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Abstract: Autonomous monitoring of fruit crops based on mobile camera sensors requires methods to segment fruit
regions from the background in images. Previous methods based on color and shape cues have been successful
in some cases, but the detection of textured green fruits among green plant material remains a challenging
problem. A recently proposed method uses sparse keypoint detection, keypoint descriptor computation, and
keypoint descriptor classification followed by morphological techniques to fill the gaps between positively
classified keypoints. We propose a textured fruit segmentation method based on super-pixel oversegmentation,
dense SIFT descriptors, and and bag-of-visual-word histogram classification within each super-pixel. An
empirical evaluation of the proposed technique for textured fruit segmentation yields a 96:67% detection rate,
a per-pixel accuracy of 97:657%, and a per frame false alarm rate of 0:645%, compared to a detection rate of
90:0%, accuracy of 84:94%, and false alarm rate of 0:887% for the baseline sparse keypoint-based method.
We conclude that super-pixel oversegmentation, dense SIFT descriptors, and bag-of-visual-word histogram
classification are effective for in-field segmentation of textured green fruits from the background.

1 INTRODUCTION

Precision agriculture aims to help farmers increase
efficiency, enhance profitability, and lessen environ-
mental impact, driving them towards technological in-
novation. The global trend towards large-scale plan-
tation and demand to increase productivity has in-
creased precision agriculture’s importance.

One aspect of precision agriculture is crop inspec-
tion and monitoring. Conventional methods for in-
spection and monitoring are tedious and time consum-
ing. Farmers must hire laborers to perform the task or
use sample-based monitoring.

Over the years, researchers have investigated
many technologies to reduce the burden and broaden
the coverage of crop monitoring. Satellite remote
sensing facilitates crop vegetation index monitoring
through spectral analysis. Spectral vegetation in-
dices enable researchers to track crop development
and management in a particular region albeit at a very
coarse scale.

Another solution to the monitoring problem is to
use one or more camera sensors mounted on an au-
tonomous robot. Among the difficulties with this ap-

proach are limitations in computational resources and
image quality. However, it is possible to use simplis-
tic processing for navigation but send sensor data to a
host machine for more sophisticated offline process-
ing to detect fruits or other features of interest; in this
case the processing need not satisfy hard real-time
constraints.

Our focus is thus to build an autonomous fruit crop
inspection system incorporating one or more mobile
camera sensors and a host processor able to analyze
the video sequences in detail. The first step is to re-
trieve images containing fruits. Then we must seg-
ment the fruit regions from the background and track
the fruit regions over time. Such a system can be used
to monitor fruit health and growth trajectories over
time and predict crop yield, putting more detailed in-
formation in the hands of the farmer than has previ-
ously been possible.

Several research teams have been developing
methods to classify, segment, and track fruit regions
from video sequences for fruit health monitoring,
crop management, and/or yield prediction. The com-
mon theme is the use of supervised learning for classi-
fication and detection. The classifier may incorporate

441Qureshi W., Satoh S., Dailey M. and Ekpanyapong M..
Dense Segmentation of Textured Fruits in Video Sequences.
DOI: 10.5220/0004689304410447
In Proceedings of the 9th International Conference on Computer Vision Theory and Applications (VISAPP-2014), pages 441-447
ISBN: 978-989-758-004-8
Copyright c
 2014 SCITEPRESS (Science and Technology Publications, Lda.)



features characterizing color, shape, or texture of fruit
or plants. Schillaci et al. (2012) focus on tomato iden-
tification and detection. They train a classifier offline
on visual features in a fixed sized image window. The
online detection algorithm performs a dense multi-
scale scan over a scanning window on the image. Sen-
gupta and Lee (2012) present a similar method to de-
tects citrus fruits. However, such methods are depen-
dent on the shape of the fruit and will not work when
the shape of the fruit region is highly variable due to
occlusion by plant material.

Roy et al. (2011) introduce a method to detect
pomegranate fruits in a video sequence that uses
pixel clustering based on RGB intensities to iden-
tify frames that may contain fruits then uses morpho-
logical techniques to identify fruit regions. The au-
thors use k-means clustering based on grayscale in-
tensity, then, for each cluster, they calculate the en-
tropy of the distribution of pixel intensities in the red
channel. They find that clusters containing fruit re-
gions have less random distributions in the red chan-
nel, resulting in lower entropy measurements, allow-
ing frames containing fruits to be selected efficiently.
Dey et al. (2012) demonstrate the use of structure
from motion and point cloud segmentation techniques
for grape farm yield estimation. The point cloud sege-
mentation method is based on the color information
in the RGB image. Another method based on RGB
intensities is presented by Diago et al. (2012). They
characterize grapevine canopy and leaf area by classi-
fication of individual pixels using support vector ma-
chines (SVMs). The method measures the area (num-
ber of pixels) of image regions classified into seven
categories (grape, wood, background, and 4 classes
of leaf) in the RGB image. All of these methods may
work with fruit that are distinguishable from the back-
ground by color but would fail for fruits that have
color similar to the color of the plants.

Much of the previous research in this field has
made use of the distinctive color of the fruits or plants
of interest. When the object of interest has distinctive
color with respect to the background, it is easy to seg-
ment based on color information then further process
regions of interest. To demonstrate this, consider the
image of young pineapple plants in Figure 1(a). We
built a CIELAB color histogram from a ground truth
segmentation of a sample image then thresholded the
back-projection of the color histogram onto the orig-
inal image. As can be seen from Figures 1(b)–1(c),
the plants are quite distinctive from the background.
However, color based classification fails when the ob-
jects of interest (e.g., the pineapples in Figure 1(d))
have coloration similar to that of the background, as
shown in Figure 1(e).

To address the issue of objects of interest that
blend into a similar-colored background, Chaiviva-
trakul and colleagues (Chaivivatrakul et al., 2010;
Moonrinta et al., 2010) describe a method for 3D re-
construction of pineapple fruits based on sparse key-
point classification, fruit region tracking, and struc-
ture from motion techniques. The method finds sparse
Harris keypoints, calculates SURF descriptors for the
keypoints, and uses a SVM classifier trained offline
on hand-labeled data to classify the local descrip-
tors. Morphological closing is used to segment the
fruit using the classified features. Fruit regions are
tracked from frame to frame. Frame-to-frame key-
point matches within putative fruit regions are fil-
tered using the nearest neighbor ratio, symmetry test,
and epipolar geometry constraints, then the surviving
matches are used to obtain a 3D point cloud for the
fruit region. An ellipsoid model is fitted to the point
cloud to estimate the size and orientation of each fruit.
The main limitation of the method is the use of sparse
features with SURF descriptors to segment fruit re-
gions. Filling in the gaps between sparse features us-
ing morphological operations is efficient but leads to
imprecise delineation of the fruit region boundaries.
To some extent, robust 3D reconstruction methods
can clean up these imprecise boundaries, but the en-
tire processing stream would be better served by an
efficient but accurate classification of every pixel in
the image.

Unfortunately, calculating a texture descriptor for
each pixel in an image then classifying each descrip-
tor using a SVM or other classifier would be far too
computationally expensive for a near-real-time video
processing application.

In this paper, we therefore explore the potential of
a more efficient dense classification method based on
the work of Fulkerson et al. (2009). The authors con-
struct classifiers based on histograms of local features
over super-pixels then use the classifiers for segmen-
tation and classification of objects. They demonstrate
excellent performance on the PASCAL VOC chal-
lenge dataset for object segmentation and localization
tasks. For fruit detection, super-pixel based methods
are extremely useful, because super-pixels tend to ad-
here to natural boundaries between fruit and non-fruit
regions of the image, leading to precise fruit region
boundaries, outperforming sparse keypoint methods
in terms of per-pixel accuracy. To our knowledge,
dense texture-based object segmentation and classi-
fication techniques have never been applied to detec-
tion of fruit in the field where color based classifica-
tion does not work.

In the rest of the paper we describe our algorithm
and implementation, perform a qualitative and quan-
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(a) (b) (c) (d) (e)

Figure 1: Example CIELAB color histogram based detection of plants. (a) Young plants. (b) Detection of plants in image (a)
using a conservative threshold. (c) Detection of plants in image (a) using a liberal threshold. (d) Grown plants. (e) CIELAB
color histogram based detection of fruit in image (d) using a conservative threshold.

titative analysis of experimental results, and conclude
with a discussion of possibilities for further improve-
ment.

2 METHODOLOGY

Following Fulkerson et al. (2009), our methodology
for localized detection of pineapple fruit is based on
SVM classification of visual word histograms. It con-
sists of two components, offline training of the clas-
sifier and online detection of fruit pixels using the
trained classifier. Offline training requires a set of
labeled images selected from one or more training
video sequences. Here we summarize the algorithm
and provide implementation details for effective fruit
segmentation.

2.1 Training Algorithm

Inputs: I (number of training frames), V (maximum
number of visual words), D (number of descriptors
used to train clustering model), H (number of super-
pixel histograms to select per image), N (number of
adjacent super pixels to include in each super-pixel’s
histogram), CRF flag (whether to include a condi-
tional random field in the model).

1. Generate the training data by manual annotation:

(a) Select I frames manually and segment the re-
quired object of interest (pineapple) for each
frame.

(b) Divide the data into training and cross valida-
tion data.

2. Perform super-pixel based image segmentation
for each frame.

3. Extract dense descriptors for each frame using the
dense-SIFT algorithm.

4. Create dictionary of visual words:

(a) Randomly select D descriptors over all training
images for clustering.

(b) Run k-means to obtain V clusters correspond-
ing to visual words.

5. Extract training bag-of-visual-word histograms:

(a) Randomly select H super-pixels per image.
(b) For each super-pixel and its N nearest neigh-

bors, construct a histogram counting the occur-
rence of each dense-SIFT visual word.

(c) Normalize each histogram using L1 norm.

6. Train a RBF-based SVM on the training his-
tograms.

7. Validate the classifier using cross validation im-
ages.

8. If conditional random field (CRF) training is de-
sired, train a CRF model.

Fulkerson et al.’s CRF is trained to estimate the
conditional probability of each super-pixel’s label
based on the SVM classification results and the super-
pixel adjacency graph. A unary potential encourages
labeling with the SVM classifier’s output, while bi-
nary potentials encourage labelings consistent with
neighboring super-pixels. The optimization tends to
improve the consistency of the labeling over an entire
image.

2.2 Runtime (Model Testing) Algorithm

Inputs: test video sequence, model from training
phase.

1. For each frame in the video sequence:

(a) Perform super-pixel based image segmentation.
(b) Extract visual word histograms for each super-

pixel.
(c) Classify each super-pixel as fruit or non-fruit

using the trained classifier.
(d) If CRF post-processing is desired, reclassify

each super-pixel using the CRF.
(e) Compare segmentation result with ground

truth.
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(a) (b)

(c) (d)

Figure 2: Sample procesing of an image acquired in a
pineapple field. (a) Ground-truth annotation of pineapple
fruit. (b) Quick-shift super-pixel segmentation of image
(a). (c) Dense-SIFT descriptors are calculated for every im-
age pixel except those near the image boundary (the image
shown is a magnification of the upper left corner of image
(a). (d) Confidence map for pineapple fruit. Higher inten-
sity indicates higher confidence in fruit classification.

2.3 Implementation Details

Construction and training of the offline classi-
fier requires training images and ground-truth data.
Ground-truth labels (fruit or non-fruit) for each pixel
in each training and test image must be prepared man-
ually. Figure 2(a) shows an example of the ground-
truth generated for pineapple fruits, including the fruit
crown in one test image. The red regions are fruit pix-
els.

We use quick-shift (Vedaldi and Soatto, 2008)
for super-pixel segmentation. Quick-shift is a gra-
dient ascent method that clusters five-element vec-
tors containing the (x;y) position and CIELAB color
of each pixel in the image. We manually adjusted
quick-shift’s parameters (ratio=0:5, kernel size = 2,
and maximum distance=6) through preliminary ex-
periments such that the boundaries of fruit and plants
are preserved with large possible segments. These
paramenters are dependent on image resolution, dis-
tance to the camera, and clutteredness of the scene.
The CIELAB color space separates luminosity from
chromaticity, which normally leads to more reason-
able super-pixel boundaries than would clustering
based on color spaces such as RGB that do not sep-
arate luminosity and chromaticity components. Fig-
ure 2(b) shows a super-pixel segmentation of the im-
age from Figure 2(a) constructed by assigning each
super-pixel’s average color to all of the pixels in that
super-pixel.

The algorithm uses dense-SIFT as the local de-

scriptor for each pixel in a super-pixel. Dense-SIFT is
type of histogram of oriented gradient (HOG) descrip-
tor that captures the distribution of local gradients in a
pixel’s neighborhood. We used the fast DSIFT imple-
mentation in the VLFeat library (Vedaldi and Fulker-
son, 2008). The method is equivalent to computing
SIFT descriptors at defined locations at a fixed scale
and orientation.

We use spatial bin size of 3� 3, which creates a
descriptor spanning a 12�12 pixel image region. We
use a step size of 1, meaning that descriptors should
be calculated for every pixel in the image except for
boundary pixels (see Figure 2(c)).

We use k-means to cluster the SIFT descriptors
across the training set. Based on experience from pre-
liminary experiments, we use 1 million randomly se-
lected descriptors and a maximum number of visual
words V = 100.

A local histogram of the visual words (k-means
cluster IDs) in each super-pixel is extracted then nor-
malized using the L1 norm. Since local histograms
based on a small number of pixels in a region with
uniform coloration can be quite sparse, each his-
togram may be augmented by including the SIFT
descriptors of neighboring super-pixels. We exper-
imented with including 0, 1, 2, and 3 neighboring
super-pixels in creating histograms. Figure 3 shows
a comparison of the effect of adding adjacent super-
pixels to two sample super-pixel histograms in a train-
ing image. The figure shows the increase in density
as adjacent neighboring super-pixels are added to the
histogram. In the experimental results section, we fur-
ther discuss experiments to establish the best number
of adjacent super-pixels.

Our method uses SVMs to perform binary classi-
fication of super-pixel visual word histograms as fruit
or not fruit. To find the optimal parameters of the clas-
sifier, for each training image, we randomly extracted
100 histograms with an equal number of positive and
negative examples. Each training super-pixel is la-
beled with the ground-truth label of the majority of
pixels in the super-pixel. We use the radial basis func-
tion (RBF) kernel for the SVM classifier, using cross
validation to find the hyperparameters c and g. We use
Fulkerson et al.’s conditional random field (CRF) as a
post-process on top of the SVM classification. The
CRF is trained over a subset of the training images.

Segmenting a new image using the trained model
requires super-pixel over-segmentation, dense-SIFT
descriptor computation, visual word histogram cal-
culation, and SVM classification. The classifier out-
puts a confidence for each super-pixel; a super-pixel
is classified as a fruit region if the confidence is
higher than a threshold. Figure 2(d) shows a confi-
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Figure 3: Comparison of visual word histograms of two randomly selected super-pixels with 0, 1, 2, or 3 adjacent super-pixels
included in the histogram.

Figure 4: Comparison of fruit segmentation with (left) and
without (right) CRF post-processing of the SVM classifier’s
output.

dence map for the image from Figure 2(a). Finally,
the SVM classification results are post-processed us-
ing the trained CRF. Figure 4 shows the qualitative
improvement in the segmentation after CRF post-
processing.

3 EXPERIMENTAL RESULTS

In order to evaluate the proposed method, we per-
formed three experiments. In the first experiment
we processed video data on young pineapple plants
with the aim of segmenting the plants from the back-
ground, and in the second experiment, we processed
video data on mature plants with the aim of segment-
ing fruit from the background. In the third experi-
ment, we compare the best classifier from Experiment
II with the method of Chaivivatrakul and colleagues.
We obtained the datasets from the authors. The video
sequences were acquired from monocular video cam-
eras mounted on a ground robot. We used dual-core
machine with 2GB of memory as the host machine.
Details of each experiments are given below.

3.1 Experiment I: Young Pineapple
Plants

The young pineapple data set is a 63-second video
from one row of a field acquired at 25 fps. We ex-
tracted 27 images, selecting 20 for training and re-
serving seven for the test set. We ensured that the
plants in the training images did not overlap with the
plants in the test images. We performed ground-truth
labeling of plant and non-plant regions using the VOC
tool (Vanetti, 2010). Figure 5(a) shows the labeling of
a sample image.

We tested with different values for N (the num-
ber of adjacent neighboring super-pixels to include
in each histogram). A sample result of online detec-
tion, obtained with N = 2 and CRF post-processing,
is shown in Figure 5(b). The per-pixel accuracy data
are summarized in Figure 6(a).

(a) (b)

Figure 5: Detection of young pineapple plants. (a) Man-
ually generated ground-truth segmentation. (b) Automatic
detetction using proposed method.
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(a)

(b)

(c)

Figure 6: Per-pixel segmentation accuracy in Experiments
I and II. (a) Experiment I results (young pineapple plants).
(b) Experiment II results (pineapple fruit segmentation) la-
beling fruit crown as non-fruit. (c) Experiment II results
(pineapple fruit segmentation) labeling fruit crown as fruit.

3.2 Experiment II: Mature Pineapple
Plants

The mature pineapple plant dataset contains video se-
quences for six rows of plants. To train a first ver-
sion of the model, we selected 50 images from the
sixth row, out of which 40 were used for training and
10 were reserved for testing. For this data set, we
prepared ground-truth labeling that includes the fruit
crown as part of the fruit. For a second version of the
model that can be compared directly to that of Moon-
rinta et al. (2010), we used a set of 120 images parti-
tioned into six subsets. Each 20-image subset is ex-
tracted from the video of one row of plants such that
each image contains at least one new fruit. The train-
ing comprised thw 100 images from rows 1, 2, 4, 5,
and 6, while the test data comprised the 20 images
from row 3. We selected 50 random images from the
training dataset and used the same 20 images from the
third row as the test set and used the same manual la-
beling provided by Moonrinta et al., in which only the
fruit skin without the crown is labeled as fruit.

(a)

(b)

Figure 7: Experiment II results. (a) Results including fruit
crown as part of the fruit. (b) Results not including fruit
crown as part of the fruit.

The per-pixel accuracy for both versions of the
model and ground truth data are summarized in Fig-
ures 6(b) (crown not included as part of the fruit) and
6(c) (crown included as part of the fruit).

The accuracy data indicate that the classifier per-
forms best with N = 2 and CRF post-processing.
We use this configuration in subsequent comparisons.
Sample segmentation results for both versions of
the model with different ground truth conditions are
shown in Figure 7.

3.3 Experiment III: Comparison with
Sparse Keypoints

In Experiment III, we compared our results with those
of Chaivivatrakul and colleagues. We used the ver-
sion of our model trained on the same data with fruit
crowns not included in the ground truth labeling of
fruit. The comparison is shown in Table 1. Clearly,
oversegmentation and visual word histogram classi-
fication outperforms the state of the art method for
segmentation of textured fruit.

The main reason for the improvement in perfor-
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Table 1: Comparison of segmentation accuracy with other
methods.

Method
Pixel

Accuracy
Hits Misses

False
alarms

Moonrinta et
al. (2010)

84:94% 90% 10%
0:887%

Chaiviva-
trakul et

al. (2010)
87:79% NA NA NA

Proposed
Method

97:657%
96:67%

3:22%
0:645%

(a) (b)

Figure 8: Pineapple fruit detection. (a) Detection and pre-
cise segmentation using our implementation. (b) Detection
using method of Moonrinta et al. (2010).

mance is that the super-pixel segmentation tends to
conform to the fruit-background boundary, whereas
the morphological processing following sparse key-
point classficiation does not. Figure 8 shows a sample
of the resulting of segmentation by each method.

4 CONCLUSIONS AND FUTURE
WORK

We have demonstrated a dense approach to textured
fruit segmentation. An immediate extension of our
work would be to find dense correspondences be-
tween fruit regions in subsequent images in the video
sequence; this would help us track fruit accurately
over time. The dense correspondence method could
be performed as described by Lhuillier and Quan
(2005). Dense-depth information could be estimated
for fruit regions using structure from motion methods
(Pollefeys et al., 2004), which would further aid in
tracking of individual fruit. We intend to evaluate the
demonstrated method on other crops such as corn and
on video sequences obtained from aerial vehicles in
addition to ground vehicles.
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