
A Domain-Specific Language for Abstract Syntax Model to Concrete
Syntax Model Mappings

Luis Quesada, Fernando Berzal and Juan-Carlos Cubero
Department of Computer Science and Artificial Intelligence, University of Granada, CITIC, 18071, Granada, Spain

Keywords: Model-driven Software Development, Language Specification, Parser Generators, Abstract Syntax Model,
Concrete Syntax Model.

Abstract: Model-based parser generators such as ModelCC effectively decouple language design from language pro-
cessing. ModelCC allows the specification of the abstract syntax model of a language as a set of language
elements and their relationships. ModelCC provides the necessary mechanisms to specify the mapping from
the abstract syntax model (ASM) to a concrete syntax model (CSM). This mapping can be specified as a set
of metadata annotations on top of the abstract syntax model itself or by means of a domain-specific language
(DSL). Using a domain-specific language to specify the mapping from abstract to concrete syntax models
allows the definition of different concrete syntax models for the same abstract syntax model. In this paper, we
describe the ModelCC domain-specific language for ASM-CSM mappings and we showcase its capabilities
by using the ModelCC ASM-CSM DSL to define itself.

1 INTRODUCTION

Model-based language specification techniques
(Kleppe, 2007) decouple language design from
language processing and automatically generate the
corresponding language grammar, thus making the
language design process less arduous.

ModelCC is a model-based parser generator (Que-
sada et al., 2011; Quesada, 2012) that allows the spec-
ification of the abstract syntax model of a language as
a set of classes, which represent language elements,
and relationships between those classes or language
elements.

ModelCC allows mapping the abstract syntax
model to concrete syntax models by imposing con-
straints over language elements and their relation-
ships using either metadata annotations or a domain-
specific language for the specification of language
constraints.

In this paper, we propose the ModelCC domain-
specific language for abstract syntax model to con-
crete syntax model mappings (from now on referred
as the ModelCC DSL for ASM-CSM mappings) and
present its specification in a model-based way using
ModelCC. This domain-specific language ultimately
allows model-based parser generators to decouple ab-
stract syntax models from concrete syntax models.

Section 2 introduces model-based language spec-

ification and the ModelCC model-based parser gen-
erator. Section 3 describes ModelCC the ModelCC
domain-specific language for ASM-CSM mappings.
Finally, Section 4 presents our conclusions and future
work.

2 MODEL-BASED LANGUAGE
SPECIFICATION

Most existing language specification techniques (Aho
et al., 2006) require the language designer to provide
a textual specification of the language grammar. The
proper specification of such a grammar is a nontrivial
process that depends on the lexical and syntax analy-
sis techniques to be used, since each kind of technique
requires the grammar to comply with a specific set of
constraints. Each analysis technique is characterized
by its expression power and this expression power de-
termines whether a given analysis technique is suit-
able for a particular language. The most significant
constraints on formal language specification originate
from the need to consider context-sensitivity, the need
to perform an efficient analysis, and some techniques’
inability to resolve conflicts caused by grammar am-
biguities.

In practice, when we want to build a complex data

158 Quesada L., Berzal F. and Cubero J..
A Domain-Specific Language for Abstract Syntax Model to Concrete Syntax Model Mappings.
DOI: 10.5220/0004671701580165
In Proceedings of the 2nd International Conference on Model-Driven Engineering and Software Development (MODELSWARD-2014), pages 158-165
ISBN: 978-989-758-007-9
Copyright c
 2014 SCITEPRESS (Science and Technology Publications, Lda.)

structure from an input codified using a specific syn-
tax, the implementation of the mandatory language
processor requires the software engineer to build a
grammar-based language specification for the input
data and also to implement the conversion from the
parse tree returned by the parser to the desired data
structure, which is an instance of the data model.

Whenever the language specification has to be
modified, the language designer has to manually
propagate changes throughout the entire language
processor tool chain, from the specification of the
grammar defining the formal language (and its adap-
tation to specific parsing tools) to the correspond-
ing data model. These updates are time-consuming,
tedious, and error-prone. By making such changes
labor-intensive, the traditional language processing
approach hampers the maintainability and evolution
of the language used to represent the data (Kats et al.,
2010).

Moreover, it is not uncommon for different appli-
cations to use the same language. For example, the
compiler, different code generators, and other tools
within an IDE, such as the editor or the debugger,
typically need to grapple with the full syntax of a
programming language. Unfortunately, their mainte-
nance typically requires keeping several copies of the
same language specification synchronized.

The idea behind model-based language specifi-
cation is that, starting from a single abstract syntax
model (ASM) that represents the core concepts in a
language, language designers can develop one or sev-
eral concrete syntax models (CSMs). These CSMs
can suit the specific needs of the desired textual or
graphical representation. The ASM-CSM mappings
can be performed, for instance, by annotating the ab-
stract syntax model with the constraints needed to
transform the elements in the abstract syntax into their
concrete representation.

This way, the ASM representing the language can
be modified as needed without having to worry about
the language processor and the peculiarities of the
chosen parsing technique, since the corresponding
language processor will be automatically updated. In
this case, the language designer does not have to man-
ually propagate changes throughout the language pro-
cessor tool chain. Also, when different applications
use the same language, there is no need to keep or
maintain duplicate language models.

Finally, as the ASM is not bound to a particu-
lar parsing technique, evaluating alternative and/or
complementary parsing techniques is possible with-
out having to propagate their constraints into the
language model. Therefore, by using an ASM,
model-based language specification completely de-

Context-Free

Grammar

e.g. BNF

Conceptual

Model

Attribute

Grammar

Abstract

Syntax

Tree

Concrete Syntax Model Abstract Syntax Model

instance

of

instance

of

Textual

Representation
Parser

input output

Figure 1: Traditional language processing.

Context-Free

Grammar

e.g. BNF

Conceptual

Model

Textual

Representation
Parser

Abstract

Syntax

Graph

Concrete Syntax Model Abstract Syntax Model

instance

of

instance

of

input output

Figure 2: Model-based language processing.

couples language specification from language pro-
cessing, which can be performed using whichever
parsing techniques are suitable for the formal lan-
guage implicitly defined by the abstract model and its
concrete mapping.

A diagram summarizing the traditional language
design process is shown in Figure 1, whereas the cor-
responding diagram for the model-based approach is
shown in Figure 2.

It should be noted that ASMs may represent non-
tree structures. Hence the use of the ‘abstract syntax
graph’ term in Figure 2.

ModelCC is a parser generator that supports a
model-based approach to the design of language pro-
cessing systems (Quesada et al., 2011; Quesada,
2012).

Its starting ASM is created by defining classes
that represent language elements and establishing re-
lationships among those elements. Once the ASM is
established, constraints can be imposed over language
elements and their relationships as annotations in or-
der to produce the desired ASM-CSM mappings.

The ASM is built on top of basic language el-
ements, which can be viewed as the tokens in the
model-driven specification of a language. ModelCC
provides the necessary mechanisms to combine those
basic elements into more complex language con-
structs, which correspond to the use of concatenation,
selection, and repetition in the syntax-driven specifi-
cation of languages.

A�Domain-Specific�Language�for�Abstract�Syntax�Model�to�Concrete�Syntax�Model�Mappings

159

Table 1: The metadata annotations supported by the ModelCC model-based parser generator.

Constraints on... Annotation Function

...patterns @Pattern Pattern matching definition of basic language elements.
@Value Field where the recognized input element will be stored.

...delimiters
@Prefix Element prefix(es).
@Suffix Element suffix(es).
@Separator Element separator(s) in lists of elements.

...cardinality
@Optional Optional elements.
@Minimum Minimum element multiplicity.
@Maximum Maximum element multiplicity.

...evaluation
order

@Associativity Element associativity (e.g. left-to-right).
@Composition Eager or lazy composition for nested composites.
@Priority Element precedence level/relationships.

...composition
order

@Position Define an element member position relative to other.
@FreeOrder All the element members positions may vary.

...references @ID Identifier of a language element.
@Reference Reference to a language element.

Custom
constraints @Constraint Custom user-defined constraint.

3 ModelCCDSL FOR ASM-CSM
MAPPINGS

In ModelCC, the constraints imposed over ASMs
to map them to particular CSMs can be declared
as metadata annotations on the model itself. Now
supported by all the major programming platforms,
metadata annotations are often used in reflective pro-
gramming and code generation (Fowler, 2002). Ta-
ble 1 summarizes the set of constraints supported by
ModelCC.

However, in order to allow the developer to spec-
ify several mappings, ModelCC also allows the spec-
ification of separate input files corresponding to sep-
arate sets of constraints by using the ModelCC DSL
for ASM-CSM mappings.

In this section, we describe the ModelCC DSL for
ASM-CSM mappings. We provide the ModelCC im-
plementation of a parser for the DSL as an ASM com-
plemented with annotations.

Finally, as an example of the usage of the lan-
guage, we also provide the ModelCC implementation
of a parser for the DSL as an ASM complemented
with constraint specifications written in the DSL it-
self.

Subsection 3.1 outlines the language features.
Subsection 3.2 provides the definition of the language
as an ASM complemented with metadata annotations.
Subsection 3.3 provides several equivalent definitions
of the language as an ASM complemented with con-
straint specification files written in the language itself.

3.1 Language Features

The ModelCC DSL for ASM-CSM mappings sup-
ports the following features:

• The definition of constraints on patterns, delim-
iters, evaluation order, and references to language
elements.

• The property-like specification of constraints for
language elements and their members.

• The grammar-like specification of the concrete
syntax of language elements by means of a
regular-expression-like language.

While the semantics of property-like constraint
definitions is equivalent to that of metadata annotation
constraint definitions, grammar-like constraint spec-
ification allows for a more intuitive specification of
ASM-CSM mappings.

Grammar-like constraint definitions may be more
intuitive to traditional language designers who are
familiar with syntax-driven language specification
tools. Such constraint definitions can be redundant
with the ASM as, for example, they can also include
multiplicity constraints. ModelCC checks and reports
if any syntax implicit in grammar-like constraint def-
initions conflicts with the language ASM.

Finally, ModelCC checks, reports, and ignores
any constraints on language elements on language el-
ement members that do not exist.

MODELSWARD�2014�-�International�Conference�on�Model-Driven�Engineering�and�Software�Development

160

-constraints0..*

CSM
- constraints : ConstraintDe�nition[]

ConstraintDe�nition
- target : Element
- @Pre�x("[") @Su�x("]") constraintID : Identi�er
- @Pre�x(":") constraint : ConstraintSpeci�cation

Element
- @Separator(".") name : Identi�er[]

Identi�er
- @Value name : String

ConstraintSpeci�cation

ClausureSpeci�cation
- constraint : ConstraintSpeci�cation

OptionalSpeci�cation
- constraint : ConstraintSpeci�cation

PositiveClausureSpeci�cation
- constraint : ConstraintSpeci�cation

ParenthesizedSpeci�cation
- constraint : ConstraintSpeci�cation

SequenceSpeci�cation
- constraints : ConstraintSpeci�cation[]

PrecedenceSpeci�cation
- @Separator("\<") constraints : ConstraintSpeci�cation[]

AlternativeSpeci�cation
- @Separator("\|") constraints : ConstraintSpeci�cation[]

LiteralSpeci�cation
- literal : Literal

Integer
- @Value value : int

Boolean
- @Value value : boolean

Literal

PatternSpeci�cation
- pattern : Pattern

Pattern
- @Value regEx : String

ElementSpeci�cation
- element : Element

@Pattern("[a-zA-Z][a-zA-Z0-9_]*")

@Su�x("\"")

@Pre�x("\"")

@Pattern(RegExMatcher)

@Su�x("*")

@Su�x("\+")

@Su�x("\)")

@Su�x("\?")

@Pre�x("\(")

@Priority(precedes=AlternativeSpeci�cation)

@Priority(precedes={AlternativeSpeci�cation,SequenceSpeci�cation})

-constraint

-constraints

-constraints

-constraints

0..1

-constraintID

-name

0..1-constraint

-element

-pattern

-literal

-constraint

-constraint

-constraint

-target

Figure 3: Definition of the ModelCC DSL for ASM-CSM mappings in ModelCC.

3.2 ModelCC Definition of the DSL for
ASM-CSM Mappings

The ASM of the language is designed first. Then, it

is mapped to a CSM by imposing constraints
using metadata annotations on the model classes.

The resulting model, depicted as an UML class
diagram in Figure 3, can be processed by ModelCC

A�Domain-Specific�Language�for�Abstract�Syntax�Model�to�Concrete�Syntax�Model�Mappings

161

to generate the corresponding parser.
This Figure demonstrates the need of an alterna-

tive way of specifying constraints:
• When metadata annotations are used to define

CSMs on top of the ASM, the concrete syntax is
interleaved in the abstract syntax model in a way
that burdens it, similar to language processing be-
ing coupled with language specification in tradi-
tional syntax-driven language specification tech-
niques

• Also, separate CSMs cannot be defined on top of
the ASM using metadata annotations.

3.3 Separating ASM and CSM

Once an initial implementation of the ModelCC DSL
for ASM-CSM mappings provides a bootstrap, we
provide implementations of the language that consist
of an ASM and separate constraint definitions using
the language itself.

The bare model is depicted as an UML class dia-
gram in Figure 4.

Starting from this ASM, we provide three differ-
ent ASM-CSM mappings for the language.

• Grammar-like Specification. Figure 5 presents
a grammar-like constraint set specified using the
ModelCC DSL for ASM-CSM mappings.
Some of the advantages of grammar-like map-
pings can be observed in the specification of
the ConstraintDefinition language element con-
straints. A single constraint specification can
include prefix constraints, suffix constraints,
and language element member order constraints.
Also, the specification of the ConstraintDefinition
language element constraints includes two mul-
tiplicity constraints (optionality, represented by
the regex-like “?” operator) that are redundant
with the ASM. ModelCC checks these multiplic-
ity constraints for consistency with the ASM and
reports any conflict in parser generation time.
Another illustrative case of grammar-like map-
pings can be observed in the specification of the
Element language element constraints. Although
its member name is defined as a list in the ASM,
the grammar-like constraint specification uses a
classical explicit-list specification to specify the
separator for list members.

• Property-like Specification. Figure 6 presents
a property-like constraint set specified using the
ModelCC DSL for ASM-CSM mappings.
The property-like specification of ASM-CSM
mappings mimics the specification of constraints
on ASMs using metadata annotations. It can be

observed that the constraints are specified as prop-
erties of language elements.

• Mixed Specification. Figure 7 presents an-
other equivalent constraint set specified using the
ModelCC DSL for ASM-CSM mappings.
In this case, some constraints are specified
grammar-like and some constraints are specified
property-like. For example, separators in lists
are specified using property-like constraint defi-
nitions, which may seem more intuitive to some
language designers.
It should be noted that constraint definitions dif-
fer from grammar rules in that several of them
can be specified for separate members of the same
language element, as can be observed in the Con-
straintDefinition language element.

Finally, it should be noted that ASMs that are
complemented with metadata annotations can be
complemented with files written in the ModelCC DSL
for ASM-CSM mappings.

Metadata annotation constraints represent default
values that apply, unless otherwise specified, to all the
ASM-CSM mappings of a language.

4 CONCLUSIONS AND FUTURE
WORK

ModelCC is a model-based parser generator that al-
lows using metadata annotations or a domain-specific
language to specify abstract syntax model to concrete
syntax model mappings.

In this paper, we have proposed and described
the ModelCC domain-specific language for abstract
syntax model to concrete syntax model mappings
(ModelCC DSL for ASM-CSM mappings). This DSL
allows the specification of separate abstract syntax
model to concrete syntax model mappings.

As an example, we have specified the ModelCC
DSL for ASM-CSM mappings as an ASM and several
equivalent ASM-CSM mappings written in the DSL
itself.

In the future, we plan to apply model-based lan-
guage specification techniques to problems such as
data integration and natural language processing. We
also plan to incorporate different reference resolution
techniques to ModelCC.

MODELSWARD�2014�-�International�Conference�on�Model-Driven�Engineering�and�Software�Development

162

Element
- name : Identifier[]

ParenthesizedSpecification
- constraint : ConstraintSpecification

PrecedenceSpecification
- constraints : ConstraintSpecification[]

AlternativeSpecification
- constraints : ConstraintSpecification[]

ElementSpecification
- element : Element

-constraintID

0..1

-name
-constraint 0..1

-element

-pattern

-literal

PatternSpecification
- pattern : Pattern

-constraints

-constraint

-constraint

-target

0..*

CSM
- constraints : ConstraintDefinition[]

ConstraintDefinition
- target : Element
- constraintID : Identifier
- constraint : ConstraintSpecification

Identifier
- name : String

ClausureSpecification
- constraint : ConstraintSpecification

OptionalSpecification
- constraint : ConstraintSpecification

 SequenceSpecification
- constraints : ConstraintSpecification[]

LiteralSpecification
- literal : Literal

-constraint

-constraints

PositiveClausureSpecification
- constraint : ConstraintSpecification

-constraints

Pattern
- regEx : String

-constraints

-constraint

ConstraintSpecification

- :

Literal

Integer
- value : int

Boolean
- value : boolean

Figure 4: Definition of the abstract syntax model of the ModelCC DSL for ASM-CSM mappings in ModelCC.

ConstraintDefinition: target ("[" constraintID "]")? (":" constraint)?
Element: name ("." name)*
Identifier.name: "[a-zA-Z][a-zA-Z0-9_]*"
ClausureSpecification: constraint "*"
OptionalSpecification: constraint "\?"
PositiveClauseSpecification: constraint "\+"
ParenthesizedSpecification: "\(" constraint "\)"
ConstraintSpecification: SequenceSpecification < PrecedenceSpecification

< AlternationSpecification
AlternationSpecification: constraints ("\|" constraints)*
PrecedenceSpecification: constraints ("\<" constraints)*
Boolean.value: "true|false"
Integer.value: "[0-9]+"

Figure 5: Grammar-like specification of the mapping from the abstract syntax model to the concrete syntax model of ModelCC
DSL for ASM-CSM mappings, written in the ModelCC DSL for ASM-CSM mappings itself.

A�Domain-Specific�Language�for�Abstract�Syntax�Model�to�Concrete�Syntax�Model�Mappings

163

ConstraintDefinition.constraintID[prefix] "\["
ConstraintDefinition.constraintID[suffix] "\]"
ConstraintDefinition.constraint[prefix]: ":"
Element.name[separator]: "."
Identifier.name: "[a-zA-Z][a-zA-Z0-9_]*"
ClausureSpecification[suffix]: "*"
OptionalSpecification[suffix]: "\?"
PositiveClauseSpecification[prefix]: "\+"
ParenthesizedSpecification[prefix]: "\("
ParenthesizedSpecification[suffix]: "\)"
SequenceSpecification[precedes]: AlternationSpecification

PrecedenceSpecification
ConstraintSpecification: SequenceSpecification < PrecedenceSpecification
AlternationSpecification.constraints[separator]: "\|"
PrecedenceSpecification[precedes]: AlternationSpecification
PrecedenceSpecification.constraints[separator]: "\<"
Boolean.value: "true|false"
Integer.value: "[0-9]+"

Figure 6: Property-like specification of the mapping from the abstract syntax model to the concrete syntax model of ModelCC
DSL for ASM-CSM mappings, written in the ModelCC DSL for ASM-CSM mappings itself.

ConstraintDefinition: "[" constraintID "]"
ConstraintDefinition: ":" constraint
Element.name[separator]: "."
Identifier.name: "[a-zA-Z][a-zA-Z0-9_]*"
ClausureSpecification: constraint "*"
OptionalSpecification: constraint "\?"
PositiveClauseSpecification: constraint "\+"
ParenthesizedSpecification: "\(" constraint "\)"
ConstraintSpecification: SequenceSpecification < PrecedenceSpecification

< AlternationSpecification
AlternationSpecification.constraints[separator]: "\|"
PrecedenceSpecification.constraints[separator]: "\<"
Boolean.value: "true|false"
Integer.value: "[0-9]+"

Figure 7: Mixed specification of the mapping from the abstract syntax model to the concrete syntax model of ModelCC DSL
for ASM-CSM mappings, written in the ModelCC DSL for ASM-CSM mappings itself.

ACKNOWLEDGMENTS

Work partially supported by research project
TIN2012-36951, “NOESIS: Network-Oriented
Exploration, Simulation, and Induction System”,
cofunded by the Spanish Ministry of Economy and
the European Regional Development Fund (FEDER).

REFERENCES

Aho, A. V., Lam, M. S., Sethi, R., and Ullman, J. D. (2006).
Compilers: Principles, Techniques, and Tools. Addi-
son Wesley, 2nd edition.

Fowler, M. (2002). Using metadata. IEEE Software,
19(6):13–17.

Kats, L. C. L., Visser, E., and Wachsmuth, G. (2010).
Pure and declarative syntax definition: Paradise lost
and regained. In Proceedings of the ACM Interna-
tional Conference on Object-Oriented Programming
Systems, Languages, and Applications (OOPSLA’10),
pages 918–932.

Kleppe, A. (2007). Towards the generation of a text-based
IDE from a language metamodel. volume 4530 of
Lecture Notes in Computer Science, pages 114–129.

Quesada, L. (2012). A model-driven parser generator with
reference resolution support. In Proceedings of the
27th IEEE/ACM International Conference on Auto-
mated Software Engineering, pages 394–397.

Quesada, L., Berzal, F., and Cubero, J.-C. (2011). A lan-

MODELSWARD�2014�-�International�Conference�on�Model-Driven�Engineering�and�Software�Development

164

guage specification tool for model-based parsing. In
Proceedings of the 12th International Conference on
Intelligent Data Engineering and Automated Learn-
ing. Lecture Notes in Computer Science, volume 6936,
pages 50–57.

A�Domain-Specific�Language�for�Abstract�Syntax�Model�to�Concrete�Syntax�Model�Mappings

165

