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Abstract: In this paper a bottom-up approach for detecting and recognizing objects in complex scenes is presented. In
contrast to top-down methods, no prior knowledge about the objects is required beforehand. Instead, two
different views on the data are computed: First, a GIST descriptor is used for clustering scenes with a similar
global appearance which produces a set of Proto-Scenes. Second, a visual attention model that is based on
hiearchical multi-scale segmentation and feature integration is proposed. Regions of Interest that are likely to
contain an arbitrary object, a Proto-Object, are determined. These Proto-Object regions are then represented by
a Bag-of-Features using Spatial Visual Words. The bottom-up approach makes the detection and recognition
tasks more challenging but also more efficient and easier to apply to an arbitrary set of objects. This is an
important step toward analyzing complex scenes in an unsupervised manner. The bottom-up knowledge is
combined with an informed system that associates Proto-Scenes with objects that may occur in them and an
object classifier is trained for recognizing the Proto-Objects. In the experiments on the VOC2011 database the
proposed multi-scale visual attention model is compared with current state-of-the-art models for Proto-Object
detection. Additionally, the the Proto-Objects are classified with respect to the VOC object set.

1 INTRODUCTION ception of complex scenes. Within milliseconds a hu-

man observer is able to perform a brief categoriza-

Classifying objects in images is useful in many ways: tion of a scene, for example, decide between indoor

Systems can learn about their environment and in- and outdoor scenes. In a first step scenes with simi-

teract with it or provide detailed information to a lar GIST descriptions are clustered and described by

user, e.g., in augmented reality applications. A pre- a set of representatives. We refer to these represen-
condition for classifying objects in a complex, realis- tatives as Proto-Scenes since no further knowledge
tic scene is the detection of objects that may be of about them can be inferred. At object level a visual
further interest. This task usually requires detailed attention is applied for detecting Regions of Interest
knowledge about the objects, e.g., by creating a model that are likely to contain an object, a so-called Proto-
for every object category; cf. (Felzenszwalb et al., Object. For computing the visual attention a saliency

2010). Typically, these models are moved over the detector that is based on the priciples of feature in-

scene in a sliding window approach. Such approaches tegration, object-based saliency and hierarchical seg-

have two disadvantages: First, object detection is mentation is introduced.

computationally intensive and also a very specialized ] S

task, if a large set of possible objects is considered. In the resulting scene description it is not known

Second, creating various object models typically re- what a scene shows, b_ut whethgr it is similar to oth_er

quires tremendous amounts of labeled data. scenes and where objects of interest may occur in

In this paper we propose a more general approach this scene. _Si_nce_no prior knowledge is used, this
using bottom-up techniques that do not require prior scene gegcrlptlop is less accurate than the rgsults of
knowledge about the object classes at the detection a specialized object detector but, therefore, it can be
stage. Basic information about a scene is gained by used as a layer of abstractlon_ that can efflc_lently be
computing its GIST (Oliva et al., 2006). GIST refers computed and later be combined with an informed
to scene descriptors that model the coarse human per-  OPject recognizer. This is an important step toward
the unsupervised analysis of complex scenes. Proto-

OThe authors would like to thank Axel Plinge for his objects can be found regardless of the actual instance
helpful suggestions. and recognizers could be trained automatically, e.g.,
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Figure 1: Overview of the proposed method: Proto-scenes are computed using a GIST representation. Proto-object regions
are detected within the image. These regions are then described by a Bag-of-Features using Spatial Visual Words. The Proto-
Scenes and regions are then evaluated in a classification step in order to obtain a class label. The "train” image is taken from

the VOC2011 Database (Everingham et al., 2011).

from web sources, and used for evaluating the scene-
contents with respect to different object classes. In
this paper the quality of such a scene representation
will be evaluated and, therefore, the VOC database
that contains objects in complex scenes is used for
evaluation.

After defining a set of object categories, a prior-
probability for objects to occur in a given Proto-Scene
is computed. Then, the Proto-Object regions can be
used as input images for an object classifier. For
the classification of Proto-Objects a Bag-of-Features
representation using Spatial Visual Words (Grzeszick
etal., 2013) is combined with a random forest. A Spa-
tial Visual Word includes coarse spatial information
about the position of a Visual Word within the Proto-
Obiject region at feature level. The region itself holds
the spatial information about the position within the
scene. In (Grzeszick et al., 2013) it has been shown
that this representation is more compact than the well
known Spatial Pyramids (Lazebnik et al., 2006). It is
therefore more suitable for an unsupervised approach
that aims at recognizing arbitrary objects with low
computational costs.

Summarizing, the contribution of this paper is two
fold: 1. A novel Proto-Object detector that is based
on a visual attention model is presented. It applies
the priciples of feature integration at multiple scales
to segmented Proto-Object regions. 2. The possibility
of combining the computed detections and scene level
information that were obtained completely unsuper-
vised with a Bag-of-Features based object classifier is
evaluated.

2 RELATED WORK

A very elementary representation of a scene is its
GIST (Oliva, 2005). The idea is to model the human
ability to gather basic information about a scene in a
very short time and to obtain a low dimensional rep-
resentation for complex scenes. A common GIST de-
scriptor, the Spatial Envelope, has been introduced by

Olivia and Torralba in (Oliva et al., 2006). It models
the dominant spatial structure of a scene based on per-
ceptual dimensions like naturalness, openness, rough-
ness or expansion. These are estimated by a spectral
analysis with coarsely localized information. The ad-
vantages of using scene context for object detection
has been shown in (Divvala et al., 2009). The recog-
nition results of a part based object detector could be
significantly improved by combining it with scene in-
formation.

Visual attention models steadily gained popular-
ity in computer vision in recent years (Borji and Itti,
2013). Generally, they can be divided into two cate-
gories, top-down and bottom-up models. While top-
down models are expectation- or task-driven, bottom-
up models are based on characteristics of the visual
scene. For bottom-up models several measures have
been used in order to find salient image content, for
example, center-surround histograms (Cheng et al.,
2011; Liu et al., 2011), luminance contrast (Zhai and
Shah, 2006) and frequency based measures (Achanta
et al., 2009; Hou and Zhang, 2007). Locating ob-
jects by means of saliency detection is based on the
assumption that there is a coherence between salient
image content and interesting objects (Elazary and
Itti, 2008). The presented approach is a bottom-up
approach that explicitly follows the assumption that
visual interest is stimulated by objects rather than sin-
gle features as shown in (Cheng et al., 2011). Since
there is no need for prior knowledge, such models can
be used to re-evaluate top-down methods (Alexe et al.,
2012) or integrated into methods for generical object
detection as shown in (Nasse and Fink, 2012) using a
region-based saliency model. Other approaches pro-
pose feature integration based attention models with
subsequent use of image segmentation (Walther et al.,
2002; Rutishauser et al., 2004).

For object classification Bag-of-Features repre-
sentations are known for producing state-of-the-art
results; cf. (Chatfield et al., 2011). Local appear-
ance features, e.g. SIFT (Lowe, 2004), are extracted
from a set of training images, clustered and quan-
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tized. A fixed set of representatives, the so-called Vi-
sual Words, are used for describing the features. An
image is then represented by a vector containing the
frequencies of the occuring Visual Words, the term-
vector. The Bag-of-Features discards all spatial in-
formation which originally was a major shortcoming
when applying this approach to object recognition.
Hence, context models that re-introduce coarse spa-
tial information are able to significantly improve the
classification results. The most common example are
Spatial Pyramids (Lazebnik et al., 2006) which sub-
divide the image and create a term-vector for each
region. Lately, the Spatial Pyramid representations
became increasingly high dimensional using up to
eight regions with 25.000 Visual Words each yielding
200.000 dimensional term-vectors (Chatfield et al.,
2011). While these high dimensional models yield
superior classification rates they also make it more
difficult to handle large amounts of data. In order
to reduce the dimensionality the presented approach
computes Spatial Visual Words that directly encode
spatial information at feature level (Grzeszick et al.,
2013).

3 BOTTOM-UP RECOGNITION

The proposed method for bottom-up object recogni-
tion consists of three major steps that are also illus-
trated in Figure 1: First, given an input image, its
Proto-Scene category is determined and Proto-Object
regions are detected in the image. Then, each Proto-
Obiject region is represented by a Bag-of-Features
representation using Spatial Visual Words. Finally,
the feature representations are used for computing a
probability for an object to be present in the scene by
using a random forest. The region based probabili-
ties are weighted by a prior based on the Proto-Scene
category.

3.1 Proto-scenes

The most basic information that can be obtained about
different scenes is a global similarity. Hence, the
scenes are clustered, using Lloyd’s algorithm (Lloyd,
1982), and represented by a set of M Proto-Scenes Sp,.
For the global description the GIST of a scene is
computed. Namely, the color GIST implementation
described in (Douze et al., 2009) which resizes the
image to 32 32 pixels and subdivides it into a 4
4 grid. This grid is used for computing the Spatial
Envelope representation as introduced by Olivia and
Torralba (Oliva et al., 2006). In an informed system,
it is then possible to estimate the probability for an
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object of class W to occur in an image Iy based on
the Proto-Scenes Sp,:
M
PWejlk) = P(WcjSm)P(Smjlk) 1)
m=1

Here, the probability for an object class to occur in a
Proto-Scene is estimated from a set of training images
using Laplacian smoothing

1+ 25, 021, 4(O;We)

P(WcjSm) = (2
o L2sn 02l 1=10(0; W)
forall classes C with
1 02W,
o: W) = 3
oW = o o ®3)

A Bayes classifier is trained on the Proto-Scenes
that were uncovered by the clustering on the training
images. It can then used for computing P(Smjlx) for a
given image k.

3.2 Detection

Regions of Interest are detected in an image using a
bottom-up process that is based on visual attention
models. The saliency of a region compared to the rest
of the image is evaluated. Those regions are refered
to as Proto-Object regions. The term is based on the
fact that regions with a high visual interest are likely
to contain an object but the content of the region is not
identified yet. It does not become an actual object be-
fore the recognition process. The proposed saliency
detector is based on three principles: feature integra-
tion, object-based saliency and hierarchical segmen-
tation. Applying the theory of feature integration for
a computational attention model was first proposed in
(Itti et al., 1998) and is widely recognized. The the-
ory suggests that in the pre-attentive stage the human
brain builds maps of different kinds of features which
compete for saliency and are subsequently integrated
before reaching the attention of the spectator. Object-
based saliency assumes that attention is stimulated by
objects rather then by single features.

The presented approach combines the concept of
object-based saliency with the region-contrast method
proposed in (Cheng et al., 2011). First, a set of
disjoint regions is determined using segmentation.
Saliency values are then determined for each region
by comparing a region with all other regions of the
image. Hence, in contrast to other saliency ap-
proaches the method computes saliency values for re-
gions instead of pixels.

The main disadvantage of this approach is that it
is hardly possible to detect objects on a large scale
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Figure 2: Overview of the saliency based detection approach. The principles of feature integration, object-based saliency and
hierachical segmentation are combined for detecting Proto-Objects in a scene.

of different sizes. Therefore, the saliency algorithm
is improved by using hierarchical segmentation in a
scale space as proposed in (Haxhimusa et al., 2006).
For computing the next image of the scale space lj+1
the image I, is convoluted with a Gaussian function G
of variance s = 0:5:
h+1(%y;8) = G(xy;8)  h(x;y) (4)
The overall concept is illustrated in Figure 2. In
order to integrate a set of different features, three fea-
ture maps for color and four maps for orientation (4
bins with 45 ) are computed, which is compara-
ble to the approach described in (Itti et al., 1998).
All feature maps are also computed in a scale space
with three scale levels yielding 21 feature maps. The
region-contrast method is applied on each of them in-
dependently, producing a set of regions with differ-
ent saliency values for each feature map. The fea-
ture maps are integrated based on regions rather than
pixel-wise. Since the saliency values in the different
feature maps vary they need to be normalized. This is
achieved by weighting each region with

w=M m? ®)

where M is the highest saliency value in the map and
m is the average saliency over all regions.

From the overall result a predefined number of the
most salient regions is extracted and considered as
Proto-Object regions. These are then processed by
the object recognizer. Note, that the regions of the
Proto-Objects can overlap if they are extracted from
different layers.

3.3 Feature Representation

Besides the visual interest, no additional knowledge
about the Proto-Object regions is available. In or-
der to allow for a classification of the Proto-Objects
it is necessary to extract features from these regions.
A Bag-of-Features representation using Spatial Visual
Words is computed for each detected region. A Spa-
tial Visual Word includes spatial information directly
at feature level so that it is incorporated into the Bag-
of-Features and does not need to be re-introduced.
Also, redundancies that occur in the high dimensional
representation of Spatial Pyramids are removed while
keeping the benefits of incorporating spatial informa-
tion (Grzeszick et al., 2013).

First, local appearance features are extracted from
a set of training samples. In the following, densly
sampled SIFT features (Lowe, 2004) are used. Then,
unlike recent Bag-of-Features approaches, these ap-
pearance features are enriched by a spatial compo-
nent at feature level as introduced in (Grzeszick et al.,
2013). Spatial features s; are appended to the descrip-
tor so that similar appearance features in the same
spatial region are clustered. In this paper quantized
xy-coordinates based on 2 2 regions are considered
for the spatial feature, which is similar to the Spa-
tial Pyramid (Lazebnik et al., 2006). In this case the
four regions can, for example, be represented by the
coordinates [(0;0);(0;1);(1;0);(2; 1)]. In order to in-
crease the influence of the spatial component, the 128
dimensional SIFT descriptor a is divided by the av-
erage descriptor length, so that the sum of all dimen-
sions becomes approximately one. Thus, a new fea-
ture vector v consisting of the appearance feature a
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Figure 3: Overview of the feature representation: Given a Proto-Object region, local appearance features (e.g., SIFT) are
extracted from the image based on a densly sampled grid. A spatial measure is used for combining the appearance features
with spatial features, in this case, quantized xy-coordinates. During the training the modified descriptors from all training
images are clustered in order to form a Spatial Visual Vocabulary that holds the important information of each spatial region.
The features of each Proto-Object are quantized with respect to that vocabulary and represented by a set of Spatial Visual
Words. The “train” image is taken from the VOC2011 Database (Everingham etal., 2011).

and the spatial feature vector s is constructed by:

V= (ap;::;8128;50;51) " (6)

All features are then clustered to form a set of rep-
resentatives. A single representative is refered to as
a Spatial Visual Word and to the complete set as the
Spatial Visual Vocabulary. For clustering the gener-
alized Lloyd algorithm is applied (Lloyd, 1982). The
features of each object from a training set are quan-
tized with respect to the vocabulary and the sample is
represented by a term-vector of Spatial Visual Words.

3.4 Classification

The classification is performed as a two step pro-
cess. The Proto-Scenes are incorporated for comput-
ing P(Wcjly) as described in section 3.1. A random
forest is trained on the Bag-of-Features representa-
tions from annotated object samples in order to esti-
mate the probabilites P(W¢jR;) of a region R; to con-
tain an object of class W. The probability of an object
of class W, to be present in a region R; of image Iy is
then defined by

P(WcjRj; Ik) = P(WcjR;j)*P(Wejlk) - ()

A weighting term a was introduced in order to ac-
count for different confidences of the Proto-Object
and Proto-Scene classification. Experiments showed
that there is a local optimum for a = 4. In order to
predict whether an object is present in a scene, the
maximum probability of all regions R; is computed.

The advantage of this approach is that two differ-
ent views on the data, the very coarse scene represen-
tation and the more detailed object level information,
are combined with each other.
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4 EXPERIMENTS

The method was evaluated on the VOC2011 database.
The database contains 11,540 images of complex
scenes with one or more objects that need to be rec-
ognized. In the following the quality of the detections
is compared to state-of-the-art visual attention meth-
ods. In addition, the detections and the Proto-Scene
information is used in order to classify the objects.

4.1 Detection Experiments

The bottom-up object detector computes a set of
Proto-Object regions that are completely independent
of any task. Hence, the goal of the detection experi-
ments is to evaluate the quality of the bottom-up de-
tections for a given task. Some regions may contain
objects that are of further interest while other regions
may contain visually interesting objects that are not
related to the task. The detector is applied on the
VOC2011 dataset using the same overlap criterion
that is used for the VOC-challenge:
a = area(Bp \ Bgt) ®)
area(Bp [ Bgt)
where B, is the detected region and By is the ground-
truth bounding-box of an object. Typically, an object
is counted as detected ifag  0:5.

In the experiments the maximum number of
Proto-Object regions per image that are computed by
the detector is limited by a parameter. Then, the ratio
of detected regions compared to all objects of interest
that are annotated in the dataset is determined. Figure
4 shows the results of the proposed approach com-
pared with the single-scale region-contrast method
(Cheng et al., 2011) and a feature integration ap-
proach presented in (Walther et al., 2002). The latter
is based on (Itti et al., 1998) and is using segmen-
tation in the post processing in order to extend the
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Figure 4. Results of the detection experiments. The graphs show the ratio of the detected objets, Popj, over the maximum
number of Proto-Object regions per image, Nmax. Left: Comparison of different methods using the locating precision criterion
ap 0:5. (a) Proposed method. (b) region-contrast (Cheng et al., 2011) (c) feature integration (Walther et al., 2002) (d)
randomly selected regions. Right: Results of the proposed method for different precision criteria.

most salient locations to regions. The results show
that the proposed method clearly outperforms state-
of-the-art visual attention approaches. Using only the
most salient region computed by all approaches al-
ready shows that the proposed multi-scale approach
detects the objects in the VOC2011 database more
accurately than both other methods. Furthermore,
increasing the number Proto-Object regions that are
considered increases the performance improvement.
With 20 Proto-Object regions about 20% more ob-
jects than with the single-scale region-contrast are de-
tected.

The results also show that half of the objects of in-
terest are among the ten most salient regions per im-
age and are located with decent precision (ag  0:5).
Hence, in comparison with sliding-window detection
approaches the proposed method is also computation-
ally very efficient. Additionally, different overlap cri-
teria are evaluated showing that more than 40% of the
objects are detected with an overlap of 70% or more.
When loosening the overlap criterion to 30% up to
80% of the objects are detected.

Examples for the detection approach are shown in
Figure 5. They illustrate the difficulties of bottom-
up detection. In the first two examples (car & cat)
the object is split up in different parts at the finer
scales. This also shows the advantages of using a
multi-scale approach and explains the strong perfor-
mance improvements compared to single-scale meth-
ods. In the third example (bird) the correct detection
is at the finest scale. However, there is a more salient
region that is created by noise at the bottom of the
branch.

4.2 Recognition Experiments

Using the bottom-up information that was obtained
about the images in the VOC Database the next exper-
iments combine the Proto-Scenes and Proto-Objects
with an informed system that allows for object recog-

Table 1: Average precision on the VOC2011 using a vocab-
ulary size of 1:000 and 2 2 xy-quantization. Left column:
10 Proto-Object regions. Right column: Proto-Scene infor-
mation obtained by 30 clusters is also incorporated.

Category 10 10 Regions &
Regions Proto-scenes
Aeroplane 55.4% 56.0%
Bicycle 33.4% 33.3%
Bird 21.7% 26.3%
Boat 26.1% 23.4%
Bottle 12.7% 10.7%
Bus 51.3% 53.0%
Car 26.6% 27.3%
Cat 42.0% 41.1%
Chair 18.3% 23.2%
Cow 11.9% 12.6%
Diningtable 18.9% 21.2%
Dog 32.7% 35.4%
Horse 25.5% 24.2%
Motorbike 38.5% 40.6%
Person 60.0% 60.9%
Potted plant 5.9% 7.6%
Sheep 21.8% 19.8%
Sofa 22.3% 22.6%
Train 36.7% 36.3%
Tv-Monitor 35.5% 37.3%
mAP 29.9% 30.6%

nition as described in section 3.4. For the evaluation
a confidence value for an object to be present in a
scene is computed. The confidence is used in order to
compute the average precision over a precision-recall
curve for each object category; cf. (Everingham et al.,
2011).

The annotated ground truth from the VOC2011
training dataset is used for modelling the 20 VOC ob-
ject categories. Both, the ground truth objects and the
detections are computed with a margin of 15% around
the bounding box in order to catch a glimpse of back-
ground information that might be useful for the clas-
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original
Figure 5: Detection of salient objects at different scale levels. The examples demonstrate the advantage of introducing
hierarchical Proto-Object detection. Small objects (bird) will be detected on a higher reolution, i.e. level 1, while middle-
sized (cat) and large objects (car) are detected on coarser scales, i.e. level 2 and 3, respectively. The images in the left column
are taken from the VOC2011 database. This graphic is best viewed in color.

sification. The Bag-of-Features representations are
computed using densly sampled SIFT features with
a step width of 3px and bin sizes of 4;6;8 and 10px,
which is similar to the approach described in (Chat-
field et al., 2011).

The results of the recognition experiments are
shown in Table 1. In these experiments the ten most
salient regions were considered in order to detect a
high number of Proto-Objects while keeping a low
false positive rate. For the Bag-of-Features a Spatial
Visual Vocabulary with 1,000 Visual Words is com-
puted and combined with spatial information from a
2 2 xy-quantization. As expected, the results are
below state-of-the-art top-down approaches. There
are mainly three reasons for this: First, the detected
Proto-Object regions are not always completely accu-
rate. The spatial information is distorted by transla-
tions and cropping. This is also why more detailed
spatial information does not yield an improvement.
The second reason is that some objects get rarely
detected, since they do not show any visual inter-
est. Note that about 55% of the object in the dataset
are detected with an overlap ag  0:5. While this is
a good results for bottom-up detection it makes the
classification very challenging. Third, some objects
such as bottles are comparably small so that it is not
always possible to compute a meaningful statistical
representation like the Bag-of-Features on these re-
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gions. Large and visually more interesting objects
like Planes, Busses or Persons show higher recogni-
tion rates. The results of these classes are, for exam-
ple, comparable with the scene level pyramid mod-
els using 4:000 Visual Words described in (Chatfield
et al., 2011), e.g. 60:6% for airplanes and 50:4% for
busses.

The additional knowledge obtained from the
Proto-Scenes improves the classification results. Es-
pecially categories that occur mostly in the same en-
vironment, such as airplanes or birds benefit from the
Proto-Scene information. For the results presented in
Table 1 30 Proto-Scenes were used. Note that this
number of Proto-Scenes does not necessarily repre-
sent the number of natural scenes that occur in the
dataset.

5 CONCLUSIONS

In this paper a bottom-up approach for object recogni-
tion based on proto-scenes and proto-object detection
was presented. No prior knowledge about the object
categories is required for creating an abstract repre-
sentation of scenes and objects. This representation
can later be used by an informed system for object
classification.

The detection of real world objects with saliency



based techniques has been evaluated showing that the
presented multi-scale approach outperforms state-of-
the-art visual attention models. The experiments con-
firmed that bottom-up recognition is more difficult
but it is also easier to apply to arbitrary objects and
more efficient than specialized detectors that need to
be trained and applied separatly in a sliding window
approach. These properties and the independence of
annotations for most parts is an important step to-
ward automated object recognizer training. It has also
been shown that promising recognition rates can be
obtained for some object categories on the VOC2011
database.
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