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Abstract: This paper presents a new method based both on Active Shape Model (ASM) and spatial distance model to 
segment brain structures. It combines two types of a priori knowledge: the structure shapes and the distances 
between them. This knowledge consists of shape and distance variability which are estimated during a 
training step. Then, the obtained models are used to guide simultaneously the evolution of initial structure 
shapes towards the target contours. The proposed models are applied to extract two hippocampal regions on 
coronal MRI of the brain. The obtained results are encouraging and show the performance of the proposed 
model. 

1 INTRODUCTION 

One of the main problems of medical images 
segmentation is that they often present several 
anatomical structures having no clear boudaries and 
whose appearance is very similar. The automatic 
separation of regions of interest is often a difficult 
task. In particular, the use of techniques based only 
on the low-level characteristics of the image is not 
reliable, because the intensity of a pixel cannot give 
certain information about its membership in a 
structure. A promising way to remove ambiguity and 
improve the performance of segmentation results is 
to exploit high-level a priori knowledge, related to 
the studied anatomical structures. Among this 
knowledge, there are the spatial relations between 
the structures in the same scene. These relations 
represent structural knowledge for an image. They 
are often more stable than the appearance 
characteristics of the structures themselves.  

Thus, they can be advantageously used to 
improve the segmentation of medical images. 

In this context, we propose to develop a new 
model based on the Active Shape Model-ASM 
(Cootes, 1995) and a spatial relation of distance. The 
objective is to define a robust model capable to 
segment two structures of interest simultaneously 
using two types of a priori knowledge: the shape of 

each structure and the distance between them. So, 
the idea is to take advantage of statistical a priori 
knowledge of shape and integrate a new knowledge 
about the variability of spatial distance relation 
between the structures to be segmented. This 
knowledge is represented by a statistical distance 
model estimated during a training step. The obtained 
model will be then used to guide the evolution of 
two initial shapes towards the target structures and 
guarantee the preservation of the distance between 
shapes in an authorized interval.  

The proposed model is validated on a clinical 
application, where the problem consists in 
segmenting two structures of interest: two 
hippocampal regions (left and right) on coronal MRI 
of the brain.  

This application represents a major interest in 
clinical practice for early diagnosis of Alzheimer's 
disease. 

This paper is organized as follows. In Section 2, 
we present spatial relations and their previous use in 
medical images segmentation. Section 3 is devoted 
to the integration of a statistical distance model to 
guide the segmentation process. In Section 4, the 
proposed model is applied to extract two 
hippocampal regions on coronal MRI of the brain. 
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2 SPATIAL RELATIONS   

Spatial relations can be defined as the set of "facts" 
that describe the location of objects in space. They 
are mainly expressed by prepositions, which connect 
several entities: "A is next to B", "A is near B", "A 
is on the right of B", "A is inside B", "A is in front 
of B "," A is behind B "," A is between B and C ", 
etc. Some authors like [Freeman in 1975, Borillo in 
1998] tried to define standard vocabularies in order 
to describe the spatial relations. Generally, these 
relations can be classified in three main categories, 
considered as fundamental: the topological relations 
used to describe the adjacency between structures 
("is adjacent to", "crosses ", "is included"), the 
distance relations representing the distance between 
structures ("close", "far", "to a distance of ") and the 
direction relations based on the six usual directions. 

These relations represent interesting structural 
information to model and interpret a scene. In the 
medical field, the human body is a typical example 
of structured scenes. Several books of anatomy 
presented many linguistic descriptions involving 
spatial relations between anatomical structures of the 
body. It seems that the modeling and the use of these 
relations are an interesting way to remove ambiguity 
and constrain the segmentation procedures to be 
more reliable. 

Among the first remarkable work available on 
this subject, we find that of Geraud (Geraud, 1998). 
He proposed a sequential method of recognition of 
brain structures, where every structure is recognized 
thanks to the structural information resulted from the 
previously recognized structures. This information is 
generated from relations of distance and direction 
defined with regard to the already segmented 
structures. In the same context, Bloch and al 
proposed, in (Bloch, 2003), a method where the 
segmentation is performed from the beginning in a 
zone of interest defined by the spatial relations. In 
(Perchant, 2002), Perchant proposed a procedure for 
recognition of brain structures based on the 
matching of graphs: a graph derived from a 
reference image manually segmented by an expert 
and a graph of the image to be recognized. On the 
graphs, the nodes are the structures of interest and 
the arcs are the spatial relations between these 
structures.  

In the mentioned work, spatial relations are 
mainly used in the step of recognition of anatomical 
structures. The real segmentation is made with 
classic methods. As part of his thesis work (Colliot, 
2003), Colliot presented a particularly interesting 
work, where spatial relations are used effectively in 

the segmentation step. Relations such as direction, 
distance and adjacency are represented by fuzzy sets 
and integrated into the evolution equation of the 
active contour (Kass, 1987) as an external force. For 
the segmentation of a given structure, this force 
attracts the curve towards the image areas where the 
considered spatial relations are verified. Other recent 
studies were also proposed (Hudelot, 2008, 
Fouquier, 2010), where spatial relations are used 
either in the stage of recognition or in the 
segmentation step. 

Our contribution is in this context and with the 
same concept as the work proposed by Colliot and 
Al. Indeed, we propose to model statistically the 
spatial distance relation "A is at a distance of B" and 
to use it directly in the segmentation step. This 
relation will be expressed as a statistical distance 
model and will be then integrated into the 
segmentation procedure of ASM. 

3 STATISTICAL MODEL 
OF SHAPE AND SPATIAL 
RELATION 

The main idea is to combine the ASM with a priori 
knowledge about the variation of a spatial distance 
relation, in order to define a new statistical model of 
shape and spatial relation.  
The proposed model requires two main steps:  
- A Training step, which aims to deduce from the 

training set three elementary models: a statistical 
shape model for every structure and a statistical 
distance model which expresses the variation of 
the distance between them.  

- A segmentation step, based on the obtained models 
to guide the simultaneous evolution of two initial 
shapes towards the two target structures. 

3.1 Training Step 

This step consists in collecting at first a set of 
samples of images reflecting the possible variations 
of two structures to be segmented. Then, we extract, 
from each image, the shape of each structure by 
placing a sufficient number of landmarks on the 
target contours. Considering that ݊ and ݉ are 
respectively the number of landmarks required to 
represent the details of the first and the second 
structure and ܰ is the number of images in the 
training set, each structure can be represented by a 
matrix of points defined as follows: 
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with ݒ௜௝ is the vector of points which models the 
structure ݆ on the image	݅. ሺݔ௜௝௞,  ௜௝௞ሻ are theݕ
coordinates of the point ݇ placed in the image ݅ on 
the contour of the structure	݆. From these two 
matrices, the shape model of each structure and the 
corresponding distance model can be constructed. 

3.1.1 Construction of Statistical Shape 
Models 

The construction of a statistical shape model is 
described in detail in (Ghassan, 1998). Indeed, from 
two obtained matrices of points, we can calculate the 
mean shape relative to each structure: 

തܸଵ ൌ
ଵ

ே
	∑ ௜ଵݒ

ே
௜ୀଵ    (1) 

തܸଶ ൌ
ଵ

ே
	∑ ௜ଶݒ

ே
௜ୀଵ    (2) 

After a step of shapes alignment and by applying the 
PCA, we can also determine the modes and the 
amplitudes of deformation of every shape. Each 
structure can be then defined by a shape model that 
describes its geometry and deformation modes. 
These models can be respectively defined by: 

ଵܸ ൌ തܸଵ ൅ ଵܾܲଵ    (3) 

ଶܸ ൌ തܸଶ ൅ ଶܾܲଶ   (4) 

with: 
ଵܲ and ଶܲ are respectively the matrices of the main 

deformation modes of the first and the second 
structure. ܾଵ and ܾଶ are two weight matrices which 
represent respectively the projection of the shape 	 ଵܸ 
in the base ଵܲ and the shape ଶܸ in the base			 ଶܲ. 

3.1.2 Construction of the Statistical Distance 
Model 

The construction of the statistical distance model is 
made at the same time as that of the shapes models. 
It first consists in calculating the distances between 
both structures of interest from the training images 
and then trying to deduce a compact and precise 

formulation, which describes the authorized 
distances.  

Given an image ݅ of the training set where both 
structures of interest are modeled respectively by the 
two following vectors: 
 

௜ଵݒ ൌ ሺݔ௜ଵଵ, ,௜ଵଵݕ ,௜ଵଶݔ ,௜ଵଶݕ … , ,࢐૚࢏࢞ ,࢐૚࢏࢟ … , ,௜ଵ௡ݔ   ௜ଵ௡ሻݕ
 

௜ଶݒ ൌ ሺݔ௜ଶଵ, ,௜ଶଵݕ ,௜ଶଶݔ ,௜ଶଶݕ … , ,࢑૛࢏࢞ ,࢑૛࢏࢟ … , ,௜ଶ௠ݔ  ௜ଶ௠ሻݕ
 

M୨൫x୧ଵ୨, y୧ଵ୨൯ and M୩ሺx୧ଶ୩, y୧ଶ୩ሻ are any two points 
of the first and the second structure. The Euclidean 
distance between M୨ and M୩ is defined by: 

݀൫ܯ௝,ܯ௞൯ ൌ ටሺݔ௜ଵ௝ െ ௜ଶ௞ሻଶݔ ൅ ሺݕ௜ଵ௝ െ ௜ଶ௞ሻଶ (5)ݕ

If the Euclidean distance of each landmark of the 
first structure with all points of the second one is 
calculated, we can define a matrix of distances with 
positive coefficients of ݊ rows and ݉ columns:  

௜ܦ ൌ ݀൫ܯ௝,ܯ௞൯ ଵஸ௝ஸ௡
ଵஸ௞ஸ௠

 (6)

The elementary distance ݀௜ between the two 
structures of interest on an image ݅ is chosen as the 
Euclidean distance between their two closest 
landmarks: 

݀௜ሺݒ௜ଵ, ௜ଶሻݒ ൌ ݀௜ሺݒ௜ଶ, ௜ଵሻݒ ൌ min	ሺܦ௜ሻ (7)

Similarly, we can calculate the distances between 
both structures of interest through all the images of 
the training set. The result is a vector of 
dimension	ܰ: 

ௗݒ ൌ ሺ݀ଵ, ݀ଶ, …… , ݀௜, …… , ݀ேሻ (8)

The objective now is to deduce a compact 
formulation that describes authorized distances. 
Indeed, from the vector	ݒௗ, we can calculate the 
following basic statistical parameters: 
- the mean distance between two  structures of 

interest : 

݀௠ ൌ
ଵ

ே
∑ ݀௜
ே
௜ୀଵ    (9) 

- the variance which measures the dispersion of 
elementary distances (݀௜ሻ  around the mean 
distance: 

ܸሺݒௗሻ ൌ
ଵ

ே
∑ ሺ݀௜ െ ݀௠ሻଶ
ே
௜ୀଵ    (10) 

(The more the variance is high, the more the 
variation of the distance between structures from an 
image to another one is important). 

- the standard deviation, which represents the mean 
of all the elementary distances around the mean 
distance: 

ߪ		 ൌ ඥܸሺݒௗሻ    (11) 
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Using these parameters, we can calculate the 
confidence interval around the mean, which includes 
a large percentage of the initial elementary 
distances. Usually, the most adopted degree of 
confidence is equal to 95.4%. This degree leads to a 
confidence interval, limited as follows: 

ሾ݀௠ െ ,	ߪ	2 	݀௠ ൅ ሿ (12)ߪ	2

This means that if we consider a new image to be 
segmented, the distance between both structures of 
interest belongs to the interval at 95.4%. (NB: An 
increase of the degree of confidence leads to a 
spreading of the confidence interval and thus a 
decrease in precision). Finally, we can propose a 
compact formulation of the distance between 
structures defined as follows: 

݀ ൌ ݀௠ ൅ 2φ	(13) ߪ

with φ is a real parameter in the interval	ሾെ1	, 1ሿ.  
The equation 13 defines then the desired 

statistical distance model. This model represents 
thus a priori knowledge on the variation of distance 
between structures. It can be effectively used in the 
localization phase, to constrain the evolution of the 
initial shapes. For that purpose, we should calculate 
at each iteration the parameter φ as a function of the 
current distance ݀௖ (distance between the two shapes 
in the current iteration). Equation14. 

φ ൌ
݀௖ െ ݀௠
ߪ	2

 (14)

There are then three possible cases: 

ቐ
If	φ ∈ ሾെ1,1ሿ	Then valid	distance

If	φ ൐ 1		݄ܶ݁݊	߮ ← 1
If	φ ൏ െ1		Then φ ← ሺെ1ሻ

 (15)

In this way, we can require that the distance between 
shapes will always be in the authorized interval. This 
allows avoiding the divergence and the collision of 
shapes during the evolution and increasing the 
accuracy of results. 

3.1.3 Integration of Distance Constraint 

The integration of the distance constraint during the 
evolution can be defined by the algorithm presented 
in Table 1. 

 

 

 

Table 1: Limitation by distance constraint. 

݀௖ : current distance, φ: real parameter, ܨଵ : 
shape1, , ݒ ,ଶ : shape2ܨ  : mean	real variables, ݀௠ : ݑ
distance,	ߪ:      ݊݋݅ݐܽ݅ݒ݁݀	݀ݎܽ݀݊ܽݐݏ	
If 	φ ∈ ሾെ1,1ሿ Then   valid distance   
   Else_if   	φ ൐ 1	Then  #  ሺ݀௖ ൐ ݀௠ ൅  ሻߪ2

ݒ                 ൌ ݀௖ െ ሺ݀௠ ൅       ሻߪ2
ଵܨ	                ൌ ଵܨ	 െ      2/ݒ
ଶܨ			              ൌ ଶܨ	 ൅    2/ݒ
               Else  #  ሺ݀௖ ൏ ݀௠ െ  ሻߪ2
ݑ                 ൌ ሺ݀௠ െ ሻߪ2 െ ݀௖      
ଵܨ	                ൌ ଵܨ	 ൅      2/ݑ
ଶܨ			              ൌ ଶܨ	 െ      2/ݑ
          End 
End                                                 

3.2 Segmentation Guided by Shapes 
Models and Distance Model 

The segmentation phase consists in placing, first of 
all, two initial shapes (mean shapes of two target 
structures) on the image to be segmented: a 
shape	ܨଵ, close to the first structure and a shape	ܨଶ, 
close to the second structure. Then, every iteration is 
divided into two basic steps: 
- First, the initial two shapes evolve independently 

of each other, according to the constraints imposed 
by the corresponding shapes models.  The 
evolution of shapes is based on the luminance 
properties of the processed image. This provides 
two intermediate shapes ܨଵ

ᇱ  and  ܨଶ
ᇱ		. 

- Then, we calculate the current distance ݀௖	between 
ଵܨ

ᇱ and ܨଶ
ᇱ	and we estimate the real parameter	φ. 

This allows applying the constraint imposed by the 
distance model (equation 15) and thus producing 
two new shapes with a valid distance between 
them. 

This process is repeated until no significant 
changes are detected or the maximum number of 
iterations is reached. Thus, segmentation takes into 
account two essential information: the shape 
constraints related to each structure and a global 
constraint of distance between them. This 
localization phase can be simulated by the algorithm 
presented in Table 2. 
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Table 2: Segmentation guided by shapes models and 
distance model. 

                  	݅ ൌ 0 
                 Initialization _ shape1 : 	ܨଵ௜ 
               Initialization_ shape2 : 	ܨଶ௜ 

While (convergence==no and 
	݅ ൏  ሻݏ݊݋݅ݐܽݎ݁ݐ݅_	max_ݎܾ݊

ଵ௜ܨ	 .1
′=evolution_shape1(	ܨଵ௜	, ଵܸ ൌ തܸଵ ൅ ଵܾܲଵ)  

ଶ௜ܨ	 .2
′=evolution_shape2(	ܨଶ௜	,	 ଶܸ ൌ തܸଶ ൅ ଶܾܲଶ)   

3.  ݀௖=distance (	ܨଵ௜
ଶ௜ܨ	,′

′)    
4. 	ሺܨଵሺ௜ାଵሻ,	ܨଶሺ௜ାଵሻ)= distance _limitation 

(݀௖, ଵ௜ܨ	
ଶ௜ܨ	,′

′, ݀ ൌ ݀௠ ൅ 2φ	ߪ	)    
5. Convergence=compare (	ሺܨଵ௜ ,	ܨଵሺ௜ାଵሻ) 

&ሺܨଶ௜,  ((ଶሺ௜ାଵሻܨ	
6.  i=i+1 

 End                          

4 APPLICATION 
TO HIPPOCAMPUS 
SEGMENTATION IN MRI 

The hippocampus is a brain structure that is part of 
the cortex. This is a pair structure, which appears in 
an almost symmetrical way in each hemisphere. It is 
involved in several neurological diseases including 
Alzheimer's disease, which currently represents a 
major problem of the public health. In clinical 
practice, an early diagnosis of Alzheimer's disease is 
based, necessarily, on the detection of atrophy of 
hippocampal structures. 

Many segmentation methods have been proposed 
to contribute to the quantification of hippocampal 
atrophy. Given the small size of this structure and 
the imprecision of its limits, the proposed methods 
are often based on a priori models (topology, 
texture, relative position, etc.). These models are 
derived from a statistical training set (Pizer, 2001 
Pitiot, 2002, Yang, 2004) or an anatomical atlas 
[Shen, 2011]. Pure deformable models have been 
also used (Shen, 2002, Bailleul, 2007, Rajeesh, 
2011). In (Babalola, 2008), the authors presented an 
interesting qualitative and quantitative comparison 
of four methods (Aljabar, 2007, Babalola, 2007 
Patenaude, 2007, Murgasova, 2007) that were 
applied to the segmentation of internal brain 
structures on MRI, including the hippocampus.  

The problems faced in these applications mostly 
come from poor anatomical definition of the 
hippocampus and the close similarity of its intensity 
with the surrounding tissues intensities. The 
isolation of hippocampal structures is often a 
difficult task. They are generally treated among 

other structures. In this work, we propose to 
contribute to the segmentation of hippocampal 
structures by relying on two types of a priori 
knowledge: a priori on the shape of each part 
separately (in each hemisphere) and a priori on the 
distance between them. 

4.1 Qualitative Results  

The application of our model requires first the 
construction of a training set. In this application, we 
used 18 MRI brain volumes. From each volume, we 
selected four T1-weighted coronal slices, where the 
hippocampal structures are represented. We thus 
obtained a set of 72 images of size 512*512 pixels. 
50 images were used for the training and 22 images 
were reserved for the tests. In the training step, 30 
landmarks are placed on each image: 15 points to 
extract the shape of the hippocampus in the right 
hemisphere, and 15 points to extract it in the left 
one. The variability percentage of the initial data is 
fixed to 95% and the length of the grey levels profile 
in the training step is 7 pixels. As a result, we ended 
up building a shape model for each part of the 
hippocampus and a distance model, which models 
the variation of the distance between them. The 
obtained parameters of the model are shown in 
Table 3. 

Table 3: Parameters of shapes models and distance model. 

 hippocampus  
(right part) 

Hippocampus  
(left part) 

Shapes 
models 

7   principal  
variation modes  

6   principal  
variation modes 

 Distance 
model 

Mean distance		݀௠ ൌ 62.26 ,    
Standard deviation : ߪ ൌ14.19 

In the localization phase, the initializations used in 
the various tests are calculated, each time, according 
to the mean shapes obtained during the training. The 
maximum number of iterations is fixed to 60 and the 
length of the search profile is 19 pixels.  

Figure 1 shows an example of the localization 
result of the hippocampal structures, by presenting 
the effect of the distance constraint in intermediate 
iterations. Figure 2 shows the corresponding result 
by ignoring the distance constraint (using the same 
conditions). 

The intermediate results in iteration 1 and 
iteration 10 (Figure 1) show that the application of 
the distance constraint helped to push positively the 
shapes to the regions of interest. This explains the 
remarkable  difference  between  the accuracy  of the
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Figure 1:  Result of the segmentation of the hippocampal 
structures by ASMD 

 

 

Figure 2: Result of the segmentation by ignoring the 
distance constraint. 

final result by ASMD (our contribution) and that 
obtained by ignoring the distance constraint.  

Figure 3 shows some segmentation results 
obtained on patients with different stages of 
hippocampal atrophy. We can notice that the initial 
shapes succeeded in capturing the hippocampal 
structures with different levels of atrophy. Thus, 
qualitatively, we can conclude that the results 
obtained by the proposed model for the 
segmentation of the hippocampus on MRI slices are 
satisfactory. 

 
 
 
 
 
 
 

 
Figure 3: Examples of results obtained on patients with 
different stages of hippocampal atrophy. The first column 
shows the initializations and the second column shows the 
corresponding results. (a) case of healthy patient (b) case 
of patient with a mid-stage of atrophy (c) case of patient 
with a late stage of atrophy. 

4.2 Quantitative Results  

For the quantitative evolution, first, ten slices of the 
test database are selected and manually pre-
segmented in order to be used as references. This 
ground truth is built with the help of an expert. Then 
we decided to compare our contribution ASMD with 
the ground truth, the original model of the ASM 
(without distance constraint) and another method 
proposed by Babalola and Al (Babalola, 2007). This 
latter, abbreviated PAM, is a variant of Active 
Appearance Model-AAM (Cootes, 1998) whose 
texture model is based on perpendicular profiles in 
the limits of the structure to be segmented and not 
on all its shape. The results of this comparison are 
presented in figure 4. It illustrates, by graph, the 
distance of Hausdorff between every method 
(ASMD, ASM and PAM) and the ground truth.  

We can note that the Hausdorff distances found 
by ASMD for both parts of the hippocampus, vary 
from 2.81 (mm) to 5.14 (mm) with a global average 
of 3.74 (mm). These measures are lower than those 
found by the other two methods (ASM and PAM). 
We also note that both methods PAM and ASM in 
some cases give results close to the reference. 
However, they generate in other cases very different 
results even on the same slice. On the contrary, the 
results of ASMD have some stability and coherence 
between left and right part of almost all slices.  

This is due to the fact that the segmentation of 

Initialisation  

Before limitation by distance 
constraint  

Before limitation by distance 
constraint  

After limitation by distance 
constraint  

After limitation by distance 
constraint  
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Final localization result 
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both hippocampal structures, with ASMD, is made 
in a parallel and dependent way and is guided by 
two constraints: the shape and the distance. These 
results show the performance of the proposed model 
and the benefit of the integrated distance constraint.  
This additional constraint forced the initial curves to 
evolve regularly according to an acceptable distance 
and it thus channeled the evolution in the regions of 
interest.  

 

 

Figure 4: Results of the Hausdorff distance between the 
three methods (ASMD, ASM and PAM) and the ground 
truth. 

In order to deduce the benefit of the integrated 
distance constraint relatively to the initialization, we 
made a comparison between the proposed ASMD 
model and the original model ASM compared to the 
ground truth. The comparison is performed on the 
same image with the same propagation conditions 
and by adopting different initializations. The results 
are shown in Figure 5. We can notice on the column 
2 a clear difference between the quality of results. 
Indeed, for the three initializations, green curves 
(results obtained with ASMD) are closest to the red 
curves (reference segmentation). The second and the 
third initializations (shown respectively in the figure 
5.b and 5.c) are placed relatively far from 
hippocampal structures. We see that, unlike the 
green curves (ASMD results), the purple curves 
(ASM results) fail to reach the regions of interest.  

These results show that the used distance 
constraint partially solved the known problem of 
deformable models on initialization. It offers more 
flexibility during initialization.   

 
Figure 5: Comparison of results. The first column shows 
the different initializations. The second column shows the 
superposition of corresponding results: ASMD (green 
curves), ASM (purple curves) and the manual 
segmentation (red curves). 

5 CONCLUSIONS 

We presented an original segmentation model based 
on the ASM and a spatial distance relation. It allows 
the segmentation of two structures using two types 
of a priori knowledge: the shape of each structure 
and the distance between them. The proposed model 
is validated on a clinical application, where the 
problem is to segment two structures of interest: the 
extraction of two hippocampal regions (left and 
right) on coronal MRI of the brain. The obtained 
results are encouraging and show well the 
performance of the proposed model.  

Although it showed its robustness and stability in 
the majority of tests, the proposed model has some 
limits and a number of perspectives that should be 
mentioned. First, the model is designed to segment 
two structures of interest, what limits the fields of its 
use. In addition, the integrated distance constraint is 
modeled by using the distances between the target 
structures independently from their positions in the 
image. Thus, theoretically and during the 
localization, the distance between shapes may be 
valid even if they are really far from the structures of 
interest. This may produce false results. 
Improvements in our model are then considered. 
Indeed, it is possible to increase its reliability by 
considering one of the two structures as a fixed 
reference and to model the distance variation 
according to this reference. This however requires a 
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prior segmentation of the structure that will be 
considered as a reference. The proposed model can 
easily be extended to segment several structures. It 
means, for example, considering the simplest 
structure to be segmented as reference and to 
segment the others with regard to this reference.  
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