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Abstract: Automatic registration of 3D scans with RGB data is studied in this paper. In contrast to bulk of research in 
the field which deploy 3D geometry consistency, local RGB image feature matches are used to solve the 
unknown 3D rigid transformation. The key novelty in this work is the introduction of a new simple measure, 
we call “Depthscale measure”, which logically represents the size of the local image features in 3D world, 
thanks to the availability of the depth data from the sensor. Depending on the operating characteristics of the 
target application, we show this measure can be useful and efficient in eliminating outliers through 
experimental results. Also system level details are given to help scientists who want to build a similar 
system. 

1 INTRODUCTION 

Registering 3D scans of the same rigid environment 
from different vantage points is an old computer 
vision problem which is still an active research field. 
Various applications of such techniques include 3D 
modeling, 3D model retrieval and robot navigation. 
The research field got recently a new momentum 
thanks to availability of cheap RGB-D sensors (e.g. 
Microsoft Kinect). In this paper, we study a simple 
3D registration system using data coming from 
Kinect-like sensors.  

Quite some active research in the field is 
dedicated to registering and associating 3D scans 
based on their global/partial 3D geometric 
consistency. As a complementary approach, a 
system using RGB local features has its own 
advantages: (i) Environments which do not have 
enough 3D geometric variation but color variation 
can easily be registered. (ii) Partial matching of the 
3D scans are naturally handled. (iii) Detection and 
matching of local image features is a well-
understood problem and many opensource/free 
feature detection libraries exist which makes 
building such a system very easy. In an nutshell, our 
system detect local image features in 3D scans, 
match them and registers the 3D models into a 
cumulative model by using 3-point 3D similarity 
transformation estimation and RANSAC sampling  

 

The key novelty in our approach is the use of a 
new measure that we coined as “Depthscale” 
measure which is easy to compute and gives extra 
information about match-ability of the image 
features. It is simply the multiplication of the 
detected scale of image feature and the associated 
depth. Assuming the internal camera parameters of 
the sensor did not change during the scans, this 
measure logically represents the size of the local 
image feature in 3D space. Being a simple integer or 
double value, it can be used efficiently to ignore 
false matches, in contrast to (and additional to) 
computing similarity measure of two full feature 
description vector (e.g. 128 byte vectors in SIFT). 

The operation characteristics of the target 
application impose different constraints on the 
system. For example a robotic navigation system 
with limited computational power and real-time 
mapping and localization requirements will desire 
small number of matches with high inlier ratio for 
minimal number of RANSAC iterations. Whereas 
3D modelling applications running on workstations, 
which would like to have good accuracy, may prefer 
high number of matches even though inlier ratio is 
low in order to get as many inliers as possible. We 
will show the usefulness of Depthscale measure for 
obtaining proper operation mode. 

During experimental evaluation, we analyzed the 
effect of Depthscale measure with respect to Lowe’s 
second closest neighbor method. We also checked 
results which combine two methods. As a novel 
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approach, we cast the problem of outlier elimination 
of a match-set as a binary classification problem. 
Hence we could show the results as ROC (Receiver 
Operating Characteristics) curves. 

Even though the system is simple to construct, 
considering the popularity of the Kinect platform, 
implementation details to be presented will still be 
useful for future developers of a similar system.  

The paper will proceed as follows. First we will 
give a brief mention of the related literature. Second, 
we will summarize main concepts and methods we 
deployed. Third, we will give the system details and 
various ways of exploiting our Depthscale method. 
Afterwards we will share our practical observations 
during building such a system, especially relevant to 
Kinect environment. Following the experiments 
section, the paper is concluded. 

2 LITERATURE 

Matching and registering 3D models is an old 
computer vision problem. A common approach 
begins with creating a rough alignment, typically 
using PCA or manually, than applies a variation of 
Iterative Closest Point (ICP) (Besl and McKay, 
1992) algorithm. A recent overall pipeline is 
introduced by Microsoft for Kinect systems 
(Shahram et. al., 2011). There are known problems 
with such approaches. First of all, partial overlap 
causes PCA based alignment problematic whereas 
ICP requires good initial rough alignment. Also the 
standard form of ICP is not immune to errors in the 
geometry, though robust extensions to ICP exists 
(Fitzgibbon, 2001). To overcome this problem, 
people applied various 3D depth based local features 
inspired by their RGB based sisters (Bronstein et. 
al., 2010). However, all those approaches suffer in 
case of degenerate surface geometry. For example in 
a planar scene, all of the above approaches will fail. 

A known method to stabilize degenerate 
geometric configurations is to introduce RGB 
information during registration, e.g. (Craciun et. al., 
2010). We build our system on local intensity 
features which will introduce robustness against lack 
of geometric variation and overlap while speeding 
up the registration.  Such local features have been 
widely studied (Tuytelaars and Mikolajczyk, 2010) 
which was initially popularized by (Lowe, 2004). 
Work by (Wu et.al., 2008) uses depth information to 
estimate 3D local image features which can be used 
for 3D registration, however has the requirement of 
rendering 3D model in different directions. Our 
Depthscale method can be used in conjunction with 

any available feature detection utility as long as they 
give a invariant support area for the feature. 

3 SYSTEM 

The system follows the standard envelop which is 
typically used in 2D image matching and mosaicing. 
The following procedure is looped as many times till 
all the 3D scans are registered to a global model. 

Step 1: Detect local features in the RGB images 
of two 3D scans. 

Step 2: For each feature in first image, find knn 
neighbours in the second image. 

Step 3: Use Depthscale and/or Lowe’s second 
nearest neighbour technique to decrease the false 
matches. 

Step 4: Use RANSAC and 3-point 3D 
registration algorithm to robustly estimate 3D rigid 
transformation. 

Step 5: Apply the estimated transformation to the 
second scan and merge it with the previous overall 
3D model collected so far. 

The system is bootstrapped with two 3D scans 
and new 3D scans are added incrementally to the 
current reconstruction. Currently it is assumed that 
the 3D scans to be registered are ordered in a way 
that consecutive shots overlap. For local features 
SURF (Bay et. al., 2008) detector and descriptor 
package and for knn search FLANN (Muja and 
Lowe, 2009) library of (opencv, 2013) library is 
used. Below describes the other sub-components 
while leaving Depthscale method to the last since it 
is the main novelty of the work. 

3.1 RANSAC 

RANSAC (Fischler and Bolles, 1981) is a classical 
robust estimation technique which eliminates 
outliers and keeps geometrically consistent data in 
an over constrained setting. By sampling minimal 
number of data elements to describe the target 
parametric model, it reaches a stable solution which 
gives the highest number of inliers. The classical 
analysis states that the required number of iterations 
to guarantee a good solution with a certain 
probability depends on the inlier ratio of the data set. 
However, knowing that data is noisy itself, for good 
estimation we would like to have as many data 
points as possible. Hence we prefer to keep both the 
inlier ratio and number of inliers high in a system. 
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3.2 3D Rigid Transformation 
Estimation 

The main parametric model we want to fit to our 
data is 3D rigid transform which can minimally be 
estimated with 3 points in 3D space. Since we know 
the 3D location (with respect to local frame) of local 
features that are detected in the images, we can 
directly feed them into our transformation estimation 
method. We used SVD-based method (Eggert, 1997) 
to estimate this rigid motion. It is a flexible method 
that can both estimate the minimal 3-point 
configuration required by RANSAC and n-point 
case. 

3.3 Lowe’s Second Nearest Neighbour 
Method 

As described by (Lowe, 2004) due to repeating 
patterns and various geometric deformations 
different features may look like each other hence the 
closest match is not always the right match. In order 
to decrease the number of such outliers, after 
computing knn (k=2) neighbours, he proposed to 
check the similarity of second closest neighbour to 
the first. It is expected that the second closest 
neighbour must be far for correct matches. This 
measure of “closeness” is actualized by a threshold 
between 0 and 1. Thresholds which are slightly less 
than 1 means that the system almost always take the 
closest feature as a match, practically making the 
measure ineffective. On the other hand thresholds 
towards 0 result in a paranoid measure which almost 
finds no match. From now on we will call this 
method shortly Lowe’s measure. 

3.4 Depthscale Method 

This is the main contribution of the paper. Similar to 
Lowe’s measure we propose a new method to 
decrease the false matches in a match-set which is 
simple to compute. Assuming the 3D scans are taken 
from the same sensor, we can ignore the effects of 
RGB cameras internal calibration matrix and state 
that the following value: 

ScaleDepthDS *  (1)

represents the scale of the feature’s support area in 
3D world where feature’s depth  info comes from 
the 3D sensor and scale is the size of the support 
area of the feature on the intensity image. The 
equation directly results from inverse application of 
perspective projection. The features that belong to 
same 3D point can be considered to have same DS. 

This measure can be applicable for many feature 
detectors which returns a invariant support area. In 
contrast to long feature descriptors (e.g. SIFT is a 
128 byte vector), Depthscale can be represented with 
a simple integer which makes it more efficient to 
compare. Also since scale information it 
encapsulates is not related to intensity based feature 
descriptor, it gives extra information that can be 
exploited during matching. However due to its 
simplicity it would not be as descriptive as intensity 
features.  

 

Figure 1: Typical NDSD distribution for a test set. 

4 EXPLOITING DEPTHSCALE 
INFORMATION 

Different mechanisms of deploying Depthscale 
information for the purpose of more accurate feature 
matching can be thought of. In the first following 
subsection we will describe our basic approach to 
compare DS values given a feature match. In the 
second sub-section we will describe different ways 
to combine it with intensity based descriptors. 

4.1 Comparing Depthscale Values 

Noise needs to be taken into account in any robust 
vision system. Looking at Eq. 1, any error in number 
of pixels in a fixed image scale will be multiplied by 
the depth of the feature. Hence we must take into 
account the magnitude of the Depthscale while 
comparing differences. Considering high depths and 
big scales will give higher errors due to 
multiplication, we propose normalizing the DS 
difference with average DS of the compared values 
in a feature match would give stable results. Below 
formulation describes the normalized Depthscale 
distance (NDSD) between two features of a single 
match: 

21

21

DSDS

DSDS
NDSD




  (2)
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Equation 2 shows NDSD distribution of the inliers 
taken from an experiment (without taking the 
absolute value). Different test sets result in similar 
histograms. As can be seen NDSD=0.15-0.2 seems 
to be a good threshold to eliminate outliers. 

4.2 Combining Depthscale and Lowe’s 
Measure 

In its simplest form Depthscale method can be a 
simple efficient way to increase the quality of the 
match-set. However it would be desirable to 
combine Lowe’s measure and Depthscale method to 
increase matching performance. Here we will focus 
on simplest way of fusion, leaving the more 
advanced approaches to another work. Since there 
are already tools to find knn set for intensity 
features, we introduce the Depthscale measure to 
this pipeline. After finding the knn neighbourhood in 
intensity feature space, we apply Depthscale 
elimination for closest neighbours with a certain 
threshold. After that Lowe’s measure is applied. In a 
sense, we filter the match-set first with Depthscale 
method, than Lowe’s measure, resulting in an 
“AND” operation. 

5 PRACTICAL OBSERVATIONS 

Finding 3D locations of local feature points relative 
to sensor coordinate system is fundamental in our 
approach. However Kinect’s depth sensor and RGB 
sensor are separated which requires a sort of 
alignment between them. Microsoft Kinect SDK 
provides a function that aligns the depth frame on 
the rgb frame. However as empirically observed, 
that function does not provide a robust alignment 
(especially depth values which are less than 1 
meter). Therefore we decided to map the all the x, y 
and depth points on the depth frame through pre-
calculated calibration matrices. The transformation 
requires applying inverse internal calibration matrix 
of the depth camera, 3D rigid transformation 
between two sensor frames, and internal calibration 
matrix of the RGB sensor.  

Kinect’s depth sensor’s noise character is worth 
mentioning. It is basically a structured light 
technique where the projector and the sensor is 
separated with a fixed baseline. Hence one factor 
affecting the noise is the distance of the target: as the 
observed location is further from the sensor, depth 
measurements have higher noise. Also Kinect 
applies an interpolation technique for the points that 
lie within the dark regions of the structured light 

image. In combined with above, different geometric 
and reflectance characteristics of surface may result 
in very spiky errors. A 2 cm of RANSAC threshold 
seems to suffice to deal with such outliers 

6 EXPERIMENTS 

As a novel approach we cast the problem of 
removing outliers from a match-set as “binary 
classification” problem, taken from machine 
learning field. Indeed what Lowe’s measure does is, 
given a candidate match, checking the second 
nearest neighbour to mark it as inlier and outlier. In 
order to analyze that way, ground truth information 
is needed. Typically this is done manually in 
machine learning problems. However since we can 
have hundreds of matches given a pair of scans, we 
approximated this procedure by using all the 
candidate matches in an excessive RANSAC loop 
and detected inliers/outliers. This procedure might 
include one or two false positives or true negatives 
in the resultant ground truth but such amounts would 
have minimal effect.  

We showed the effects of different thresholds for 
Lowe’s measure, pure Depthscale method and 
combined approach as a Receiver Operating 
Characteristics (ROC) curve. ROC curve is classical 
mechanism to show the performance (true positive 
vs false positive) of a binary classifier for different 
threshold parameters. In our case inliers and outliers 
are labeled as positive and negative respectively. 
However we must note that there is no training 
happening here. The thresholds determine the 
classifier directly. 

We tried to take experiment data in environments 
with different characteristics. Fig. 2 shows images 
from 4 different test sets. Each test set has 5 (but 
only 2 are used in the graphs) scans and they are 
taken with a Kinect device from different angles and 
distances.  The top row specifically aims to represent 
planar scenes, whereas the third row contains strong 
non-planar human body. 

The ROC curves in Fig. 3-6 show that pure 
Depthscale measure gives better true positive ratio 
for high false positive ratios. Which means that if we 
would like to easily eliminate many outliers while 
keeping almost all inliers, pure Depthscale would 
give better results. For example a workstation based 
modelling application would choose that operating 
mode due to requirement of many inliers for better 
accuracy. However for lower false positive ratios 
Lowe’ approach gives higher positive ratios. This is 
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Figure 2: Examined RGB Frames from 4 different data 
sets. 

more suitable for applications which cannot tolerate 
high outliers in the data in order not to waste time in 
many RANSAC iterations. A robotics localization 
routine may opt for this operating mode. The 
combined approach converges to the best individual 
approach for different ends of the ROC curve, 
sometimes even beating them. However for left ends 
of the curve, it gives sporadic results for certain 
thresholds and converges to the worse approach 
occasionally. A deeper look shows that inferior 
results are caused by unrealistically tight thresholds 
for Depthscale such as 0.05. As a note, ROC figures 
are created by sampling various thresholds (for 
Lowe’s measure between 0,65 and 1,0 and for 
Depthscale 0,05 and 0,6). Fig. 7 shows different 
views of registration results for “Sitting Person” 
experiment using all 5 frames. Note that no ICP like 
refinement or surface reconstruction techniques are 
utilized here.  

7 CONCLUSIONS 

We introduced  a  simple  local  image feature based 

 

Figure 3: ROC curve of “Posters on a wall” experiment.  

 

Figure 4: ROC curve of “Box Stack” experiment. 

 

Figure 5: ROC curve of “Sitting Person” experiment.  

3D registration system for Kinect-like sensor. It is 
designed to be built on available open source 
systems. We also introduced a new measure called 
Depthscale measure to increase the matching 
performance by exploiting the fact that depth 
measurements are available for the detected features. 
Experiments are presented to show the usefulness of 
this new measure. Eliminating outliers from a match 
set is cast as a classification problem and hence 
analysis is done through familiar ROC curves. 
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Figure 6: ROC curve of “Living Room” experiment. 

 

Figure 7: The rendering of overall registered 3D model for 
Sitting Person experiment from different angles. 
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