
Subsign Detection and Classification System for Automated Traffic-sign
Inventory Systems

Lykele Hazelhoff1;2, Ron op het Veld2, Ivo Creusen1;2 and Peter H. N. de With1;2

1CycloMedia Technology B.V, Zaltbommel, The Netherlands
2Eindhoven University of Technology, Eindhoven, The Netherlands

Keywords: Object Detection, Traffic Sign Recognition, Object Classification.

Abstract: Road safety is influenced by the accurate placement and visibility of road signs, which are maintained based on
inventories of traffic signs. These inventories are created (semi-)automatically from street-level images, based
on object detection and classification. These systems often neglect the present complimentary signs (subsigns),
although clearly important for the meaning and validity of signs. This paper presents a generic, learning-based
approach for both detection and classification of subsigns, which is based on the same principles as the system
employed for finding traffic signs and can be used as an extension to automated inventory systems. The
system starts with detection of subsigns in a region below each detected sign, followed by analysis of the
results obtained for all capturings of the same sign. When a subsign is found, the corresponding pixel regions
are extracted and subject to classification. This recognition system is evaluated on 3;104 signs (397 with
subsign) identified by an existing inventory system. At a detection rate of 98%, only 757 signs (24:4% of the
signs) are labeled as containing a subsign, while 91:4% of the subsigns of a class known to our classifier are
also classified correctly.

1 INTRODUCTION

Road safety is strongly influenced by the correct
placement and accurate visibility of traffic signs to
e.g. warn road users for upcoming dangerous situa-
tions or inform them about speed limits or other re-
strictions. The validity and legal meaning of these
road signs are commonly affected by co-attached
complimentary signs, which contain e.g. directions,
time restrictions or arbitrary texts. Figure 1 displays
examples of such complimentary signs. As the visi-
bility of road signs degrades over time due to aging,
accidents or vandalism, accurate inventories of road
signs are of significant interest to governmental in-
stances and subcontractors tasked with road mainte-
nance. Moreover, these inventories are applicable to
driver assistance systems or autonomous vehicles.

These inventories can be generated manually,
tracking all roads, but efficiency can be improved by
employing street-level images, together with object
detection and classification techniques to retrieve the
traffic-sign positions and types. Multiple of such sys-
tems exists , i.e.(Hazelhoff et al., 2012),(Maldonado-
Bascon et al., 2007),(Maldonado-Bascon et al.,
2008),(Overett and Petersson, 2011),(Timofte et al.,

2009),(Timofte et al., 2011). These generally start
by processing every image to detect the present road
signs, which are then often tracked over multiple con-
secutive frames. Classification of the signs is usu-
ally performed either directly after detection, or after
tracking. Recognition scores over 90% are reported,
where some systems include over 90 different sign
types.

The reported systems focus primarily on the
recognition of road signs, but commonly ignore the
presence of complimentary signs. However, these
subsigns are of great importance during analysis
of the inventory results, and are therefore typically
added manually. This is a time-consuming process,
especially since subsigns only occur for the minor-

(a) (b) (c) (d)
Figure 1: Example of a complimentary signs altering the
meaning of road signs.
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ity of signs. Extension of these automated traffic-
sign inventory systems with a subsign recognition
module would increase the inventory generation effi-
ciency, and would decrease the required manual inter-
action. However, subsign detection and recognition is
rather difficult, as the subsign contents vary greatly
and sometimes contain arbitrary texts and/or custom
symbols. Furthermore, these signs are smaller than
normal road signs and consist of less discriminative
colors, as they are usually white. Also, the captur-
ing quality and conditions are varying, as the captur-
ings are made outdoors during different weather con-
ditions and from driving vehicles, typically with large
inter-capturing distances at higher driving speeds.

In literature, few publications report on the recog-
nition of subsigns. In (Hamdoun et al., 2008), rectan-
gle detection is employed in a region below road signs
to retrieve present supplementary signs, followed by
a classification stage to solely retrieve exit-lane sub-
signs. Rectangle detection is also exploited in (Nien-
huser et al., 2010), where found rectangles are classi-
fied using a two-stage cascade, aiming at discrimina-
tion between both subsign and non-subsign rectangles
and between 4 different subsign types. In (Puthon
et al., 2012), a region growing approach is described
and compared against several other techniques, where
the proposed method achieves a correct detection rate
over 70%.

This paper describes a generic and learning-based
approach for both detection and classification of sub-
signs. The work forms an extension to our exist-
ing traffic-sign inventory system (Hazelhoff et al.,
2012), but due to the generic nature of our algorithm,
it is also applicable to other, similar systems such
as (Maldonado-Bascon et al., 2007), (Maldonado-
Bascon et al., 2008), (Overett and Petersson, 2011),
(Timofte et al., 2009) and (Timofte et al., 2011)). In-
stead of treating the complimentary signs as an addi-
tional sign class, and thereby searching the complete
image for complimentary signs, the output of existing
road-sign inventory systems, like any of the above-
mentioned systems, is exploited. This narrows the
search area to the regions below the identified traf-
fic signs, which increases robustness, since objects
with a similar appearance compared to subsigns (i.e.
white rectangles) occur frequently in real-world situ-
ations. The subsign recognition system exploits both
the single-image detections and tracked detections (in
this paper referred to as 3D signs) given by existing
inventory systems.

The system starts by detection of subsigns in a
fixed region below each of the detected signs, as
the vast majority of subsigns are located below road
signs. Afterwards, the subsign detection results ob-

(a) (b) (c) (d) (e)
Figure 2: Example of a 3D sign, consisting of multiple de-
tections of the same traffic sign tracked over multiple con-
secutive capturings.

tained for each detection of a 3D sign, are combined
to improve robustness. When a subsign is found, the
corresponding pixel regions are extracted, which are
then subject to classification, to retrieve either the
subsign type or a subsign-with-text code. This system
is evaluated on a large, real-world dataset containing
3;104 signs (397 signs with subsign), with 29 differ-
ent subsign types for classification. It will be shown
that subsign detection is indeed possible with reason-
able performance, even with a generic concept.

The remainder of this paper is organized as fol-
lows. Section 2 contains the system overview of our
subsign detection and classification system, which is
described in detail in Sect. 3. The performed exper-
iments and results are found in Sect. 4, followed by
the conclusions in Sect. 5.

2 SYSTEM OVERVIEW

The system for automatic recognition of subsigns de-
scribed in this paper operates on 3D signs detected
by our traffic-sign inventory system (Hazelhoff et al.,
2012). These 3D signs consist of multiple detections
of the same road sign, tracked over consecutive image
frames. An example of an input 3D sign is shown in
Fig. 2. The system overview of the subsign recogni-
tion system is depicted in Fig. 3, and the four primary
modules are briefly described below.

1. Single-image detection: The region below each
detection given by the inventory system is divided
in overlapping windows. Each window is de-
scribed based on densely extracted SIFT descrip-
tors, which are subject to classification with a lin-
ear Support Vector Machine (SVM). The maxi-
mum SVM output of one out of all windows is
returned for each analyzed detection.

2. Multiview Detection: The single-image detection
results are combined to determine the presence of
a subsign for each 3D sign.

3. Subsign Localization: When a subsign is found
for the 3D sign, the pixel region corresponding to
the subsign, is retrieved for each detection with a
positive SVM output during the single-image de-
tection stage.
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Figure 3: System overview of the subsign recognition system.

4. Subsign Classification: The identified subsign re-
gions are subject to classification. Afterwards, the
subsign type is retrieved based on weighted vot-
ing.

3 ALGORITHM DESCRIPTION

3.1 Single-image Subsign Detection

At first, each detection of the input 3D sign is ana-
lyzed independently, where a measure for the possi-
ble presence of a complimentary sign is computed.
This stage starts by extraction of the region below the
detection, where we employ a region height of twice
the detection height, as subsigns are not necessarily
located directly below the road signs. Within this re-
gion, a sliding-window approach is employed, with
a windows size of 80% of the detection width and
30% of the detection height, which corresponds to
the typical subsign size. Each extracted window is
resized to a standard size of 120� 45 pixels, and af-
terwards, SIFT descriptors (Lowe, 2004) are extracted
from a dense grid at a single scale. These descriptors
are selected since they are very robust against varia-
tions in lighting conditions and small object deforma-
tions, e.g. caused by subsign rotation and skewness,
which occur commonly. After concatenation of these
descriptors, the resulting feature vector is subject to
classification using a linear SVM. This classifier is
trained on a large training set containing over 30;000
subsigns and non-subsigns windows. After all win-
dows are analyzed, the maximum SVM output for the
subsign class over all evaluated windows is selected
as subsign presence indicator.

3.2 Multiview Subsign Detection

Traffic-sign inventory systems commonly identify the
same road signs in multiple images, where the corre-
sponding detections are tracked over the subsequent
image frames. As all different detections contain the
same sign, but are captured from different distances
and from various viewpoints, the robustness of the
subsign detection stage is improved by combining the
subsign detection scores obtained for each of the in-
dividual detections. As complimentary signs may not
be visible from all different viewpoints, and may be
visible more clearly from a close distance, we com-
pare three different combination methods against each
other. The first method averages the individual detec-
tion scores, the second selects the best score (i.e. the
most likely subsign detection) and the third employs
the median score. These methods are defined as:

� Average:
d3D;av = mean(ddet 1;ddet 2; :::;ddetN),

� Max:
d3D;ma = max(ddet 1;ddet 2; :::;ddetN),

� Median:
d3D;me = median(ddet 1;ddet 2; :::;ddetN).

In these formulas, d3D denotes the corresponding de-
tection score for the 3D traffic sign, and ddet i de-
notes the detection score for the i-th detection, with
i 2 (1; :::;N) and N being the total amount of detec-
tions of the respective 3D sign.

3.3 Subsign Localization

When the presence of a subsign is indicated for a 3D
sign, the subsign pixel region is identified for all de-
tections for which the single-image detection phase
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results in a positive SVM output for the subsign class.
During detection, the window with the highest SVM
output is selected, whereas in this stage, this window
is extended by all adjacent windows which also have
a positive SVM output. This involves iterative selec-
tion of all windows which are overlapped by the cur-
rent subsign region for at least 40%, where initially
the window with the highest SVM output forms the
current subsign region. Figure 4 portrays several ex-
amples of obtained subsign regions.

(a) (b) (c) (d)

(e) (f) (g) (h)

(i) (j) (k) (l)

(m) (n) (o) (p)

(q) (r) (s) (t)

(u) (v) (w) (x)
Figure 4: Examples of localized subsigns. This figure also
displays examples of subsign classes contained in the sets
employed for training of the classification stage.

3.4 Subsign Classification

Each localized subsign region is classified, where
a standard object recognition method is reused for
the new purpose, which essentially operates as fol-
lows. Each of the retrieved subsign regions is first
resized to a predefined size, after which SIFT de-
scriptors (Lowe, 2004) are extracted from a dense
grid. These descriptors are then concatenated, and
the resulting feature vector is L2 normalized after-
wards. Then, multi-class classification is performed
using linear SVMs in a One-versus-All setup. Subse-
quently, the classification result for the 3D sign is re-

trieved based on weighted voting, where the weight is
defined as the difference in SVM outputs of the win-
ning class and second class.

This classification system is trained on the detec-
tion output from over 100;000 3D signs, which are
manually annotated. During this process, non-ideal
detections are removed, as these may influence the
classifier training in a negative way. This results in
29 different subsign classes, where frequently occur-
ring texts are included separately, while less frequent
texts are covered by a general subsign-with-text class
(in practice, the text itself is unconstrained). As non-
subsign detections may occur, we have also included
a non-subsign class. Figure 4 displays the majority of
the subsign categories within our training set.

4 EXPERIMENTS AND RESULTS

4.1 Subsign Detection Dataset
Description

The above-described system is evaluated on a large
and diverse test set, not overlapping with any of the
used training sets. This set is constructed by ap-
plying our road sign recognition system (Hazelhoff
et al., 2012) on a moderate-size geographical area,
containing rural roads, smaller towns and a part of
a city environment. Within this region, street-level
panoramic images are captured on each public road,
using an inter-capturing interval of 5 meter. This set
contains 40;128 images (about 200 km of road) in to-
tal. As these images are captured from driving ve-
hicles under various weather and lighting conditions,
cover various environments and represent a geograph-
ical area, we consider this test set as a representative
and real-world dataset.

Within this region, 3;104 3D signs are identified
by our traffic-sign inventory system (Hazelhoff et al.,
2012), where each sign is detected in about 5 differ-
ent images. These signs are employed to assess the
detection and classification performance of our sub-
sign recognition approach. From the 3;104 signs, 397
(about 12:8%) have a subsign, where we should note
that although this may look like a low percentage, this
corresponds to the real-world occurrence of subsigns.
Furthermore, we should note that the signs are cap-
tured from various viewpoints and distances (and thus
with various resolutions), and are captured under var-
ious lighting and weather conditions. For each of the
3D signs, both the presence of a subsign and its op-
tional subsign code are marked manually as ground
truth. Example images of detected signs and regions
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(a) (b) (c) (d) (e) (f) (g) (h) (i) (j) (k)
Figure 5: Example images contained in our test dataset.

below these signs are shown in Fig. 5.
We have assessed the detection and classification

accuracy separately, as both aim at different aspects
(i.e. the occurrence of a subsign and its specific type).

4.2 Detection Performance

The detection performance is assessed for both the
single-image detection and the multiview detection
stages. During evaluation, the following performance
metrics are employed:

� Precision: T P
T P+FP ,

� Recall: T P
T P+FN ,

where T P denotes the correct detections (true pos-
itives), FP denotes the erroneously found subsigns
(false positives) and FN the missed subsigns (false
negatives). Fig. 6 displays the recall-precision curves
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Figure 6: Recall-precision curves for both the single image
and multiview detection stages.

for both the single-image and multiview detection
stages. For clarity, we additionally included a
zoomed-in version, focusing at the high recall region
in Fig. 7. We should note that the sharp bend in the
curve for the single-image detection occurs because
for about 10% of the images, the subsign is com-
pletely invisible (e.g. due to occlusions).

It can be observed that multiview detection sig-
nificantly outperforms the single-image detection.
This is explained by the fact that many of the con-
tained signs are captured from a relatively large dis-
tance, from non-ideal viewpoints, or are (partially)
occluded, complicating subsign detection. Moreover,
the single-image detection stage is unable to retrieve
about 11% of the present subsigns, e.g. due to afore-
mentioned reasons. When combining the different de-
tections of the same sign, the optimal views can be
exploited, which increases the detection performance
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Figure 7: Recall-precision curve zoomed-in around the high
recall region.
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Table 1: Summary of the classification results. The last two rows are subclasses of types known to our classifier.

Total Correctly classified Found as non-subsign
Total detections 757 100:0% - - - -
Non-subsign 368 48:6% 0 0% 63 17:1%
Unknown types 17 2:2% 0 0% 0 0%
Known types 372 49:1% 340 91:4% 0 0%

-common subsigns 200 53.8% 178 89.0% 0 0%
-text subsigns 172 46.2% 162 94.2% 0 0%

considerably. We have found that for a high recall,
the three multiview methods behave similarly, where
the median and average methods outperform the max
method for the lower recall region. Numerically, at a
detection rate of 98%, the correct detection score is
51:3%, resulting in 757 signs out of the 3;104 total
3D signs marked as containing a subsign. Although a
precision of 51:3% looks quite low, subsigns only oc-
cur in a minority of cases, implying that for inclusion
of subsigns in the inventory result, only about 24:1%
of the 3D signs have to be checked, thereby reducing
the amount of manual checks with a factor 4:1 com-
pared to evaluating all 3D signs by hand.

Considering the processing time, the single-image
detection stage takes � 1:9 seconds per detection, re-
sulting in an average processing time of about 9:5 sec-
onds for each 3D sign. We should note that although
this looks rather slow, this computation time applies
to each 3D sign (not each image) and is valid for a
single-threaded implementation measured on a 2009
i7-920 CPU, operating at 2:67 GHz. Also, we should
point out that the subsign detection stage adds about
0:9% of the total computational load required for all
other components within the road-sign inventory sys-
tem. Since this task can be performed in parallel for
each 3D sign (employing multi-core computers in a
distributed computing environment), this processing
can be distributed to reduce the elapsed time of this
stage to a sufficiently low number suitable for our pur-
pose.

4.3 Localization and Classification
Performance

After multiview detection, each 3D signs identified as
containing a subsign is subject to classification. We
consider three subgroups, as indicated in Table 1. The
falsely detected subsigns are grouped into the non-
subsign category, which may be classified as a non-
subsign (an additional class in our classification sys-
tem) but can never be classified correctly. The second
category contains the minority of subsign types that
are not known to our classifier (and are also non-text),
and are therefore always classified incorrectly. The

third group contains the types known by our classi-
fier. This category is divided into two segments: com-
mon subsigns and text subsigns. The first category
contains all subsigns that occur frequently, including
broadly used text subsigns, which are all learned as a
separate class by our classifier. The second category
contains all other text subsigns, as in practice the text
can be unconstrained and may even differ in a single
letter. The classification results are summarized in Ta-
ble 1. As can be noticed, 91:4% of the subsigns with
a type known to our classifier is recognized correctly.
Furthermore, 17:1% of the falsely detected subsigns
is recognized accordingly, decreasing the number of
false positives and resulting in a correct detection ra-
tio of about 56% (at a detection rate of 98%).

When evaluating the processing time, the localiza-
tion and classification stages require 2:3 seconds per
3D sign, which results in an average total process-
ing time slightly above 10 seconds per 3D sign for
the complete subsign recognition system. This adds
about 0:9% to the total computational load required
for all other components within the road sign inven-
tory system.

5 CONCLUSIONS AND FUTURE
WORK

This paper has presented a system for recognition of
subsigns as an extension for automated traffic-sign
recognition systems. The system first analyzes of the
regions below each detected traffic sign (given by the
road sign recognition system) using generic object de-
tection methods. Second, the consecutive detections
of the same 3D sign are combined to determine the
presence of a subsign for each 3D sign. For signs
identified as having a complimentary sign, the sub-
sign pixel region is determined for each detection, and
these regions are then subject to classification to re-
trieve the subsign type.

Performance evaluation on a large and diverse test
set showed that reliable detection is feasible, where
at a detection rate of 98%, about 51% of the detec-
tions is correct. Since subsigns are sparse (i.e. only
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occur below the minority of signs), this results in a
significant reduction in manual effort to include sub-
signs in road-sign inventories. This score may be in-
creased by using the statistics of combinations of pri-
mary sign types and subsign occurrences, to exclude
certain sign types from subsign detection. Classifi-
cation of subsigns is challenging, since subsigns are
small and have varying resolutions and a high diver-
sity in contents, where falsely detected subsigns are
also present. Nevertheless, 91:4% of the subsigns
with a class known to our classifier are classified cor-
rectly. Additionally, 17:1% of the falsely detected
subsigns are recognized accordingly as non-subsign.
This implies that by a combined detection and classi-
fication approach, the correct detection ratio is further
improved to � 56% for a detection ratio of 98%.
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