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Abstract: The precise temporal attribution of environmental events and measurements as well as the precise schedul-
ing and execution of corresponding reactions is of utmost importance for networked sensor/actuator systems.
Apart, achieving a well synchronized cooperation and interaction of these wirelessly communicating dis-
tributed systems is yet another challenge. This paper summarizes various related problems which mainly
result from the discretization of time in digital systems. As an improvement, we’ll present a novel technique
for the automatic creation of highly precise event timestamps, as well as for the scheduling of related (re-
)actions and processes. Integrated into an operating system kernel at the lowest possible software level, we
achieve a symmetric error interval around an average temporal error close to 0 for both the timestamps and the
scheduled reaction times. Based on this symmetry, we’ll also introduce a dynamic self-calibration technique
to achieve the temporally exact execution of the corresponding actions. An application example will show
that our approach allows to determine the clock drift between two (or more) independently running embedded
systems without exchanging any explicit information, except for the mutual triggering of periodic interrupts.

1 INTRODUCTION

Wireless sensor/actuator networks (WSAN) are com-
monly deployed to observe and interact with their en-
vironment. In this respect, temporal and spatial in-
formation are the two most fundamental measures for
the “attribution” or “tagging” of states and events (i.e.
state transitions) within any observed environment. In
this context, the states describe a set of physical and
logical conditions at a given position and at a certain
time, and they are specified by one or more continu-
ous or discrete state values.

Recorded over a certain period of time, variations
in the state values allow the detection and analysis
of events and event patterns within the environment
(Wittenburg et al., 2010) (Römer, 2008). These vari-
ations do not only indicate the events’ spatial extend,
propagation speed, and influence on the environment,
but most commonly they also allow the prediction of
future states for both the observing system and its sur-
rounding. In this regard, the interaction with the envi-
ronment, which we already proclaimed to be the most
central objective in sensor/actuator systems, typically
requires the precise knowledge of time and space to
be associated with a node’s self-captured and exter-

nally obtained values in order to properly correlate
the contained information, and to trigger adequate re-
actions. In fact, measured or otherwise obtained en-
vironmental information is often useless unless it is
associated with temporal and spatial information.

This paper starts with a discussion of various
problems regarding time in digital systems. Next, we
present a novel approach for taking timestamps, for
measuring and specifying temporal delays, and for
scheduling and ensuring reaction times with a sym-
metric temporal error around 0. Finally, a real-world
test bed shows how periodically communicating em-
bedded systems can determine their relative clock
drifts without any additional information exchange.

2 TIME IN DIGITAL SYSTEMS

In contrast to specific position vectors and state values
of e.g. sensor nodes (which can change sporadically,
arbitrarily and independently from each other), time
is a common property. It is system independent, and
advances continuously with a globally constant rate
of change. If the sensor nodes manage to establish a
network-wide and consistent notion of time, this in-
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formation provides a natural base for their joint inter-
action and with the environment. Since processors in
synchronous digital systems like sensor nodes are al-
ways driven by a clock generator C with frequency fC
and period lC = 1

fC
, time and time intervals can easily

and individually be measured – at least in theory: If it
is possible to count the number of elapsed clock peri-
ods since a well defined point in time, e.g. the system
start, each captured event e, e.g. indicated by an inter-
rupt, can be attributed with its current counter value
ce. Consequently, the event’s absolute local system
time t̃e can easily be recovered by

t̃e := ce �lC; (1)

and the time difference (i.e. the delay) D̃e1;e2 between
two events e1;e2 computes as

D̃e1;e2 := t̃e2 � t̃e1 = (ce2 � ce1) �lC: (2)

Obviously, both the time t̃e and the delay D̃e1;e2 al-
ready involve a concept-inherent imprecision caused
by the discretized counter values ce 2N. In addition,
we silently assumed for Eq. (1) and Eq. (2) that lC is
perfectly known and constant. Neither is true under
real-world conditions, and leads to well-known prob-
lems, we’ll address and counteract in this paper.

Furthermore, as often requested for interactive
systems, a reaction r can be scheduled for a captured
event e. Its intended execution time t 0r 2 R is com-
monly related to any event timestamp t 0e 2 R by the
specification of a corresponding delay D0e;r 2R:

t 0r = t 0e +D
0
e;r (3)

However, in the best case, i.e. if the (operating
system) scheduler permits the timely switch to the re-
sponding task’s context, the reaction will be triggered
upon reaching the corresponding counter value cr 2N
and the corresponding system time t̃r. In any case, the
finally observable reaction delay depends on the res-
olution lC of the system timer:

cr = ce +

�
D0e;r
lC

�
t̃r = t̃e +

�
D0e;r
lC

�
�lC (4)

Although the inherent rounding imprecision is
quite intuitive and introduces various hidden imple-
mentation problems in real systems, it is commonly
simply ignored. Moreover, for concurrent task sys-
tems with dynamic execution flows, there is an addi-
tional error in t̃r which is neither constant nor pre-
dictable. Since most embedded operating systems
silently accept even this problem, application devel-
opers are urged to compensate the imprecision with
little control at the task level. SensorOS (Kuorilehto
et al., 2007) at least tries to execute reactions in time
by scheduling the responsible task earlier. Yet, the

applied “delta time” is constant and won’t adapt to
changing system loads as well.

In the following we’ll indicate and discuss the
causes and effects of the mentioned problems in de-
tail, and present an approach at the kernel level to re-
liably compensate the related imprecision in the aver-
age case.

Problem P1: Discretization of time. The differ-
ence between the true global time t 0 and the individual
system time t̃ has already become visible in Eq. (1)
and Eq. (4). While the first advances continuously,
the use of a digital counter leads to a discretization of
the latter, and imposes a resolution which directly de-
pends on the counter’s clock frequency fC. This may
lead to serious systematic errors for the time measure-
ment and the subsequent scheduling of reactions:

The simple capturing of a timestamp t for an event
– the so called timestamping – is immediately affected
by some inevitable rounding, and suffers from a mea-
surement error Et 2 I1 with jI1j = lC. For the naı̈ve
and adverse reading of the timer counter, rounding
down results in I1 := [0;lC), and induces a symmetry
around the average measurement error Et;av = 1

2 lC.
Depending on the use of such timestamps, the emerg-
ing errors might accumulate during the system run-
time. Similarly, the explicit specification of delays
D0t in software is also subject to rounding errors ED.
However, we can round half up (e.g. according to
DIN 1333) manually when selecting a delay, and thus
the corresponding error is ED 2 I3 := [� 1

2 lC;+
1
2 lC).

Though not avoidable entirely, I3 is at least symmetric
around 0, and the average error is 0.

Based on these two fundamental error intervals
I1 and I3, other intervals can be derived, and con-
sequently exhibit an imprecision, too: For the mea-
surement of delays DE , we see the implicit compen-
sation of the asymmetry in I1: ED 2 I2 := I1� I1 =
(�lC;+lC). In contrast, the scheduling of reaction
times t on external events inherits the asymmetry in I1:
Et 2 I4 := I1 + I3 = [� 1

2 lC;+
3
2 lC). System reactions

will consequently suffer from an average systematic
lateness of 1

2 lC.
Table 1 summarizes the error types and their cor-

responding intervals which must be expected for the
naı̈ve capturing of timestamps by simply reading the
timer register after the corresponding event occur-
rence (e.g. within an IRQ handler). The resulting ef-
fects, and our proposed solution to compensate this
asymmetry, will be discussed later.

Problem P2: Capturing of timestamps. The cre-
ation of reactive systems demands for the precise
assignment of timestamps for internal and external
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Table 1: Error intervals for different discretization techniques (system time resolution: lC).

Naı̈ve discretization Our discretization approach

problem / error type derived from error interval symmetry error interval symmetry

P1: capturing of fundamental I1 = [0;lC) E
1
2 lC E I3 = [� 1

2 lC;+
1
2 lC) 0

timestamps
P2: measurement of I1� I1 I2 = (�lC;+lC) 0 I2 = (�lC;+lC) 0

delays
P3: specification of fundamental I3 = [� 1

2 lC;+
1
2 lC) 0 I3 = [� 1

2 lC;+
1
2 lC) 0

delays
P4: scheduling of I1 + I3 I4 = [� 1

2 lC;+
3
2 lC) E

1
2 lC E I4 = [�lC;+lC) 0

reaction times

events. Reaching a voltage threshold at an analog-
digital-converter (ADC) or detecting a signal edge at
an I/O pin are just two simple examples. However,
most observable changes within the environment have
one thing in common: They are indicated to the CPU
at runtime by so called interrupt requests (IRQs), and
should be handled as soon and as fast as possible by
the corresponding interrupt service routines (ISRs).
Since ISRs are commonly higher privileged than reg-
ular application code, they will preempt the latter for
their own execution. Thus, they seem to be perfectly
suitable for capturing the timestamp for any emerging
event. However, even the first instruction within each
ISR is not executed before some additional delay,
which is also known as interrupt latency DIRQ: If the
timer value cTS for the timestamp itself is copied af-
ter another implementation-specific delay DISR within
the ISR, then we can compute the discrete timestamp
t̃e for the captured event e as follows:

t̃e = cTS �lC� (DIRQ +DISR) = t̃TS�DTS (5)

Hence, a prerequisite for reliable time tracking via
Eq. (5) is, that the correction value DTS is constant
and free from rounding errors with respect to the dis-
crete system time period. As we will see, both can be
achieved through careful code preparation.

Problem P3: Simultaneity and scheduling reliabil-
ity. Although the perfectly simultaneous transition
of two states can never occur in real systems1, the sur-
jective discretization of time can easily lead to the as-
signment of exactly the same system time for multiple
events or scheduled actions. Since resource conflicts
often prevent the truly parallel processing of events
as well as the simultaneous execution of (re)actions,
they usually lead to an implicit serialization. The or-
der depends on the task scheduler and the internal task
priorities. Since there is most commonly just a single

1The resolution of the time measurement must simply
be chosen fine enough!

IRQ controller, this is already true for the generation
of timestamps. In fact, the maximum degree of par-
allelism is always limited by the number of available
functional units2. A reliable scheduling (e.g. for com-
plying to hard real-time demands) must be achieved
through either static techniques at development time
or dynamic methods at runtime. A corresponding
technique for dynamic resource management under
real-time conditions is presented in (Baunach, 2012).

Problem P4: Imprecision in the timer frequency.
Time measurement in digital systems is usually ac-
complished by using a pulse generator with a spec-
ified frequency f0. Internally, this component uses
an oscillator (most commonly a quartz crystal) to
generate a periodic clock signal. The characteristics
and stability of such oscillators depend significantly
on their manufacturing parameters, age, and various
environmental conditions like e.g. voltage variations
(Hewlett Packard, 1997): A varying frequency drift
D f must always be expected. Its relative error D f

f0
is commonly expressed in units of parts per million
(ppm). For simple low-cost quartzes, and within the
typical temperature ranges of WSAN applications,
the temperature sensitivity of a typical HC49 quartz
can already result in deviations of � 20 ppm.

Variations in the clock precision are especially
critical in distributed applications. Since time mea-
surement is initially individual for each involved sys-
tem and therefore can drift apart, this may quickly
generate inconsistent data, and must be compensated
by adequate and repeated synchronization measures.

Problem P5: Global time base and synchroniza-
tion with other systems. When does time measure-
ment actually start, i.e. when is or was time t0 = 0? If
we consider a completely independent system which
uses the notion of time only for its internal operation,

2Functional units refer to e.g. processors and their cores,
or to autonomously operating peripheral components.
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e.g. to capture events and to schedule actions by a par-
tial order3, the use of a pure local time with arbitrary
begin is absolutely sufficient – e.g. time t0 = 0 may
simply indicate the system start. However, as soon
as time is of global relevance, e.g. if actions have to
take place synchronized on different systems, a com-
mon time base is often indispensable. This immedi-
ately raises the question about which time or which
system is used as reference. In any case, its provider
should be highly available and exhibit a high clock
stability and precision. Several methods exist for the
actual synchronization: Some are based on (regular)
time checks or on the measurement of the pairwise
drift between the involved systems. Others rely on
dedicated reference systems and allow the synchro-
nization based on centrally triggered events like e.g.
radio broadcasts (cf. GPS and the DCF77 protocol).
Finally, distributed methods are available for multi-
hop systems to successively achieve a common time
base, e.g. via Desynchronization (Mühlberger, 2013).

3 AN ADVANCED TIME
DISCRETIZATION APPROACH

Considering the aforementioned problems, which
originated from the integration of time-awareness into
digital systems, P1-P3 directly affect the environmen-
tal interaction and can be addressed by each system
individually. In contrast, P4 and P5 require some
information exchange with other systems. These
“peers”, however, are not necessarily available dur-
ing the entire system runtime. For this reason, P1-P3
are treated locally at the embedded systems level (e.g.
in the operating system kernel), while P4 and P5 must
be addressed more globally (e.g. in the network layer
or at application level).

At the embedded systems level, our approach re-
lies on a hardware timer component to provide a lo-
cal system timeline with a fixed temporal resolution.
The timeline management is integrated directly into
the OS kernel and accessible for all software layers
through the OS API. This unifies the usage by appli-
cation tasks and avoids execution time imponderabil-
ities through unpredictable code interleaving at run-
time. Based on our approach, the kernel automat-
ically captures a timestamp t̃e for each interrupt e,
and compensates the error’s asymmetry about 1

2 lC
which would result from using the naı̈ve approach
with I1 = [0;lC) as explained in Section 2. Therefore,
the kernel as a hardware abstraction layer provides

3“Partial”, since the discretization of time may lead to
simultaneity (! P3).

standardized and architecture dependent interrupt ser-
vice routines for introducing a constant and carefully
dimensioned delay DTS = DIRQ+DISR before actually
capturing the timer’s counter value after the IRQ oc-
currence. According to Eq. (5) we then have to reduce
the captured counter value by an adequate correction
value Dcorr: Selected properly, this correction finally
results in the symmetry about 0 for I1 := [� 1

2 l; 1
2 l).

While the timestamp measurement error Ete will still
be equally distributed over I1, this interval is shifted,
and the average timestamp error is reduced from ini-
tially 1

2 l down to 0. At the same time, the propaga-
tion and amplification of systematic errors for time-
dependent reactions will also be kept low and sym-
metric about 0, i.e. I4 = I1 + I3 = [�lC;+lC). Table
1 compares the error intervals of our compensation
approach with the naı̈ve technique.

How can this symmetry be guaranteed? In or-
der to deal with the related problems P1 and P2, we
propose a concept based on two synchronized clocks
with interdependent frequency. Thereby, we assume
the CPU frequency to be higher than the timer fre-
quency, while conversely, the system time is derived
from the quartz-stabilized CPU clock by an even inte-
ger divider. Commonly, both requests do not impose
an unreasonable restriction on the hardware/software
design: In fact, they are already satisfied in many
systems, since usually only a single central oscilla-
tor is used as base for all other system clocks. While
the CPU is commonly directly driven by this main
clock, other components apply power-of-two dividers
to derive their individual frequencies. Finally, and
for computationally constrained embedded systems in
particular, driving a local time with the maximum res-
olution would cause unnecessary CPU load4.

Besides the following formal description of our
approach, we also refer to the example in Figure 1
for a comprehensive understanding. Initially, we de-
note the CPU clock frequency as f and its period as
l. The system time frequency is denoted as fC and its
period as lC. In addition, we demand for

fC :=
f
a

and lC :=a �l with a2N�2;a even:
(6)

If an interrupt e occurs at time t 0e, the corre-
sponding timer counter ce will not be copied before
some system inherent delay DTS has passed. For our
approach, we request this delay to take exactly Dc
CPU cycles as follows:

4The system time must be accumulated in software at
every timer overflow. Especially for timers with small word
widths, this can quickly lead to a huge performance penalty.
For instance, a 16 Bit counter counting at fC = 1 MHz will
already overflow after every 65:536 ms.
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Figure 1: IRQ timestamp acquisition with our approach for various potential event occurrence times t 0e.

Dc := n �a+
a

2
with n 2N0 (7)

Thus, the delayed acquisition of the timestamp takes
place at time

t 0TS = t 0e +DTS = t 0e +Dc �
1
f
= t 0e +

�
n �a+

a

2

�
� 1

f
:

(8)
To compensate for this delay, and to force the

timestamp error interval I1 to become symmetric
around the true event occurrence time while also ex-
hibiting an average error close to 0, we can select the
correction value as an integer multiple of lC:

Dcorr := (n �a) � 1
f
= n �lC (9)

Thus, we simply have to subtract n from the
copied timer value ce to compute the timestamp t̃e for
the interrupt e:

t̃e =
�

t 0TS
lC

�
�lC�Dcorr = ce �lC�n �lC =(ce�n) �lC

(10)
Since ce (timer driven) and n (constant) are inte-

gers of architecture word width, their subtraction is
easily accomplished. Besides, the result’s resolution
implicitly equals the resolution of the system time.
However, we still have to prove the symmetry about 0
for the error intervals in Table 1:

Lemma 1. For our discretization approach the error
intervals I1; I2; I3, and I4 for taking timestamps, for
measuring and specifying delays, as well as for com-
puting reaction times are symmetric about 0.

Proof. While I3 is not affected by our novel approach,
the demanded symmetry of I1; I2, and I4 can easily be

proofed by some interval arithmetic. With Eq. (8),
(10) the expected error Ete of the timestamp t̃e com-
putes as
Ete = t 0e� t̃e

=

�
t 0TS�

�
n �a+

1
2
�a
�
� 1

f

�
�
��

t 0TS
lC

�
�lC�n �lC

�
= t 0TS�

�
t 0TS
lC

�
�lC| {z }

2[0;lC)

�1
2
�lC 2

�
�1

2
lC;+

1
2

lC

�

) I1 =

�
�1

2
lC;+

1
2

lC

�
) I2 = I1� I1 =

�
�1

2
lC;+

1
2

lC

�
�
�
�1

2
lC;+

1
2

lC

�
= (�lC;+lC)

) I4 = I1 + I3 =

�
�1

2
lC;+

1
2

lC

�
+

�
�1

2
lC;+

1
2

lC

�
= [�lC;+lC)

3.1 An Implementation Example

As an example, we’ll take a look at the integration
of our novel approach into the reference implemen-
tation of SmartOS (Baunach et al., 2007) for the
MSP430F1611 (Texas Instruments Inc., 2006) MCU
and the SNoW5 sensor nodes (! Figure 1) . While
the main clock drives the CPU at f = 8 MHz, the di-
vider a = 8 derives the frequency fC = 1 MHz for the
system time with a resolution of 1 �s. According to
Eq. (7), an adequate delay Dc between each interrupt
occurrence and the acquisition of its timestamp can
be adjusted through n:

Dc := n �a+
a

2
= n �8+4 with n 2N0 (11)
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1 __irq_e:
2 ; hardware IRQ latency ; +6 CPU cycles from t 0e DIRQ = 6l

3 nop ; +1 CPU cycle \

4 nop ; +1 CPU cycle > DISR = 6l

5 mov &TIMER_COUNTER , &TS ; +4 CPU cycles for latch in /

6 ; Total delay of captured timestamp: DTS = DIRQ+DISR = 12l = 1:5µs
7

8 mov #e, &__irq_number ; save IRQ number for subsequent processing in the associated event handler

9 jmp __kernel_entry ; jump to kernel code

Listing 1: Timestamping within a specially prepared kernel ISR for IRQ number e.

Listing 1 shows the standardized kernel ISR for any
interrupt with number e: Since the CPU inherently de-
lays the acceptance of an interrupt by DIRQ = 6 CPU
cycles, we already have to select n � 1. In fact, we
did select n= 1 and thus have to wait for an additional
number of DISR := Dc�DIRQ = 6 CPU cycles within
the ISR (1 �8+ 4 = 6+ 6). According to the specifi-
cation of the mov instruction, which is used for saving
the timer value TS in Line 5, it takes 4 CPU cycles
until the value is read from the special function reg-
ister TIMER COUNTER. The remaining two cycles are
filled up by nop instructions. After the acquisition of
the counter value, the specific IRQ number is saved
and the kernel mode is entered for the actual event
handling.

To save CPU time the ISR will only save the cur-
rent 16 Bit timer value which indicates the delay since
the last timeline update. The computation of the final
absolute timestamp t̃e is initially avoided, and delayed
until the application’s event handler requests this in-
formation from the OS. Then, according to Eq. (9), n
is simply subtracted from the event’s absolute counter
value ce, which in turn is the sum of the timeline and
the just captured timer value TS. With Eq. (10) the
result can directly be interpreted as absolute system
time given in the timeline resolution of 1 �s:

t̃e = (ce�n) �lC = (timeline+TS�n) �lC (12)

Note that the applied computation is correct, as long
as the IRQ handlers are always executed in kernel
mode where further interrupts are disabled and nei-
ther the timeline nor TS will change concurrently.

4 EVALUATION AND
APPLICATION EXAMPLE

The test bed for demonstrating the benefit of our
timestamping approach consists of pairs of nodes A;B
playing some sort of Ping Pong game as depicted in
Figure 2: By a wired or wireless remote connection,
one node, WLOG B, triggers an IRQ signal e0 which

is received and timestamped (t̃0) by the other node
A through the just presented timestamping approach.
After some fixed delay Ddelay the signal will be re-
turned by node A, and in turn the other node B catches,
timestamps, and returns the signal after the same de-
lay Ddelay. Having received the last trigger en with lo-
cal timestamp t̃n in a perfect system, the observed de-
lay D̃total;n between each node’s captured first and last
signal timestamp should obviously equal the mathe-
matically expected delay D0total;n:

D̃total;n := t̃n� t̃0
!
= 2n �Ddelay =: D

0
total;n (13)

However, this equality will commonly not be ob-
servable in real systems. In fact each involved device
will suffer from its own and the other device’s impre-
cision:

First, the nodes apply independent clocks, drift
apart, and, though globally fixed, they will finally not
defer their responses by exactly the same delay Ddelay.
Though our nodes’ CPUs are driven by quartzes from
the same lot, the clock drifts vary depending on the
selected node pair and the environmental influences
described before. In fact, Figure 3 shows significantly
different drifts dA;B(t) for three node pairs measured
over some time t.5

Second, the responses must be scheduled and ini-
tiated by the responsible task on each node. There-
fore, these tasks compute their next intended local re-
sponse time t�r from each previously captured signal
timestamp, and then sleep to release the CPU for other
tasks. However, waking up sufficiently early to emit
the signal in time is not that easy since some load-
dependent and variable system overhead must always
be taken into account.

Third, the base for each delay computation is
never perfect since each captured timestamp t̃c ex-
hibits an inherent error Et̃c 2 I1. While this cannot be

5The nodes with IDs 10, 11, and 72 were arbitrarily se-
lected from our pool. The drift was measured via an oscillo-
scope tracking the delay between two periodically triggered
I/O pins at both nodes of each pair. As a plausibility test,
the measured drift of each pair corresponds perfectly to the
other pairs’ drifts: 918 µs

100s +1900 µs
100s = 2818 µs

100s .
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Figure 2: The Ping Pong test
bed setup (remote connections
can be wired or wireless).
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Figure 3: Clock drift for three node pairs.

avoided entirely as discussed before, the error should
at least be about 0 �s in the average case according to
Lemma 1.

4.1 Signal TX and Self-Calibration

For the precisely timed signal emission, we pro-
pose a dynamic self-calibration scheme based on self-
observation. Therefore, the trigger signal will not
only be captured by the other node where it is tagged
with the timestamp t̃c, but also by the emitting node it-
self. We denote the corresponding local timestamp as
t̃r. If the intended local response time for the current
iteration has been computed as t�r , the lateness can be
computed afterwards and used as compensation value
Dcomp to adjust the delay for the next iteration at its
emission time t�r :

Dcomp := t̃r� t�r (14)
t�r := t̃c +Ddelay�Dcomp (15)

In fact, the response time precision error (Et�r 2
I4) depends not only on the two timestamps and their
particular precision error (Et̃r ;Et̃c 2 I1), but also on the
error in the measured delay (EDcomp 2 I2) and the hard
coded delay for the reply (EDdelay 2 I3) itself. Since we
intentionally selected Ddelay := m �lC with m 2N, at
least this value is free from rounding errors and I3 :=
[0;0) for this special application.

4.2 Pairwise Drift Calculation

For our tests we set up various node pairs A and B as
depicted in Figure 2, and we were interested in each

nodes’ x 2 fA;Bg local timing error ex which was au-
tonomously calculated by each node after n iterations:

ex
Eq. (13)

:= D̃total;n�D
0
total;n = (t̃n� t̃0)�2n �Ddelay (16)

Obviously, both timing errors eA;eB have different
sign unless the clocks are perfectly synchronous (then
eA = eB = 0 �s). Additionally, we define the symme-
try error esymm as seen by an external observer as the
average value over eA;eB. Since the average times-
tamp error Et;av 2 I1 will accumulate over the two ac-
quired trigger timestamps within each iteration, we
expect

esymm :=
eA + eB

2
= 2n �Et;av: (17)

If we indeed achieved the timestamp error in-
terval I1 to be symmetric about 0, i.e. by selecting
Dc = n �a+ 1

2 �a properly according to Eq. (7), we can
expect two observations for any pair of nodes A;B:

1. If both values eA and eB are made available to an
external observer, their measured clock drift dA;B,
as depicted in Figure 3, can be verified through

d0A;B := eA�eB
!
= dA;B with dA;B =�dB;A:

(18)

2. According to Eq. (17), esymm
!
= 2n �0µs= 0µs, and

thus both values eA and eB will show the same ab-
solute values. In direct consequence, each node
can autonomously estimate its own drift towards
the other node autonomously:

d̃A;B = 2 �eA (for node A) (19)

d̃B;A = 2 �eB (for node B) (20)
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Figure 4: The node timing error for different values of Dc after 100 s as autonomously measured by each node (see Figure 3
for the expected values).
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Table 2: Drift calculation for Dc = 12.

local information1,2 observer3

d̃A;B node 10 node 11 node 72 d0A;B

d̃72;11 1900.0 1902.0 1900.0 1900
d̃72;10 2818.0 2818.0 2816.0 2818
d̃11;10 918.0 916.0 916.0 918
1 regular font: measured according to Eq. (19)
2 bold/italic: derived according to Eq. (21)
3 true drift as expected from Figure 3

Table 3: Drift calculation for Dc = 16.

local information1,2 observer3

d̃A;B node 10 node 11 node 72 d0A;B

d̃72;11 1884.0 1836.0 2032.0 1900
d̃72;10 2724.0 2870.0 2922.0 2818
d̃11;10 840.0 1034.0 890.0 918
1 regular font: measured according to Eq. (19)
2 bold/italic: derived according to Eq. (21)
3 true drift as expected from Figure 3

In particular, the exchange of any additional data,
such as timestamps, between the nodes is not nec-
essary to obtain this information (since Ddelay is
constant).

The reason becomes clear when considering the
involved error intervals over n iterations in Eq. (24):
Obviously, all error intervals remain symmetric about
0 �s throughout the entire test. In particular, the aver-
age error for each variable is 0 �s, and consequently
esymm = 0 �s, too.

In contrast, if we intentionally violate Eq. (7) by
using e.g. Dc := n �a instead, the average times-
tamp error interval would be symmetric around Et =
1
2 lC. Consequently, esymm = 2n � 1

2 lC, and neither the
autonomous drift computation through Eq. (19) nor
the external drift verification through Eq. (18) would
work any more.

4.3 Real-World Test Bed Analysis

Figure 4 shows the test bed results for the three al-
ready mentioned node pairs from Figure 3, and for
various values of Dc after n = 50 iterations with
Ddelay = 1 s (D0total;n = 100 s). Note that the results
repeat in a cyclic manner with period a = 8, and thus
the values for Dc = 10 are similar to those for Dc = 18.

When using Dc = 1 �8 + 8
2 = 12, we did indeed

achieve the expected symmetry error esymm � 0 �s
for all pairs. At least we received jesymmj < lC =
1 �s, which is the timeline resolution and thus the best
timestamp precision a node can reach. Furthermore,
for Dc = 12, d0A;B � d̃A;B verifies the measured values
from Figure 3. Most important, as shown in Table 2,
the autonomously measured drifts between two nodes
are almost perfect. Indeed, the maximum visible de-
viation is in range �2 �s. Another fact which we can
verify from this table is, that since WLOG node A
knows its drifts d̃A;B and d̃A;C towards the two other
nodes B and C respectively, it can also reliably derive
the drift d̃B;C via

d̃B;C := d̃A;C� d̃A;B: (21)

For any other values of Dc violating Eq. (7), the
nodes can not gain reliable information about their
relative drift autonomously. When using e.g. Dc =
2 �8 = 16, Figure 4 shows values close to the ex-
pected symmetry error esymm = 2n � 1

2 lc = 50 �s (cf.
Eq. (17)). As a result, Table 3 summarizes the au-
tonomously measured and computed drifts between
the node pairs, and reveals quite large and asymmet-
ric deviations towards the true drifts.

Besides the precision of the autonomous drift esti-
mation, another interesting metric is the resulting trig-
ger frequency. The theoretical value

ftrig :=
�
2 �Ddelay

��1 (22)

will not be visible in reality since neither node uses
a perfect clock. However, we would at least like to
achieve

ftrig, av. =
�
D
0
delay;A +D

0
delay;B

��1
; (23)

which is definitely the best compromise two nodes
A;B can find if their true drift compared to the perfect
global clock is unknown. Again, this is only possible
if esymm = 0. When looking at e.g. the graph for the
nodes with IDs 11 and 72 in Figure 4, the extrapola-
tion of esymm leads to a symmetry error of �345:6 �s
for Dc = 12 and 42336 �s for Dc = 16 within one com-
plete day. Thus, the larger jesymmj the larger the de-
viation from the intended frequency ftrig, av.. The ef-
fects are once more visible in Tables 2 and 3: For
Dc = 12 the values in each row are almost equal (i.e.
consistent), while they exhibit significant variations
for Dc = 16.

5 CONCLUSIONS AND
OUTLOOK

In this paper we proposed an approach for obtaining
precise timestamps t̃e for external events e, and for
ensuring the precisely timed execution of reactions
r at scheduled times t̃r. The error intervals for both
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t�r
Eq. (15)

:= t̃c + Ddelay � Dcomp
iteration I4 I1 I3 I2

1 : [�lC;lC) [� 1
2 lC; 1

2 lC) [0;0) (� 1
2 lC; 1

2 lC)
...

...
...

...
n : [�nlC;nlC) [� 1

2 lC; 1
2 lC) [0;0) (�(n� 1

2 )lC;(n� 1
2 )lC)

Dcomp
Eq. (14)

:= t̃r � t�r
iteration I2 I1 I1

1 : (� 3
2 lC; 3

2 lC) [� 1
2 lC; 1

2 lC) [�lC;lC)
...

...
...

n : (�(n+ 1
2 )lC;(n+ 1

2 )lC) [� 1
2 lC; 1

2 lC) [�nlC;nlC)

(24)

t̃e and t̃r are symmetric about 0. While the first is
achieved through the unified and carefully prepared
preprocessing of interrupts by the kernel, the latter
becomes possible through a simple self-calibration
scheme at application layer. Both techniques proved
to be a great benefit for an inherent problem within
distributed but interacting (embedded) systems: As
long as time is not properly manageable locally by
the individual nodes, network-wide synchronization
and event or state tagging will hardly achieve the po-
tentially feasible precision.

Using our approach, a corresponding test bed ver-
ified, that it is possible to determine the drift be-
tween two nodes without the explicit exchange of any
quantitative information (like e.g. timestamps or pre-
viously measured delays). Instead, it is sufficient to
periodically pass events (i.e. interrupts) between the
nodes. Since suitable periodic behavior can also be
found in several (wireless) communication protocols
like (Støa and Balasingham, 2011), (Ito et al., 2009),
(Mutazono et al., 2009), the proposed techniques can
also be applied to support time synchronization and
self-organization among the involved systems.

In fact, we already observed good time synchro-
nization results when integrating our approach into
the Desync protocol from (Mühlberger, 2013). An-
other objective for us is to support our timestamping
concept in hardware: Within a hardware/software co-
design project, a specifically prepared interrupt con-
troller of an experimental CPU architecture is already
able to pre-process and store timer values even for si-
multaneously occurring events.
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