gesture recognition address. In
addition, virtual environments require efficient ap-
proaches to this problem. Our contribution is a low-
latency and robust algorithm for bare-hand gesture
recognition and real time interaction in virtual envi-
ronments. The proposed algorithm makes use of a
depth camera (Microsoft Kinect) to generate semantic
information about the user hand gestures through five
stages: binarization, dilation, fingertip detection, ges-
ture recognition and filtering. We will show that our
algorithm performs faster (7.62 ms per frame) and it
is robust enough (86 % avg. gesture recognition rate)
when compared with current approaches using depth

464 Hernández B. and Flores A..
A Bare-Hand Gesture Interaction System for Virtual Environments.
DOI: 10.5220/0004695204640471
In Proceedings of the 9th International Conference on Computer Graphics Theory and Applications (GRAPP-2014), pages 464-471
ISBN: 978-989-758-002-4
Copyright c
 2014 SCITEPRESS (Science and Technology Publications, Lda.)

cameras. In addition, a set of virtual environments
were designed as a testbed for our approach.

2 RELATED WORK

Different hand tracking and gesture recognition sur-
veys (Sturman and Zeltzer, 1994; Garg et al., 2009;
Zabulis et al., 2009) have classified hand tracking and
recognition technologies based on particular features.
(Sturman and Zeltzer, 1994) classified hand track-
ing technology in two main groups: position tracking
(categorized in marker systems, silhouette analysis,
optical, magnetic and acoustic tracking systems) and
glove based input. (Garg et al., 2009) made emphasis
on “data-glove” and vision based approaches while
(Zabulis et al., 2009) presented an exhaustive review
of vision based techniques using ordinary video cam-
eras.

Seminal works on hand detection and tracking
based on depth information made use of two cameras
to recover a 27 degrees of freedom (DOF) of the hand
(Rehg and Kanade, 1993) or used multiple cameras
effectively in the context of 3D scene creation (Ut-
sumi, 1997). A recent work (Wang et al., 2011) pro-
posed a bimanual hand tracking system that provides
a 6-DOF control for 3D assembly. Multiple camera
systems require stereo matching, which imposes per-
formance constraints. However by the introduction of
depth cameras this process is simplified. In addition,
it conveys two advantages: first, 3D data acquisition
is in large part insensitive to illumination changes as
long as the environment does not contain light com-
ponents that interferes with the 3D sensor’s active il-
lumination (e.g. the infrared sunlight’s component);
second, segmentation is done with ease using the cap-
tured distance range information.

The ZCam, a time-of-flight camera designed by
3DV Systems (Iddan and Yahav, 2001) and one of the
first depth-image capture device, was used in (Liu and
Fujimura, 2004) for hand gesture recognition. They
defined a gesture space based on hand shape, loca-
tion and motion information. Hand shape analysis
was done using a dataset of hand patterns images; to
match a hand shape they used the chamfer distance
between the input image and this dataset. They also
performed hand trajectory analysis using the mini-
mum square error between the user’s performed tra-
jectory and templates in a curve dataset. An usabil-
ity problem with this technique arises when new ges-
tures are needed, a special recording session is re-
quired to capture their corresponding pattern images;
in this sense we opted for a specification of simple
rules, based on the detected fingers’ direction, finger-

tips and palm positions. Another potential problem
can arise when dataset increases its size since more
matching tests between the input gestures and stored
hand patterns images need to be performed resulting
in performance degradation, an important feature that
must be preserved in real-time virtual environment in-
teraction.

On the other hand, methods that use Kinect such
as (Iason Oikonomidis and Argyros, 2011; Oikono-
midis et al., 2011; Raheja et al., 2011; Frati and Prat-
tichizzo, 2011) are mainly focused on hand tracking.
In (Iason Oikonomidis and Argyros, 2011; Oikono-
midis et al., 2011) a 26-DOF hand tracking sys-
tem was described using particle swarm optimization
(PSO) to minimize the discrepancy between the ap-
pearance and 3D structure of hypothesized instances
of a hand model and actual hand observations. De-
spite the fact that these approaches are implemented
in a last generation GPU, they can unlikely be used
for real-time interaction in virtual environments since
performance is about 66ms (Iason Oikonomidis and
Argyros, 2011) and 50ms (Oikonomidis et al., 2011).
In (Raheja et al., 2011) a method for palm and fin-
ger tracking was presented that extensively uses an
already existent OpenNI module based on Bayesian
Object Localization. In (Frati and Prattichizzo, 2011)
was proposed the use of a haptic device, a Kinect sen-
sor and a heuristic hand tracker to simulate force feed-
back: according to the authors haptic devices worn by
the user does not affect tracking; however, wearing a
device to make tracking more robust can be avoided.
(Liang et al., 2012) proposed a method for fingertip
and palm tracking emphasising cases where correct
fingers’ position detection can be problematic such as
side-by-side fingers, bending fingers or nearby finger-
tips. They implemented a restricted geodesic shortest
path metric and a particle filter to track the fingertips
correctly while palm tracking was performed with a
Kalman filter.

Kinect has also been used for hand gesture recog-
nition. For example, in (Ren et al., 2011) is presented
a method for correct finger detection in cases where
fingers are too close to each other. Ren et al. used a
modified version of the Earth Mover’s Distance (Rub-
ner et al., 2000), called Finger-Earth Mover’s Dis-
tance, to penalize unmatched fingers in order to im-
prove gesture detection. In (Suau et al., 2011) a set-
up which uses Kinect and SR4000 time-of-flight cam-
era is presented. In this work, the position of the
user’s head is estimated with a depth-based template
matching and an adaptive search zone. Then, hands
are detected in a bounding box attached to a head’s
estimated position so that the user may move freely
in the scene. This method can perform basic gesture

A�Bare-Hand�Gesture�Interaction�System�for�Virtual�Environments

465

recognition based on the overall shape of the hands.
More complex gestures based on fingers are not feasi-
ble since they down sample the captured depth image
to achieve real-time performance.

Hand gesture interaction in virtual environments
requires constant evaluation of the motion and ges-
tures performed by the user, graphics and other multi
modal elements must be synchronized. Simulating
and visualizing large environments efficiently also re-
quire a significant use of assets that should be mini-
mized. Our method is designed to meet these require-
ments; we will show that its balance between perfor-
mance and accuracy makes it suitable for real-time
interaction. In addition, our method does not require
extra training sessions or additional training datasets,
maintaining memory requirements low.

3 METHOD

The input to our method is a video stream contain-
ing depth information of the user interacting with our
system. We begin by detecting the user’s raised hand
by using mathematical morphology operations (Sec.
3.1). Once the hand has been segmented, and all re-
maining depth information has been discarded, we de-
tect the visible fingertips based on curvature measures
and k-mean clustering (Sec. 3.2). Gesture detection
uses fingertip information, and other anthropomor-
phic metrics to recognize different gestures. Once
a given gesture has been recognized, the algorithm
records the general trajectory of such gesture to get
additional semantic information (Sec. 3.3). Finally,
we apply a digital integrator (Sec. 3.4) to reduce the
intermittent gesture spotting problem occurring due
to the dynamically variation in shape and for a single
gesture.

3.1 Binarization and Dilation

Common camera systems usually perform hand de-
tection based on color, shape, pixel appearance or tex-
ture segmentation (Zabulis et al., 2009). Problems in
color segmentation are produced by background ob-
jects and changing lighting conditions. Pixel appear-
ance or texture segmentation make use of sophisti-
cated machine learning techniques requiring a con-
siderable amount of training data, learning time and
computational power. In contrast, the use of a 3D
sensor simplifies hand detection to an image segmen-
tation problem based on depth. We solve this problem
by applying mathematical morphology operators such
as binarization and dilation on the captured depth im-
age, in addition, these operations are implemented in

Figure 1: Binarization and dilation. Left: captured depth
image. Right: binarized image.

GPU resulting in a low latency hand detection stage.
Binarization consists in defining a threshold value

and comparing every depth image’s pixel with this
threshold. If a given pixel value is below such thresh-
old, the pixel is set to a minimal value; otherwise it is
set to a maximum value. Binarization was performed
on a 640�480 depth data stream, with minimal, max-
imum and threshold values initialized to 0, 255 and 18
pixels respectively. Figure 1 shows a captured depth
image (left) and the resulting image after applying the
binarization operator (right).

After binarization recurrent artifacts appeared in
hand contour due the limited Kinect resolution (fig.
2b), which are a significant noise source in subsequent
stages. These artifacts are reduced by dilation opera-
tion: let I be a binary image and K a structuring ele-
ment or kernel. The dilation of I and K is defined in
equation 1.

I
M

K =
[
k2K

Ik (1)

This operation can be understood as the locus of
the points covered by K when the center of K moves
inside I, in other words, it is similar to the “convolu-
tion” of K in I but it changes or not the current pixel’s
value according to its neighbor pixels’ value (fig. 2a);
dilation can also be applied several times to improve
results. Figure 2c shows the final hand detection’s re-
sult after binarization and dilation operations.

(a) Dilation operation example.

(b) (c)
Figure 2: (b) High level curvature artifacts after binarization
stage. (c) Resultant image after dilation stage.

GRAPP�2014�-�International�Conference�on�Computer�Graphics�Theory�and�Applications

466

3.2 Fingertip Detection

Fingertip detection is performed in two steps: first, we
generate a reduced list of candidate points gathered
from the finger zones; second, fingertip detection is
performed by applying k-means clustering on this list.
The list of candidate points, or candidate fingertips,
is calculated by searching high curvature zones given
the curvature measure (Argyros and Lourakis, 2006)
shown in equation 2a.

C(Pj) =
~Pj�kPj � ~PjPj+k

 ~Pj�kPj

 ~PjPj+k

 (2a)

a = arccos(C(Pj)) (2b)

Where Pj�k, Pj and Pj+k are a set of successive
points on the hand contour and C(Pj) is the curvature
measure of Pj.

We reduce the list of candidate points to guarantee
k-means clustering computes only meaningful points.
After calculating a curvature measure, C(Pj), equa-
tion 2b is evaluated. If a is less than 60 degrees, C(Pj)
is added to the list, otherwise is discarded. After the
list is completed (fig. 3a), k-means clustering is per-
formed to obtain the correct fingertip (fig. 3b).

(a) (b)
Figure 3: (a) Equations 2a and 2b are used to obtain a re-
duced list of points at the finger zones. (b) Calculating K-
means clustering results in correct fingertip detection.

Finally, finger labeling is performed by calculat-
ing the distance from the palm’s center (obtained from
the hand’s bounding box) to each fingertip. Based on
anthropomorphic metrics (Greiner, 1991), in particu-
lar on the relation of these distances, we identify each
fingertip, i.e. the middle finger will usually be the
longest finger, the remaining longest one is the index
and so on (fig. 4).

3.3 Gesture Detection

Our system recognizes hand gestures and hand’s tra-
jectory gestures. Hand gestures are detected using
a state based system; a state, denoting a gesture, is
reached when specific interval values are tracked. Let

Figure 4: Fingertip labeling (color coded) in different situ-
ations.

S be a reached state, ah a pair of values denoting
minimum and maximum hand’s area in pixels, n f the
number of fingertips found and d f the directions from
the palm to each fingertip, then a state is defined by
S =< ah;n f ;d f >.

Figure 5 shows a set of hand gestures we defined
for test purposes. Hand closed gesture is defined
by S =< [7240;7281];0;0 >, hand open gesture by
S =< maxArea;5;any >, pointing is detected when
S =< any;1;upwards > and V-sign gesture is defined
by S =< any;2;upwards >.

Each state is evaluated as follows: first, the al-
gorithm verifies if fingertips were detected, if not, it
assumes the hand is closed then hand closed gesture
detection starts based on its defined state. Second,
if any fingertip has been detected, the algorithm be-
gins the evaluation depending on the number of fin-
gertips found, e.g. the V-sign gesture detection begins
when two fingertips are found then if these two fin-
gertips were previously labeled as index and middle
(sec. 3.2) and both are pointing upwards the V-Sign
has been detected.

Figure 5: Test set of hand gestures.

To detect the hand’s trajectory gestures, we pre-
fer simplicity and performance over sophistication.
Some approaches (Liu and Fujimura, 2004; Plamon-
don and Srihari, 2000) make extensive use of machine
learning techniques such as Hidden Markov Models,
neural networks or featured based statistical classi-
fiers to obtain semantical information related to a per-
formed motion. These techniques usually requires
training sessions and data that can be avoided using a
simpler approach proposed by Wobbrock et al. based
on a modified version of adjustment by least squares,
called $1 Recognizer (Wobbrock et al., 2007).

A�Bare-Hand�Gesture�Interaction�System�for�Virtual�Environments

467

3.4 Filtering

A typical problem in gesture recognition systems is
intermittent gesture spotting, which is the result of
the dynamic variation in shape and duration of a same
gesture. We face this issue as a digital signal pro-
cessing problem by generating and filtering a binary
signal over time. The signal is generated as follows:
when a gesture is detected the signal’s value is set to
one otherwise is set to zero (figure 6a). Intermittent
gesture spotting expresses itself as high frequency
variations in the signal. These variations are reduced
using a digital integrator or a low-pass digital filter. A
digital integrator can be implemented using different
approaches such as finite-impulse-response (FIR) or
infinite-impulse-response (IIR). In our case, we use a
FIR integrator because feedback is not present, thus
errors are discarded in subsequent iterations making
them stable. Equation 3 models the FIR integrator
implemented in our system.

(a) Original signal.

(b) Filtered signal.
Figure 6: “Peace” gesture spotting signal.

x0[n] = b0x[n]+b1x[n�1]+ :::+bNx[n�N] (3)

Where x[n] is the input signal, x0[n] is the filtered sig-
nal, bi are the filter coefficients or tap weights and N is
the filter order. Figure 6b, shows the results of apply-
ing this filter to the “Peace” gesture spotting signal in
a sequence of 127 samples. Notice the signal starts to
decay slowly which reduces considerably the gesture
spotting intermittence. As a result a more robust and
stable gesture recognition method is obtained. Fur-
ther results with N set to 24, 42 and 100 are shown in
table 1 and explained in section 4.

4 EXPERIMENTAL RESULTS

Our recognizer was partially implemented in CUDA
(Sec. 3.1) and C++ (Sec. 3.2, 3.3, 3.4) using OpenNI
to capture Kinect’s depth data stream and Open Sound

Control protocol to send gesture detection state mes-
sages from the gesture detection program to the vir-
tual environment applications, designed in Unity En-
gine. The virtual environment applications where de-
signed to test common 3D UI tasks such as naviga-
tion, selection and manipulation (fig. 7).

1. Virtual woman dissection. The objective of this
application was to test the manipulation of a 3D
model through a 2D GUI. Navigation and selec-
tion of sliders are performed with the open hand
gesture and closed hand gesture respectively. Ma-
nipulation (rotation, scaling and translation) is
performed according to the selected slider by ver-
tically moving the closed hand gesture. An addi-
tional GUI control changes the rendering mode to
visualize different body systems (fig. 7 row 1).

2. Medieval Town. In this application, the user can
navigate in a 3D environment. The user has to
perform the close hand gesture to move the cam-
era forwards. In addition, the user can see the
surroundings using the pointing gesture once and
moving left or right the pointing finger. The user
can also throw knives by performing the V-Sign
gesture (fig. 7 row 2).

3. Metaphors. In this environment, the user can in-
teract with objects through similar gestures used
in real life. First, the user has to open a door by
moving his hand with the open gesture over the
handle, after opening the door, the camera moves
in front of a staple, the user touches the staple
with his hand closed to staple. Finally, the camera
moves in front of a turntable, the user has to open
his hand over for scratching (fig. 7 row 3).

4. Trivia game. This application was designed to
test hand trajectory gestures. The users have to
answer a trivia by tracing in the air the numbers
1, 2 and 3 (fig. 7 row 4 left) to answer a question
(fig. 7 row 4 right).

We designed two experiments to verify the per-
formance, reliability and feasibility of our solution.
Performance refers how fast is our algorithm, relia-
bility to the level of success in gesture detection, and
feasibility to how well hand gestures adapt to 3D UI
tasks.

The first experiment consisted in measuring the
performance and reliability of our recognizer. CUDA
and C++ offer methods (cudaEventCreate(), cu-
daEventRecord(), cudaEventSynchronize() and cu-
daEventElapsedTime() were used in CUDA and
clock() was used in C++) to measure the execution
time of each stage of our algorithm. In a desktop com-
puter with a i7-2600K CPU @ 3.40 GHz, GeForce
GTX 550 TI GPU and 8 GB RAM, binarization and

GRAPP�2014�-�International�Conference�on�Computer�Graphics�Theory�and�Applications

468

Table 2: Comparison of our Algorithm and other Kinect based methods. Most of the technique use a similar hardware
configuration as ours.

Method Tracking Gesture
Recog.

Performance
(ms)

Accuracy Application

(Iason Oikonomidis
and Argyros, 2011)

Yes No 66.6 74% the estimated pose
deviated 4cm or less

Not tested

(Oikonomidis et al.,
2011)

Yes No 50 60 (using one camera) 3.02
(using 8 cameras) Lower is
better

Grasping real objects

(Frati and Prattichizzo,
2011)

Yes No 350 to 30 after
70 iterations

Not reported Haptic feedback grasping
of a virtual cube.

(Raheja et al., 2011) Yes No Not reported near 100 % (fingers) near
90 % (palm)

Not tested.

(Liang et al., 2012) Yes No Not reported Different values for each
finger e.g. 2.51 / 1.34
thumb (Lower is better)

Grasping of a virtual
sphere

(Ren et al., 2011) No Yes 500 / 4000 90.6 % / 93.9% (Higher is
better)

2D UI for Arithmetics;
Rock-paper-scissors game.

(Suau et al., 2011) Yes Yes 14.7 * 2D Navigation
Our approach Yes Yes 7.62 Table1 Interaction in VR.

Table 1: Reliability results.

Gesture # of frames # Positive
detection

Accuracy (%)

N = 24 avg = 80.74 %
Pointing 267 155 58.05
V-Sign 655 609 92.98
Open 235 201 85.53
Closed 500 432 86.40

N = 42 avg = 88.07 %
Pointing 407 374 91.89
V-Sign 219 179 81.74
Open 262 227 86.64
Closed 538 495 92.01

N = 100 avg = 89.86 %
Pointing 613 492 80.26
V-Sign 530 475 89.62
Open 594 539 90.74
Closed 587 580 98.81

dilation took 3.8 ms per frame, fingertip detection,
gesture recognition and filtering 3.87 ms per frame
and Kinect’s capture took 22 ms. Regarding reliabil-
ity, we designed a test session that consisted in per-
forming all the gestures shown figure 5. Each ges-
ture was held for a given number of frames while
hand movement was allowed. Table 1 shows a set
of results given different filter orders of 24, 42 and
100. The second and third column shows the num-
ber of frames the gesture was held, and the num-
ber of frames it was positive detected respectively;
the fourth column shows detection accuracy given by
(#detected=# f rames)�100. Notice that for a higher
order filter, detection accuracy is better, as expected.

The second experiment was designed to test the
feasibility of our solution by performing navigation,
selection and manipulation tasks as described previ-

ously. In this test we perform empirical observa-
tions to verify how well the user interacts with the
system. We suggest reviewers watch the companion
video which includes a recorded session of this test.
As can be seen from the recording, the speed and ac-
curacy of our solution allows real-time interaction in
the virtual environments and the user was able to com-
plete successfully each of the proposed tasks.

5 CONCLUSIONS AND FUTURE
WORK

On this article, we have described a fast and con-
ceptually simple bare-hand gesture recognition al-
gorithm for real-time interaction in virtual environ-
ments. The morphology operations implemented in
the GPU and the performed optimizations in fingertip
detection stage, consisting in reducing the list of cur-
vature points using equation 2b, result in a low latency
hand features detection and tracking stages. The com-
bination of a curvature measure, k-means clustering
and the $1 Recognizer with a simple digital integra-
tor give a fast and robust enough recognition system.
According to Jakob Nielsen, 0:1s is about the limit for
having the user feel that the system is reacting instan-
taneously1; our algorithm response time is lower than
such limit.

Table 2 summarizes a comparison of our algo-
rithm and other Kinect based methods using simi-
lar hardware configurations. Our algorithm’s perfor-
mance is better than current implementations. In ad-

1http://www.nngroup.com/articles/response-times-3-
important-limits/

A�Bare-Hand�Gesture�Interaction�System�for�Virtual�Environments

469

Figure 7: First row: Virtual woman dissection. Second row: Medieval town. Third row: Real life tasks, scratching. Fourth
row: Trivia game.

dition, it meets virtual environment requirements, re-
sulting in the seamless rendering of virtual environ-
ments.

The technique that is closer in performance than
ours, on a similar hardware configuration, is (Suau
et al., 2011). However, they downsampled the depth
stream data to a resolution of 160x120, which allowed
them to recognize only closed and open hand ges-
tures. They also reported a performance of 111 ms
for a resolution of 640x480. In (Iason Oikonomidis
and Argyros, 2011; Oikonomidis et al., 2011) a ro-
bust method for finger tracking is presented, but it
does not support gesture recognition. Accurate track-
ing is achieved using eight cameras turning their so-

lution impractical and expensive. The (Raheja et al.,
2011) method is only focused in hand and finger de-
tection and tracking and does not offer specific details
regarding performance, testing or applications. Liang
et al. (Liang et al., 2012) work is also focused in
tracking and their experimental results suggest that its
performance is enough for basic virtual environments
applications.

On the other hand, the accuracy of our algorithm
(86 %) allowed the test subject to successfully com-
plete the tasks as the recorded session demonstrate.
The integration of our recognizer into the virtual en-
vironments, demonstrated the flexibility of our ap-
proach in different interaction situations.

GRAPP�2014�-�International�Conference�on�Computer�Graphics�Theory�and�Applications

470

However, despite the fact that using 3D sensing
thoroughly simplifies hand detection and tracking,
these devices present occlusion problems when fin-
gertips are perpendicular to the sensor. Careful de-
signing of gestures may avoid or reduce this problem.
Range distance limits become also a problem when
hands are too far from the sensor, i.e. depth informa-
tion is lost.

Future development and testing is described next:
First, Two hands interaction support. The planned

approach is to divide the camera feed into two areas,
one for each hand, then perform recognition on these
areas. Second, the current implementation uses only
the GPU for hand detection and segmentation, per-
formance may improve if all stages are executed on
the GPU. Also the implementation of a basic script-
ing tool to define new gestures will help in order to
avoid the modification of the system internals. Fi-
nally, The described gestures in section 3.3 were de-
fined for test purposes only, without having usability
in mind. However, more gestures have to be speci-
fied, and formal evaluation needs to be performed in
a group of users in order to know what kind of ges-
tures are usable and suitable for interaction in virtual
environments.

REFERENCES

Argyros, A. A. and Lourakis, M. I. A. (2006). Vision-based
interpretation of hand gestures for remote control of
a computer mouse. In Proceedings of the 2006 inter-
national conference on Computer Vision in Human-
Computer Interaction. Springer-Verlag.

DeFanti, T. and Sandin, D. (1977). Final report to the na-
tional endowment of the arts. In US NEA r60-34-163.

Frati, V. and Prattichizzo, D. (2011). Using kinect for hand
tracking and rendering in wearable haptics. In World
Haptics Conference (WHC), 2011 IEEE. IEEE Com-
puter Society Press.

Garg, P., Aggarwal, N., and Sofat, S. (2009). Vision
based hand gesture recognition. In 2009 Fifth Interna-
tional Conference on Intelligent Information Hiding
and Multimedia Signal Processing. IEEE Computer
Society Press.

Greiner, T. (1991). Hand Anthropometry of U.S. Army Per-
sonnel. Technical report (U.S. Army Natic Labora-
tories. Development Engineering Center). U.S. Army
Natick Research, Development & Engineering Center.

Iason Oikonomidis, N. K. and Argyros, A. (2011). Efficient
model-based 3d tracking of hand articulations using
kinect. In Proceedings of the British Machine Vision
Conference. BMVA Press.

Iddan, G. J. and Yahav, G. (2001). G.: 3d imaging in the
studio (and elsewhere). In: SPIE.

Liang, H., Yuan, J., and Thalmann, D. (2012). 3d fingertip
and palm tracking in depth image sequences. In Pro-

ceedings of the 20th ACM international conference on
Multimedia. ACM.

Liu, X. and Fujimura, K. (2004). Hand gesture recognition
using depth data. In Proceedings of the Sixth IEEE in-
ternational conference on Automatic face and gesture
recognition. IEEE Computer Society Press.

Oikonomidis, I., Kyriazis, N., and Argyros, A. A. (2011).
Full dof tracking of a hand interacting with an object
by modeling occlusions and physical constraints. In
Proceedings of the 2011 International Conference on
Computer Vision. IEEE Computer Society Press.

Plamondon, R. and Srihari, S. N. (2000). On-line and off-
line handwriting recognition: A comprehensive sur-
vey. In IEEE Transactions on Pattern Analysis and
Machine Intelligence. IEEE Computer Society Press.

Raheja, J., Chaudhary, A., and Singal, K. (2011). Track-
ing of fingertips and centers of palm using kinect. In
Computational Intelligence, Modelling and Simula-
tion (CIMSiM), 2011 Third International Conference
on.

Rehg, J. M. and Kanade, T. (1993). Digiteyes: Vision-based
human hand tracking. Technical report, School of
Computer Science, Carnegie Mellon University, 1993.

Ren, Z., Yuan, J., and Zhang, Z. (2011). Robust hand
gesture recognition based on finger-earth mover’s dis-
tance with a commodity depth camera. In Proceedings
of the 19th ACM international conference on Multime-
dia. ACM.

Rubner, Y., Tomasi, C., and Guibas, L. J. (2000). The earth
movers distance as a metric for image retrieval. In
International Journal of Computer Vision. Srpinger.

Sturman, D. J. and Zeltzer, D. (1994). A survey of glove-
based input. In IEEE Comput. Graph. Appl. IEEE
Computer Society Press.

Suau, X., Casas, J. R., and Ruiz-Hidalgo, J. (2011). Real-
time head and hand tracking. In Multimedia and
Expo (ICME), 2011 IEEE International Conference
on. IEEE Computer Society Press.

Utsumi, A. (1997). Direct manipulation scene creation in
3d: estimating hand postures from multiple-camera
images. In Proceedings of ACM SIGGRAPH 97.
ACM.

Wang, R., Paris, S., and Popović, J. (2011). 6d hands: mark-
erless hand-tracking for computer aided design. In
Proceedings of the 24th annual ACM symposium on
User interface software and technology. ACM.

Wobbrock, J. O., Wilson, A. D., and Li, Y. (2007). Gestures
without libraries, toolkits or training: a $1 recognizer
for user interface prototypes. In Proceedings of the
20th annual ACM symposium on User interface soft-
ware and technology. ACM.

Zabulis, X., Baltzakis, H., and Argyros, A. A. (2009).
Vision-based hand gesture recognition for human
computer interaction. In The Universal Access Hand-
book. Lawrence Erlbaum Associates, Inc. (LEA), Se-
ries on ”Human Factors and Ergonomics”.

Zimmerman, T. G., Lanier, J., Blanchard, C., Bryson, S.,
and Harvill, Y. (1987). A hand gesture interface de-
vice. In Proceedings of the SIGCHI/GI. ACM.

A�Bare-Hand�Gesture�Interaction�System�for�Virtual�Environments

471

