
Refresh Rate Modulation for Perceptually Optimized Computer
Graphics

Jeffrey Smith, Thomas Booth and Reynold Bailey
Department of Computer Science, Rochester Institute of Technology, Rochester, New York, U.S.A.

Keywords: Ray-tracing, Eye-tracking, Real-time

Abstract: The application of human visual perception models to remove imperceptible components in a graphics system,
has been proven effective in achieving significant computational speedup. Previous implementations of such
techniques have focused on spatial level of detail reduction, which typically results in noticeable degradation of
image quality. We introduce Refresh Rate Modulation (RRM), a novel perceptual optimization technique that
produces better performance enhancement while more effectively preserving image quality and resolving static
scene elements in full detail. In order to demonstrate the effectiveness of this technique, we have developed
a graphics framework that interfaces with eye tracking hardware to take advantage of user fixation data in
real-time. Central to the framework is a high-performance GPGPU ray-tracing engine. RRM reduces the
frequency with which pixels outside of the foveal region are updated by the ray-tracer. A persistent pixel
buffer is maintained such that peripheral data from previous frames provides context for the foveal image in
the current frame. Applying the RRM technique to the ray-tracing engine results in a speedup of 3.2 (260 fps
vs. 82 fps at 1080p) for the classic Whitted scene without secondary rays and a speedup of 6.3 (119 fps vs. 19
fps at 1080p) with them. We also observe a speedup of 2.8 (138 fps vs. 49 fps at 1080p) for a high-polygon
scene that depicts the Stanford Bunny. A user study indicates that RRM achieves these results with minimal
impact to perceived image quality. We also investigate the performance benefits of increasing physics engine
error tolerance for bounding volume hierarchy based collision detection when the scene elements involved are
in the user’s periphery. For a scene with a static high-polygon model and 50 moving spheres, a speedup of 1.8
was observed for physics calculations.

1 INTRODUCTION

Recent advances in consumer level parallel process-
ing hardware have led to the feasibility of generat-
ing realistic computer graphics images at interactive
rates. However, even with high-end hardware, com-
putationally demanding rendering solutions such as
ray-tracing must be heavily optimized to run in real-
time.

A number of acceleration techniques have been
proven effective in reducing rendering time for ray-
tracing applications. These include the use of spatial
data structures such as k-d trees (Wald and Havran,
2006) or bounding volume hierarchies (Goldsmith
and Salmon, 1987). Despite these advances, com-
putational resources are still dedicated to generating
fine detail outside of the viewer’s high acuity foveal
region. These resources are wasted as the presence
of such details does not impact the perceived quality
of the scene due to reduced acuity in the peripheral

Figure 1: Ray-traced image generated using our percep-
tual optimization framework. The scene depicts a full ray-
tracing solution, including reflected and refracted rays along
with a high-polygon model. Our Refresh Rate Modula-
tion technique results in 65.1 fps. For comparison, a full-
resolution rendering of this scene has a frame rate of 17.6
fps.

region of the field of view. Raj et al. (Raj and Rosen-
holtz, 2010) noted however, that peripheral vision is
not simply a blurred version of foveal vision, hence

200 Smith J., Booth T. and Bailey R..
Refresh Rate Modulation for Perceptually Optimized Computer Graphics.
DOI: 10.5220/0004691102000208
In Proceedings of the 9th International Conference on Computer Graphics Theory and Applications (GRAPP-2014), pages 200-208
ISBN: 978-989-758-002-4
Copyright c
 2014 SCITEPRESS (Science and Technology Publications, Lda.)

the traditional perceptual optimization approach of re-
ducing spatial detail in the peripheral regions still re-
sults in a noticeable reduction in image quality.

In this paper, we introduce Refresh Rate Modu-
lation (RRM), a novel perceptual optimization tech-
nique that produces better performance enhancement
than spatial degradation techniques while more effec-
tively preserving perceived image quality (see Fig-
ure 1). Similar to variable resolution approaches,
RRM partitions the display area into two subregions
that correspond to the foveal and peripheral portions
of the user’s field of view. However, instead of
varying sampling frequency, RRM adjusts the rate at
which pixels are updated by the ray-tracer. The foveal
region is updated once per frame, and therefore shows
the scene in full detail at all times. Pixels in the pe-
ripheral region are refreshed once every N frames,
where N can be adjusted to strike a balance between
performance and perceived output quality.

The result is a subtle fragmentation effect outside
of the foveal region that does not decrease the per-
ceived quality of the overall image, but significantly
increases performance. If the scene remains still for
N or more frames, all peripheral pixels are refreshed
and a full-detail image of the entire viewing area is
rendered.

Within our framework, physics calculations may
also be optimized through the use of real-time per-
ceptual data. While the center of the field of view
is able to detect errors in physical phenomena with
high accuracy, the periphery is less well-equipped to
do so (O’Sullivan et al., 1999). This means that colli-
sion error tolerances can be significantly increased in
regions outside of the fovea without reducing the per-
ceived quality of motion (so long as penetrative errors
are avoided). Many physics engines utilize accelera-
tion structures for polygonal meshes that result in a
series of successive calculations for collision detec-
tion between two objects. If the collision algorithm
is modified to return a collision several layers earlier,
computation for collisions with the mesh terminate
early and a computational speedup occurs.

The remainder of this paper is organized as fol-
lows: background and related work are presented in
Section 2. The design of our perceptually optimized
rendering framework is described in Section 3. Per-
formance results and a user study to gauge the percep-
tibility of our novel Refresh Rate Modulation tech-
nique are presented in Section 4. In section 5, the
paper concludes with a summary of the contributions
and potential avenues of future research.

Figure 2: Distribution of cones in the retina. Adapted
from (Livingstone, 2002). Cones are densely packed in
the center of gaze (fovea) and the density of cones falls off
rapidly as angle from the center of gaze increases. The dis-
tribution of cones directly affects visual acuity. Visual acu-
ity is highest in the center of gaze and falls off rapidly as
angle from the center of gaze increases.

2 BACKGROUND AND RELATED
WORK

The human retina contains a large number of inter-
connected receptor cells that intercept incoming pho-
tons and output electrical signals to the visual cor-
tex. Cone cells provide color vision at high illumi-
nation levels, and are responsible for detail-oriented
visual tasks. The distribution of cone cells across the
retina is nonuniform (see Figure 2). This results in
two distinct regions within the field of view: the cen-
tral, high acuity fovea, and the outer, low acuity pe-
riphery. The visual system reorients the eye an aver-
age of three times per second via saccadic movement
and integrates the information gathered at each fixa-
tion point to produce a high-detail perceived image of
the environment.

Computer graphics models that take advantage of
this property of the human visual system for compu-
tational speedup or data compression have been pro-
posed and implemented with positive results. Geisler
and Perry’s (Geisler and Perry, 1999) foveal pyramid
approach partitions an existing image into distinct re-
gions based on distance from the current region of
interest. The resolution in each of the regions is re-
duced with a series of low-pass filters, resulting in a
multi-resolution image that has full detail in the re-
gion of interest and decreases in resolution moving
away from this region. This algorithm achieves a 3x
reduction in the amount of data required to represent
an image. Levoy and Whitaker (Levoy and Whitaker,
1990) implemented a spatially adaptive ray-tracing
system that incorporates real-time fixation data from
an eye tracker to produce a multi-resolution rendered
image. Their 3D mip-map based algorithm results
in a nonuniform sampling distribution across the im-

Refresh�Rate�Modulation�for�Perceptually�Optimized�Computer�Graphics

201

age plane, with considerably higher ray density in the
foveal region. After a five minute preprocessing step,
they observed a 4.6x speedup when rendering a 256 x
256 x 109 voxel magnetic resonance scan.

Certain features of a scene, such as edges, abrupt
changes in color, and sudden movement tend to at-
tract involuntary user attention. Low-level saliency
models determine which regions of a scene exhibit
these features, and can be used as an alternative to
eye tracking when locating regions of interest. Cater
et al. (Cater et al., 2003) applied a saliency model that
includes knowledge of a viewer’s visual task in or-
der to render a scene with high resolution in regions
of interest and lower resolution elsewhere. Spatial
level of detail variation can also be realized through
adaptive subdivision of three dimensional polygon
meshes. Reddy (Reddy, 2001) developed a system
that renders terrain geometry in high detail at the fixa-
tion point and a simplified mesh outside of the foveal
region. This is accomplished by recursively subdi-
viding the mesh, with regions outside of the fovea
terminating earlier than those within. For a terrain
model with 1.1 million triangles, the perceptual op-
timization achieved a 2.7x improvement in rendering
time. While no eye tracking hardware was used for
this model (fixation was bound to the center of the im-
age), Reddy emphasizes the need for such technology
to produce an accurate perceptually based system. A
more general-purpose method for adaptive subdivi-
sion was proposed and implemented by Murphy and
Duchowski (Murphy and Duchowski, 2001). It con-
verts a full-polygon mesh to a variable level of detail
mesh through spatial degradation according to visual
angle. An eye tracker is used to determine which por-
tion of the mesh to render in full detail while the re-
mainder is rendered using the degraded mesh. For a
268,686 polygon Igea mesh, applying this technique
allowed for near-interactive frame rates (20 - 30 fps),
while frame rate for the full resolution model was too
low to measure.

While many perceptual optimization techniques
have shown positive results, existing methods are not
well-suited for application in a subtle, perceptually
optimized real-time computer graphics architecture.
Multi-resolution display models tend to produce no-
ticeable image degradation; according to Levoy and
Whitaker (Levoy and Whitaker, 1990), “users are
generally aware of the variable-resolution structure of
the image”. In addition, the nonuniform pixel dis-
tribution produced by the multi-resolution approach
tends to exhibit poor coherency with regards to the
Single Instruction, Multiple Data (SIMD) paradigm
employed by modern GPUs. Considering the current
trend towards massively parallel computing architec-

tures, this is a major drawback. Adaptive subdivision
comes with a similar drawback; transitioning between
the full-detail mesh and the spatially degraded mesh
produces motion that is very perceptible to the user’s
peripheral vision. Task-level saliency models offer
excellent computational speedup and low noticeabil-
ity. However, they are not applicable to the general
case, where the user task may be complex and re-
gions of interest are not guaranteed to be consistent
or easily identifiable. Furthermore, automatic predic-
tion of attention regions has been shown to be unre-
liable (Marmitt, 2002). Our perceptually optimized
rendering framework leverages the difference in acu-
ity between the foveal and peripheral regions of the
field of view to provide computational speedup while
more effectively preserving perceived image quality
compared to spatial degradation techniques.

3 SYSTEM DESIGN

3.1 Ray-Tracing Framework

Ray-tracing is a well-established method for render-
ing three-dimensional scenes (Whitted, 1980). The
algorithm models the approximate path of light in re-
verse, flowing from the camera to objects in the scene.
When a light ray intersects an object, the associated
pixel is filled with the color of the object at that point.
For reflective and refractive objects, additional rays
are spawned recursively at the point of intersection.

The ray-tracing algorithm is computationally in-
tensive, which has historically prevented it from be-
ing used for real-time applications. Approximately
75% of the time required to render simple scenes is
allocated to computing ray-object intersections, with
this number increasing for scenes with a large num-
ber of objects. A performance speedup can be real-
ized by reducing the number of intersection tests per
ray or the overall number of rays computed. Our sys-
tem is built on a basic ray-tracing framework, and is
designed to reduce the number of rays that need to
be computed by taking advantage of the differences
in visual acuity between the foveal and peripheral vi-
sion. It also includes a number of traditional opti-
mizations that reduce the number of intersections per
ray as well as the time required to compute each in-
tersection.

The bounding volume hierarchy (BVH) is one
effective method of organizing scene object data to
reduce ray-object intersection calculations per ray.
Each polygon in a mesh is encapsulated within a
bounding volume; we use a sphere, which has a rel-
atively low intersection cost. This set of volumes is

GRAPP�2014�-�International�Conference�on�Computer�Graphics�Theory�and�Applications

202

Figure 3: Secondary ray processing. Instead of using recursion or a secondary ray stack, multiple passes are made with the
same OpenCL kernel.

paired up and encapsulated within larger volumes un-
til only one volume remains. This volume now con-
tains a hierarchy that represents all geometry in the
mesh. Ray intersections on the entire mesh are per-
formed using the hierarchy. If a ray intersects the
top level bounding sphere, its children are recursively
checked for intersection. The BVH scheme elimi-
nates all but one sphere intersection test for the ma-
jority of rays that do not actually intersect the mesh.
In order to send the bounding volume hierarchy to
an OpenCL kernel, it must be flattened into a one-
dimensional array. The flattening algorithm described
by Thrane (Thrane et al., 2005) serves as a basis for
our method. The bounding volume hierarchy is tra-
versed depth-first, and a traversal index is assigned to
each node to indicate traversal order. Each node is
also given an escape index, which indicates where to
go next if its child nodes are to be ignored. Leaf nodes
require a third index that corresponds to the mesh tri-
angle that they encapsulate. Once these values are as-
signed, all bounding volumes can be placed in a linear
array in the order of their traversal indices. The flat-
tened BVH and triangle data are written to a file and
loaded directly on subsequent executions to acceler-
ate program startup.

General purpose GPU acceleration has emerged as
a compelling means of reducing intersection compu-
tation time for high performance ray-tracing systems.
Our framework places all ray-tracing logic, including
ray calculation, intersection tests, texturing and shad-
ing, in a single OpenCL kernel for execution on the
GPU. An array of work unit structures holds input
and output data for the kernel. Each work unit corre-
sponds to a group of 4 onscreen pixels (a pixel block),
and contains screen coordinate position and ray data
along with other information. The kernel accepts in-
put work units with either precomputed ray data or
raw screen coordinates.

Secondary ray processing is accomplished with
several consecutive kernel calls (see Figure 3). This
allows OpenCL to reconfigure work distribution for
each reflection or refraction step in order to maintain
GPU saturation. This contrasts with the more tra-
ditional stack-based approach, where processing el-
ements that do not generate secondary rays sit idle

until those with secondary rays finish computation.
Secondary ray output for most scenes is very sparse,
so the CPU-side host program compresses the out-
put array before initiating the next kernel pass. Sec-
ondary work units represent only 1 onscreen pixel,
since pixel blocks may overlap reflective/refractive
and non-reflective/refractive surfaces.

3.2 Perceptual Optimization

Figure 4: Runtime data flow. Our framework is composed
of several subsystems that work in tandem to produce per-
ceptually optimized computer graphics.

Figure 4 shows an overview of our perceptually
optimized framework. The host serves as a central
hub and handles initialization and interprocess com-
munication. It also maintains object and camera po-
sitional data, and manages the Refresh Rate Modula-
tion cycle. The OpenCL kernel contains the full ren-
dering algorithm, which writes to a persistent pixel
buffer that is shared between OpenCL and OpenGL
in GPU memory. OpenGL is responsible for writing
this buffer to the display each frame and initiating the
rendering process for the next frame. Eye tracking
hardware provides real-time fixation data in the form
of X and Y screen coordinates, which is passed from
the host to the OpenGL kernel to update foveal po-
sition. If physics functionality is enabled, the open-
source Bullet Physics engine drives positional data for
all scene objects.

The eye-tracker used in this project is a Senso-
Motoric Instruments iView X Remote Eye-Tracking
Device operating at 250 Hz with gaze position accu-
racy < 0:5�. While the data it provides is quite ac-

Refresh�Rate�Modulation�for�Perceptually�Optimized�Computer�Graphics

203

curate, like all eye-trackers it does exhibit some de-
gree of noise. Using raw fixation data detracts from
the user experience, because peripheral vision is ex-
tremely sensitive to motion (McKee and Nakayama,
1984). To rectify this issue, an auxiliary smoothing
filter has been placed between the eye tracker and the
host. Figure 5 shows a photograph of our setup.

Figure 5: Photograph of our setup. User fixation is moni-
tored and used as input to our perceptual framework. The
eye-tracking hardware is fixed to the bottom of the screen.

3.2.1 Refresh Rate Modulation

The primary contribution of this work is the Refresh
Rate Modulation technique for perceptually adaptive
level of detail adjustment. The display is split into
two segments: the foveal region and the peripheral
region. The foveal region is a small inset pixel group
that corresponds to the high acuity region of the hu-
man visual system, and is updated once every frame.
The work group that represents the foveal region is
dense, and features one work unit for each pixel group
in the region. The peripheral region takes up the re-
mainder of the image, and lies within the lower-detail
portion of the user’s field of view. This region is up-
dated only once every N frames, which results in a
substantial computational speedup. The work group
that represents this region is sparse, and features one
work unit for every N pixel blocks in the region. Each
work unit in both regions computes for four consecu-
tive pixels to maximize SIMD coherency and improve
performance. Figure 6 shows how the display area is
separated into foveal and peripheral regions for a user
fixating in the center of the screen. Note that a circu-
lar foveal region, while more perceptually accurate,
would eliminate much of this coherency and signifi-
cantly reduce speedup.

Figure 7 illustrates the Refresh Rate Modulation
technique. A single work unit is processed at each

Figure 6: The display area is segmented into a dense inner
region (fovea) and a sparse outer region (periphery). White
pixels represent work units computed during a single frame.

frame, while the rest of the work units within the cy-
cle group maintain data from previous frames. When
the red marker is reached, a full cycle is complete and
rendering for the next frame begins again at the green
marker. Work units in the foveal region undergo a
full cycle each frame, so they are updated in real-
time. Units in the peripheral region undergo a full
cycle only once every N frames.

Applying the Refresh Rate Modulation technique
leads to an effect in which the portion of the display
that is viewed by the fovea is rendered in crisp detail,
while the rest of the display is subtly fragmented. This
fragmentation only occurs when the camera or scene
elements are in motion; if scene movement ceases, the
display naturally resolves a full-detail image after N
frames with no additional overhead. This results in a
full-resolution rendering after less than half a second
for applications with a real-time frame rate.

The RRM technique avoids the post-processing
step that is required by traditional spatial degradation
techniques to reduce visible pixelation, and thereby
avoids a great deal of processing overhead. Refresh
order within the cycle groups can be adjusted on the
fly to adjust fragmentation style for scene content and
movement (e.g. horizontal, serpentine, scattered), and
work group size may be decreased to reduce fragmen-
tation in high-motion scenes or increased to maximize
performance. Movement of the foveal region is ac-
complished within the GPU kernel by simply adding
the current fixation position to each work unit posi-
tion. This allows the entire input work group GPU
memory buffer to remain unchanged throughout exe-
cution, and avoids costly CPU to GPU memory oper-
ations.

A persistent OpenGL pixel buffer object is main-
tained and shared between OpenGL and OpenCL for
efficient memory management. Pixel buffer objects
allow pixel data to be stored in high-performance
graphics memory on the GPU, and enable fast data
transfer to and from the graphics card through direct
memory access (DMA) without CPU involvement.

GRAPP�2014�-�International�Conference�on�Computer�Graphics�Theory�and�Applications

204

Figure 7: Refresh rate modulation. Work units within the
foveal region are updated every frame for real-time render-
ing, while those in the peripheral region are updated only
once every N frames for significant computational speedup.

Figure 8: Spatial degradation results in less optimal perfor-
mance and requires a costly blurring effect that is still no-
ticeable to peripheral vision. (a) Whitted scene with grid to
reveal multi-resolution layout (b) Whitted scene with blur.

Since the buffer is not flashed at the beginning of each
frame, peripheral data from previous frames can be
leveraged to provide meaningful context for the real-
time contents of the foveal region.

A more conventional multi-resolution ray-tracing
framework was developed near the beginning of this
project, and motivated development of the RRM tech-
nique. Analyzing performance differences between
execution on the CPU and GPU yielded valuable in-
sight regarding GPU characteristics as well as bot-
tlenecks in the algorithm itself. Figure 8 shows a
sample image from this original framework with a
grid feature enabled to highlight the various resolu-
tion levels. While results for this implementation
were quite promising on the CPU and on an older
commodity GPU, performance was less than impres-
sive on a newer high-performance GPU. There were
two primary reasons for this: complex CPU-side
work group management between frames, and irregu-
lar work groups that are not well-suited to SIMD. In
addition, this technique leads to pixilation even when
there is no movement in the scene, which in turn re-
quires a post-processing blur effect to remove visible
seams. While post-processing effects can be achieved
easily with the OpenGL Shading Language (GLSL),
frequent switching between OpenCL and GLSL con-
texts on the GPU is costly and results in massive per-
formance drop. These observations led to a focus
on minimizing work group management, simplifying
the work group layout and achieving acceptable per-
ceived image quality without post-processing.

3.3 Perceptually Optimized Collision
Detection

In order to demonstrate the flexibility of our
framework, we have integrated a perceptual col-
lision detection subsystem that renders realisti-
cally moving geometry using our ray-tracing en-
gine and the open-source Bullet Physics Library.
O’Sullivan (O’Sullivan et al., 1999) showed that in-
terruptible collision detection can significantly reduce
the time required for physics calculations while main-
taining plausible scene motion. Our system takes ad-
vantage of the bounding volume hierarchy based col-
lision detection system that Bullet Physics provides
for static polygonal meshes. A performance improve-
ment is gained by using only the top level of the BVH
for collisions, which is subtle enough to be impercep-
tible to the periphery.

4 RESULTS

The quality of a perceptual optimization technique
must be assessed in two ways: computational
speedup, and perceptual subtlety. The RRM approach
requires a specialized metric for computational per-
formance, since the onscreen position of the dense
foveal region can have an effect on frame rate for
scenes with nonuniform complexity. To account for
this, we render one frame for each possible foveal po-
sition and average the results to produce a representa-
tive overall frame rate. The perceptual subtlety of the
effect was measured during a small user study. Test
subjects were instructed to look at the full resolution
scene. RRM was then enabled, and subjects rated how
noticeable the effect was on a scale from 1 to 10 (1 is
not noticeable, 10 is very noticeable).

Figure 9: Performance of RRM for different refresh group
sizes. Increasing group size reduces the number of pixels
that must be updated each frame and improves performance.

Refresh�Rate�Modulation�for�Perceptually�Optimized�Computer�Graphics

205

Figure 10: Results of user study. Increasing group size
causes RRM to degrade perceived image quality.

Figure 11 shows the computational speedup that
RRM achieves for the classic Whitted scene with and
without secondary ray effects, as well as a high poly-
gon scene that features a 5000 polygon model of the
Stanford Bunny. The Whitted scene with secondary
rays offers the best speedup since computation for a
large portion of both primary and secondary rays is
avoided, while the other scenes remove only primary
rays. Our framework handles high polygon scenes
very well with RRM enabled, achieving a frame rate
that is considerably higher than real-time. All tests
were performed on a system with a 3.6GHz Intel Core
i7 processor and a Radeon HD 7970 GPU.

The perceptual study also produced favorable re-
sults, with an average noticeability rating of 1.13 for a
group with 5 participants (4 males, 1 female, ages 18-
27). This indicates that RRM achieves excellent com-
putational speedup with almost no impact to the per-
ceived quality of rendered images. The high-polygon
scene with an irregular floor texture was used for the
study to maximize geometric and color variety. Af-
ter subjects rated the scene for the default 3x4 refresh
group dimensions, group size (or N, see Figure 7)
was increased to gauge the impact of different periph-
eral refresh rates on the noticeability and performance
of RRM. As illustrated by Figure 9, increasing N
from the default of 12 to a maximum of 132 increases
frame rate by up to 50 fps. This performance increase
has an associated perceptual cost; the participants in-
dicated that the effect is noticeable (greater than 5 on
the noticeability scale) to the periphery for values of
N larger than 20 (see Figure 10). Figure 12 shows
the high polygon scene with N = 132 to illustrate the
perceptual impact of large values of N.

The perceptually optimized collision detection
system decreases the physics calculation time for the
scene shown in Figure 13 from 2.01ms to 1.15ms for
a speedup of 1.8. Physics calculation times were mea-
sured over a span of 1000 frames and averaged to en-
sure that they are indeed representative of the opti-
mization.

5 CONCLUSION

Through the implementation and testing of our per-
ceptually optimized computer graphics framework,
we have demonstrated the viability of the novel Re-
fresh Rate Modulation (RRM) optimization tech-
nique. Our RRM technique partitions the viewing
area into two subregions based on a model of human
visual perception, and reduces the refresh rate in the
outer region for up to a 6x speedup in our tests. A
user study indicates that RRM achieves this compu-
tational speedup with almost no effect on perceived
image quality. We have also shown that the frame-
work is extensible to other perceptually optimization
techniques by incorporating an interruptible collision
detection algorithm that drives positional data for the
ray-tracing engine.

Some work remains to more fully realize the po-
tential of our current system. The collision detection
system should be more fully integrated with the ray-
tracing engine such that the optimization is engaged
via fixation instead of being manually toggled as it
is now. The brute force bounding volume hierarchy
construction algorithm should also be made more ef-
ficient to allow for the representation of higher poly-
gon models in a reasonable amount of time. Our per-
formance results suggest that a model with signifi-
cantly more than 5000 polygons could be rendered
in real-time with RRM enabled. In addition, a re-
duction routine on the GPU could be used to remove
empty secondary rays in place of the CPU method
that is currently in place. While reduction is not well-
suited to stream processors, it would avoid a number
of expensive GPU-to-CPU memory operations. Fi-
nally, refresh order and group size could be adjusted
in real-time to perceptually compensate for dynamic
scene content. This might be accomplished through
the use of visual energy functions, as described by
Avidan and Shamir (Avidan and Shamir, 2007).

Our framework can be extended to include a va-
riety of perceptual optimizations. Adaptive subdi-
vision, the simplification of polygonal meshes out-
side of the foveal region, is a prime candidate for
our framework as it has been proven effective in pro-
viding computational speedup. Supersampling within
the foveal region to improve perceived image quality
while only modestly increasing computational load is
another possibility. We envision that our framework
will be used as a testbed for future perceptual graphics
techniques.

GRAPP�2014�-�International�Conference�on�Computer�Graphics�Theory�and�Applications

206

!

Full$
Resolution$

Refresh$
Rate$

Modulation$ Speedup$

Whitted$Scene$(no$secondary$rays)$ 82!fps! 260!fps! 3.2!

Whitted$Scene$(with$secondary$rays)$ 19!fps! 119!fps! 6.3!

High$Polygon$Scene$ 49!fps! 138!fps! 2.8!
!

(a)

(b)

(c)

(d)

Figure 11: Performance results for selected scenes rendered at 1080p resolution. (a) Whitted scene without secondary rays.
(b) Whitted scene with secondary rays. (c) Scene containing a 5000 polygon model of the Stanford Bunny. (d) Performance
results for each scene at full resolution and with RRM enabled. A refresh group size of 12 is used for RRM.

Refresh�Rate�Modulation�for�Perceptually�Optimized�Computer�Graphics

207

Figure 12: Perceptual impact of increasing the refresh
group size to N = 132. The fragmentation effect is very
noticeable even to peripheral vision.

Figure 13: High polygon mesh with 50 moving spheres.
Applying perceptual optimization to the physics model re-
sults in a physics calculation speedup of 1.8.

ACKNOWLEDGEMENTS

This material is based on work supported be the Na-
tional Science Foundation under Award No. IIS-
0952631. Any opinions, findings, and conclusions
or recommendations expressed in this material are
those of the author(s) and do not necessarily reflect
the views of the National Science Foundation.

REFERENCES

Avidan, S. and Shamir, A. (2007). Seam carving for
content-aware image resizing. In ACM SIGGRAPH
2007 papers, SIGGRAPH ’07, New York, NY, USA.
ACM.

Cater, K., Chalmers, A., and Ward, G. (2003). Detail to at-
tention: exploiting visual tasks for selective rendering.
In Proceedings of the 14th Eurographics workshop on
Rendering, EGRW ’03, pages 270–280, Aire-la-Ville,
Switzerland. Eurographics Association.

Geisler, W. S. and Perry, J. S. (1999). Variable-
resolution displays for visual communication and sim-
ulation. SID Symposium Digest of Technical Papers,
30(1):420–423.

Goldsmith, J. and Salmon, J. (1987). Automatic creation
of object hierarchies for ray tracing. IEEE Comput.
Graph. Appl., 7(5):14–20.

Levoy, M. and Whitaker, R. (1990). Gaze-directed volume
rendering. SIGGRAPH Comput. Graph., 24(2):217–
223.

Livingstone, M. (2002). Vision and Art: The Biology of
Seeing. Harry N. Abrams, Inc.

Marmitt, G. (2002). Modeling Visual Attention in VR: Mea-
suring the Accuracy of Predicted Scanpaths. Clemson
University.

McKee, S. and Nakayama, K. (1984). The detection of mo-
tion in the peripheral visual field. Vision Research,
24(1):25–32.

Murphy, H. and Duchowski, A. T. (2001). Gaze-contingent
level of detail rendering. In Proceedings of Euro-
graphics 2001, Manchester, UK.

O’Sullivan, C., Radach, R., and Collins, S. (1999). A model
of collision perception for real-time animation. In
Proc. 1999 Conference on Computer Animation and
Simulation - Eurographics Workshop (EGCAS, pages
67–76. Springer.

Raj, A. and Rosenholtz, R. (2010). What your design looks
like to peripheral vision. In Proceedings of the 7th
Symposium on Applied Perception in Graphics and Vi-
sualization, APGV ’10, pages 89–92, New York, NY,
USA. ACM.

Reddy, M. (2001). Perceptually optimized 3D graphics.
IEEE Comput. Graph. Appl., 21(5):68–75.

Thrane, N., Simonsen, L. O., and Ørbæk, P. (2005). A com-
parison of acceleration structures for gpu assisted ray
tracing. Technical report.

Wald, I. and Havran, V. (2006). On building fast kd-trees for
ray tracing, and on doing that in O(N log N). In Pro-
ceedings of the 2006 IEEE Symposium on Interactive
Ray Tracing, pages 61–70.

Whitted, T. (1980). An improved illumination model for
shaded display. Commun. ACM, 23(6):343–349.

GRAPP�2014�-�International�Conference�on�Computer�Graphics�Theory�and�Applications

208

