
Evaluating the Usability of Recent Consumer-grade 3D Input Devices

C. Siegl, J. Süßmuth, F. Bauer and M. Stamminger
Computer Graphics Group, FAU Erlangen-Nuremberg, Erlangen, Germany

Keywords: HCI, User Interface, Modeling, Interaction, 3D.

Abstract: Recently, 3D input devices such as the Microsoft Kinect sensor or the Leap Motion controller became in-
creasingly popular - the later specialized in recognizing hand-gestures, advertising a very precise localization
of tools and fingers. Such devices promise to enable a touchless interaction with the computer in three-
dimensional space enabling the design of entirely new user interfaces for natural 3D-modeling. However,
while implementing a modeling application we found that there are still fundamental problems that can not
easily be solved: The lack of a precise and atomic gesture for enabling and disabling interaction (clicking ges-
ture) and a poor human depth perception and localization within an invisible coordinate frame. In this paper,
we show why the precision of the interaction is not limited by hardware but software constraints.

1 INTRODUCTION

Commercial 3D modeling software is traditionally
operated using a 2D input device (e.g., a mouse or
a graphics tablet) and a keyboard. The lack of af-
fordable 3D input devices in the past has forced de-
velopers of such software to implement modeling
paradigms that reduce the dimensionality of the user
interaction. In most tools, manipulations are limited
to a 2D plane, which may, for example, be perpendic-
ular to the current viewing direction or conform with
the tangent plane of the manipulated object. Some
modeling tools (e.g., Blender) go even further and
separate 3D movement into three distinct 1D move-
ments along the x-, y- and z-axis. In practice, these
concepts are usually different from software to soft-
ware and often counter-intuitive, which makes tradi-
tional 3D modeling tools hard to learn and difficult to
use for non-expert users.

With the recent advance of 3D motion tracking
devices like the Microsoft KinectTMor the Leap Mo-
tion controller, input devices for 3D interaction be-
came affordable for end users. This poses an entire
new challenge for software developers to devise new
paradigms for 3D modeling and scene manipulation.
Future modeling tools will have to provide an intu-
itive and easy to use 3D gesture based user interface
that supports artists in their everyday work.

While reviewing existing applications we found
that most of them claim to make use of a 3D free-
hand gesture based input device. However, in prac-
tice they do not really use all three dimensions. Often
the interface resembles a multitouch interface without

Figure 1: Three devices for 3D interaction. We concentrate
on the Leap Motion controller (middle).

touching anything. The third dimension is solely used
as an activation or clicking gesture.

After realizing that there is no modeling soft-
ware using true three-dimensional input, we wanted
to leverage the new Leap Motion controller with its
precise spatial hand detection algorithms to imple-
ment a simple to use software for common modeling
tasks. While at first glance, this seems to be a trivial
task, we found that there are fundamental obstacles
preventing an intuitive and precise interaction. Since
this is a problem concerning almost every software
that relies on precise spatial three-dimensional inter-
action we decided to investigate this issue.

1.1 Consumer Hardware

There are multiple consumer grade input devices with
variable technical specifications on the market. Con-
sidering the requirements of a 3D modeling and scene
interaction application, we need a device that offers as
much spatial and temporal accuracy as possible.

417Siegl C., Süßmuth J., Bauer F. and Stamminger M..
Evaluating the Usability of Recent Consumer-grade 3D Input Devices.
DOI: 10.5220/0004653404170423
In Proceedings of the 9th International Conference on Computer Graphics Theory and Applications (GRAPP-2014), pages 417-423
ISBN: 978-989-758-002-4
Copyright c
 2014 SCITEPRESS (Science and Technology Publications, Lda.)



The first device that comes to mind when thinking
about tracking human poses is the Microsoft Kinect
sensor (Microsoft Corporation, 2010) (see Figure 1).
Being one of the first affordable consumer devices in
this area it is widespread. The Kinect is suitable for
tracking the entire human body. However, it does not
offer sufficient resolution for tracking individual fin-
gers. Additionally, the maximum frame rate at the
highest resolution is only 30 frames per second.

A similar device is the SoftKinetic (Intel Corpo-
ration, 2013) (see Figure 1). The SoftKinetic works
in a range from 0.1m to 1.1m. It is geared towards
tracking faces and hands, with frame rates around 30
frames per second.

The most recent device that is completely geared
towards tracking hands is the Leap Motion con-
troller (Leap Motion, Inc., 2012) (see Figure 1).
While the Leap launched on July 22, we got a pre-
production unit to work with. The Leap sensor is
able to determine the location and orientation of the
users hand with sub-millimeter precision. Compared
to the other devices it provides the highest accuracy in
the tracking of hands and fingers, and operates at up
to 295 frames per second. Those specifications look
promising enough to envision the use of this device in
intuitive and interactive 3D modeling.

1.2 Previous Work

3D user interfaces have been an active topic in the
computer vision and graphics communities and many
interesting papers have been published over the last
decades. For a broad overview over 3D spatial in-
teraction, we refer our readers to the Siggraph 2011
course notes on “3D spatial interaction: application
for art, design, and science” (LaViola and Keefe,
2011) and references therein.

While over the last years, a lot of research has
been targeted at large scale 3D body gesture recog-
nition using the Kinect Sensor (see (Ren et al., 2011;
Gallo et al., 2011) and references therein), only little
effort has been put into assessing the abilities of 3D
interfaces for 3D object modeling and manipulation.

Using custom hardware, one very advanced ap-
proach towards modeling using 3D interaction was
conducted by Araujo et al. (Araujo et al., 2013) by
showing their tool “Mockup Builder”. They use a
multitouch screen with 3D projection, a Kinect and
mechanical tracking of positions in space. This com-
plicated setup remedies a lot of problems we encoun-
tered but the sheer amount of hardware does not seem
feasible to us.

Hilliges et al. (Hilliges et al., 2009) have imple-
mented a system (hard- and software) that combines

a multitouch device with depth information. In their
system they can pinch an object and move it in 3D.
They encountered similar problems with depth per-
ception we will describe later on (see Section 4.2).
In their application the scene is presented to the user
from a birds eye view, therefore shadows are suffi-
cient to correctly gauge relative depth.

Ren and O’Neill (Ren and O’Neill, 2013) address
the problem of 3D selection using freehand gestures.
They state that a single action for this task is not feasi-
ble because of accuracy issues. In their work they pro-
pose that a series of low level movements improves
the precision of the selection. To get a better un-
derstanding for this we recommend the survey paper
of Argelaguet and Andujar (Argelaguet and Andujar,
2013). This is a special case of handling clicking ges-
tures. We will describe this in a more general manner
later on.

Another approach that was taken in the past to-
wards an accurate retrieval of hand gestures are HMI
(human machine interface) gloves. See for example
the work of Saggio et al. (Saggio et al., 2010). These
gloves are equipped with sensors at every joint recov-
ering every movement. They allows for a very accu-
rate retrieval of relative finger positions. However the
absolute position of the hand in 3D still can not be de-
termined. Also the usability suffers and the price of
such systems is quite high.

In this context, one last bit of related work we
want to mention is the work with haptic feedback de-
vices like for example the PHANTOM (Massie and
Salisbury, 1994). Using such a device the user holds
a pen that is connected to a “robot arm”. This enables
a very accurate tracking and allows the user to per-
form a clicking gesture through a button on the pen. It
also provides haptic or tactile feedback. Given such a
device many of the problems we will encounter later
on are remedied. However we want to concentrate
on working with affordable, off the shelf, consumer-
grade hardware.

2 DEVICE LIMITATIONS

Given that we want to work with affordable
consumer-grade devices, challenges due to device
limitations have to be addressed. As our primary
device we use the pre-production Leap Motion con-
troller. With this setup we can identify two major
problems, a limited field of view and occlusion.

The field of view (in case of the Leap, a cone with
an opening angle of approximately 90�) is especially
problematic as the user can neither see it nor gets
feedback upon leaving it. Given the restricted inter-

GRAPP�2014�-�International�Conference�on�Computer�Graphics�Theory�and�Applications

418



action space it is not feasible to use a second hand
inside the view frustum (as was often suggested by
users) as we simply would run out of space. In partic-
ular moving one hand will often occlude the other.

Devices that need a line of sight to the tracked
hand, do not work in case of occlusion. That means,
while working with two hands, one cannot be above
the other. This also applies to individual fingers as can
be seen in Figure 2. On the left side, the tracking will
work, on the right side, with two fingers only slightly
moved up and down, the tracking will fail for these
two fingers. Also the whole finger has to be seen from
below. As soon as the fingertips point too far down-
wards, tracking will fail. Touching of fingertips in a
pinch gesture will also lead to failure of tracking for
both fingers.

Figure 2: Using the Leap device robust hand tracking only
works while every finger can be seen separately from the
device (left side). The configuration on the right will lead
to jittering of the middle and ring finger positions or a com-
plete loss of the tracking.

3 SCENE INTERACTION

When first experimenting with our Leap device, we
started to evaluate very simplistic three-dimensional
gestures. We implemented a prototype application for
camera navigation that provides the opportunity to in-
teract with a simple 3D scene (see Figure 3).

For the camera control we wanted to achieve a
flight-like interaction. Imagine your hand as an air-
plane. By moving this plane you control the cam-
era. This seemingly simple task already revealed one
fundamental problem. It is not obvious to determine
whether the user wants to interact with the camera or
merely wants to reposition the hand. To circumvent
this we have to define an activation or clicking ges-
ture. In our application this is implemented by a grab
motion.

Using the Leap API, we can implement this ges-
ture by monitoring the radius and center of a sphere
that is fitted into the palm of the hand. The range of
hand positions for which this sphere fitting works is
quite narrow (see Figure 4). However, after a bit of
training this gesture can be performed quite well.

The result of this free-flight interaction is an easy
to control camera that can perform very nice and

Figure 3: A screenshot from our application for scene inter-
action.

Figure 4: The grabbing feature only works in a narrow band.
In the upper two images the gesture will work. For the lower
two images the gesture will fail. While the left failure case
could probably be resolved in software, the right failure case
is more severe. Since the sensor only records the scene from
a single direction, the palm of the hand is occluded by fin-
gertips.

smooth pans that would not be possible by conven-
tional input using mouse and keyboard (see video).
We found that this is also very intuitive for first-time
users.

The second functionality implemented in this ap-
plication is scene manipulation. For picking objects
we tried to utilize the well known pinch motion. This
gesture however is not robust using the Leap device.
As the fingers come close to each other the tracking
fails. Therefore, we use the “cross fingers” gesture
shown in Figure 5. Having the fingers crossed (left
image) corresponds to not having the mouse button
pressed, while having separated the fingers (right im-

Figure 5: As a pinch gesture is not possible we substituted
it with this crossing of fingers. In the left configuration the
Leap will only recognize one finger. By separating the two
fingers it is possible to select a model inside the scene.

Evaluating�the�Usability�of�Recent�Consumer-grade�3D�Input�Devices

419



age) corresponds to holding the mouse button down.
While the user has his fingers crossed, we highlight
the object that is closest to the position described by
the two fingers. The user can then pick the highlighted
object by separating the fingers and move it around.
To drop the object, the user has to cross his fingers
again. This is similar to drag and drop in mouse inter-
action.

The problem with the activation and clicking ges-
tures is their accuracy. It is generally not possible
to perform a hand movement for triggering a gesture
without moving the hand. This however leads to an
unwanted alteration of the camera or the scene. No
matter how accurate the tracking device, accuracy of
the interaction is impaired. In our opinion this is a
fundamental problem of 3D input devices.

Given this rather simple application the Leap was
able to perform quite well for navigating the scene.
While some technical limitations became apparent it
was possible to create an application that was suffi-
ciently easy to use. However when trying to navigate
to an exact position (aligning a cross in the scene with
a cross on the monitor) we had problems to perform
the fine grained alterations necessary to achieve a per-
fect alignment. This underlines the general problem
of 3D interaction schemes having insufficient preci-
sion when using freehand gestures. When discussing
our modeling application in the following chapter this
will become more apparent.

4 MODELING

We first started with the idea of implementing a mod-
eling application using true three dimensional input.
Our goal was to model simple chess pieces, as these
are widely known and easy to create. After observing
the deficiencies regarding precise camera positioning,
we decided to focus our analysis on accuracy.

In the resulting application, the user can build
rotationally symmetric 3D models. Initially only a
cylinder exists that is defined by two rings at the top

Figure 6: Modeling of rotationally symmetric models. Con-
trol mesh on the left, Catmull-Clark subdivided mesh on the
right.

and bottom. Using hand gestures only, additional
rings can be added, existing rings can be moved up
and down and their radius can be modified. To get
a visually more pleasing result we use Catmull-Clark
Subdivision on the resulting base mesh (see Figure 6).

4.1 2D Interface

The 3D cursor can be positioned by moving the hand
up and down. When the hand is moved away from
the screen and penetrates a predefined plane, a new
editable ring is added. To select an existing ring, the
hand has to be moved closer to the screen and again
penetrate a predefined plane. While a ring is selected
it can be resized by moving the hand left and right
and repositioned by moving the hand up and down. In
this first stage we explicitely do not use real 3D inter-
action and therefore used the “glorified touchscreen”
interface many other applications implement instead
of true 3D interaction. However one problem that be-
came apparent is the fact that users can not see or feel
those planes. Therefore those users do not know the
relative position of their hand and the planes, mak-
ing it hard to select and deselect rings in a predictable
way.

We evaluated this problem by giving the task to
model a simple chess piece to a small group of users.
The chess piece of our choice was the pawn shown in
Figure 7(a), as this piece needs no further 3D editing
and can be modeled with the application we have de-
scribed so far. Each user had to model the same pawn
twice, once using solely hand gestures, and once us-
ing a modified version of our modeler, where the hand
gestures for creating a new, selecting an existing and
deselecting the current ring were replaced by single
key presses.

As we have already mentioned, participants had
trouble applying the selection and deselection ges-
tures without side effects. Especially deselecting a
ring often led to unwanted alterations of the model.
As a result the users became hesitant and lost con-
fidence in achieving a good result. As soon as
their model looked close enough to the template they
stopped editing in anticipation of destroying the result
with further editing steps.

Given the keyboard to substitute the clicking ges-
tures, the average time per model did not change no-
ticeably. However all users felt up to the task to
add additional detail to the model (without encour-
agement from us). They also corrupted their model
less often and no longer needed to restart the model-
ing process (this is the reason for the longer modeling
time of User 4). The results are closer to the template
model than those obtained using only hand gestures

GRAPP�2014�-�International�Conference�on�Computer�Graphics�Theory�and�Applications

420



(a) Target (b) 224s vs. 215s (c) 72s vs. 52/102s (d) 176s vs. 163s (e) 470s vs. 153s

Figure 7: Some results of modeling a pawn. Users (with minor background in 3D modeling and without prior training) were
given the task to model a pawn. The blue models were created using gestures for picking, the red models using keystrokes.
The time-lapse session for user 2 can be found in the accompanying video. The second timings for this user show the time it
took for modeling the base (comparable to the blue pawn) version and the refined version with additional detail.

as can be seen from Figure 7.
To get a better understanding why the users had

problems triggering the interaction we investigated
the problem: Selection and deselection is determined
by penetrating a predefined, invisible plane. In order
to select a ring, the user is moving his hand towards
the screen. When intersecting our given plane, the
software is entering the edit mode, thus giving feed-
back of a successful interaction. While editing the
rings, the hand has to be moved while it stays be-
hind the interaction plane. Intuitively the user will
move his hand along an imaginary plane (blue plane
in Figure 9), however this plane usually does not cor-
respond with the one defined by the Leap coordinate
frame (yellow plane in Figure 9). This results in the
user unexpectedly changing the depth of the penetra-
tion having two observable side effects. If the user ex-
pects the tip of his finger to be well beyond the plane
of interaction he might accidentally quit the editing
mode. Even worse if he expects his finger to be close
to the plane of interaction and wants to exit the edit-
ing mode, he will unexpectedly alter the model while
having to move the hand further than expected. The
problem could be avoided if the plane that the user is
supposed to interact with would be sense-able.

4.2 3D Interface

Since most chess figures are not rotationally symmet-
ric, we extended our application for true three dimen-
sional vertex manipulation. Users can pick vertices
using the “cross fingers” gesture shown in Figure 5.
While a vertex is selected, the user can set its true 3D
position by moving the hand. We use this extension to
model the crown of the queen chess piece. The users
have to extrude the prongs of the crown by picking
a vertex of the base mesh and moving it perpendic-
ular to the surrounding surface. We found that there
are some problems with this seemingly intuitive mod-
eling approach. The first one is the inaccuracy with
picking we discussed in Section 3. The second one
is the poor depth perception that makes an accurate
movement along a three dimensional line very hard.

5 RELATIVE LOCALIZATION IN
3D

Having been surprised by the fundamental problems
we ran into we wanted to investigate these issues fur-
ther. For this purpose we implemented a simple voxel
carving application with two different stencils. A
sphere representing the tip of a pen and a box as a
very crude representation of a hand.

Our first aim was to evaluate the lack of depth per-
ception we described in Section 4.2. We asked some
users to carve a music note with a penetration of con-
stant depth into one side of the voxel cube using the
spherical carving tool. In order to also evaluate the
problem with the tilted imaginary plane we described
in Section 4.1, we rotated the voxel cube such that
its vertical sides are not parallel to the screen aligned
coordinate planes. This means correct movement in
all three dimensions is necessary to keep a constant
penetration depth.

With just the sphere as visual cue for the position
of the tool it was virtually impossible for the users
to correctly gauge the relative depth of the sphere to
the voxel volume (see 8). This underlines the nega-
tive impact of a lacking depth perception. To gauge
how much help is needed to get a convenient user in-
terface we implemented different levels of assistance
that were given to the users.

The first and most obvious additional clue is vi-
sualizing the depth level of the sphere by rendering a
plane through its center parallel to the screen. This
way the user can see at which depth the sphere will
hit the voxel cube before it touches (please refer to
the accompanying video for more details). While this
helps, it is still hard to perceive an accurate depth or
know exactly when the sphere starts intersecting the
volume and even more to gauge the depth of the actual
penetration.

In the real world we have tactile feedback and re-
sistance from a surface to help us carving at a con-
stant depth. While tactile feedback can be provided
by haptic devices like the Phantom (Massie and Sal-
isbury, 1994), we wanted to concentrate one less ob-

Evaluating�the�Usability�of�Recent�Consumer-grade�3D�Input�Devices

421



Figure 8: Results of our carving experiment. One user
per row. From left to right: only visual feedback, audio
feedback and snapping. Results are color coded by carving
depth.

trusive, low-cost consumer devices mentioned in the
introduction. As a work-around, we use acoustic in-
stead of tactile feedback. We output sound similar to
park distance control in modern cars when the tool is
outside the voxel volume. The interval between beep-
ing sounds becomes shorter as the tool approaches the
volume until a continuous sound is played upon con-
tact. A second form of acoustic feedback is provided
for the penetration depth of the carving tool inside the
volume. This is encoded by changing the pitch of the
continuous sound.

When comparing the results using visual and
acoustic feedback, it can easily be seen that all users
had severe problems carving at a constant depth with
visual hints only (see Figure 8, red color marks areas
where the carving depth does not conform to the tar-
get depth). When provided with acoustic feedback,
the users had less problems, however, the strokes are
still shaky. Given the many degrees of freedom, it is
difficult to simultaneously concentrate on penetration
depth and stroke direction.

Since the results were still not satisfying, we
implemented a snapping aid constraining the users
movement to one side of the voxel cube. This concept
is very similar to the modeling aids provided in cur-
rent modeling tools that use mouse and keyboard as
interaction devices. Our snapping aid restricts move-
ment of the carving tool onto a plane aligned with the
axis of the voxel volume. Therefore, we only consider
the user interaction in x- and y- direction and discard
the hand movement in z-direction. Please note that
this is also a reduction of the dimensionality of the
problem as only two out of three available degrees of
freedom are used as input and should (in theory) cor-

Figure 9: Restricting the user interaction to a 2D plane
causes new problems: Since the plane in which the user
interacts will hardly ever coincide with the coordinate sys-
tem of the input device, projecting the user input onto this
plane will distort it.

respond to well known mouse interaction semantics.
When the carving tool was snapped to one face

of the cube, the users became much more fluent in
their interaction, which led to notable better results.
The video accompanying this paper shows how the
interaction gets faster and less shaky. However the
resulting notes still show some shakiness with the re-
duced degree of freedom, leading to the suggestion
that those shaky paths are not caused by the additional
degrees of freedom the Leap introduces.

When recording user gestures with a 3D input de-
vice, we expect the user to move on a predefined plane
(yellow plane in Figure 9). The user intuitively will
penetrate the plane with a certain depth and move
along an imaginary plane (see Section 4.1). As the
predefined plane can neither be seen nor felt, it is
very likely that the plane imagined by the user (blue
plane in Figure 9) does not correspond to the expected
one. Given this configuration the user input will be
distorted by a projection of the shape drawn on the
imagined plane on to the expected one. For example,
as depicted in Figure 9, the slope of a line drawn by
the user will not be as expected (compare angles a

and b). This effect is the reason for shaky results (see
third column in Figure 8, the first bumps on the left
side of the horizontal line), as the user is adjusting the
slope while drawing. Vertical lines are not affected
by this projection as the cube is only rotated along the
vertical axis. This means the slope of the expected
vertical line is identical to the carved one.

The problem could be avoided if the plane that
the user interacts with would be known to the system,
as the projection causing the observed discrepancy in
slopes is neutralized. Unfortunately, this plane can-
not be predicted for two reasons: First, the user most
likely does not even interact on a plane but rather on
a curved surface. Second and more importantly, to
predict the plane from the user interaction, we would

GRAPP�2014�-�International�Conference�on�Computer�Graphics�Theory�and�Applications

422



have to gather several frames to analyze the motion.
However, this contradicts the real-time feedback that
is required for interactive 3D modeling.

In order to increase depth perception in general,
we used a 3D-TV. We found that the additional depth
cue provided a level of assistance comparable to the
acoustic feedback. However, a problem of this setup
is that the coordinate system where the virtual scene
is seen and the coordinate system where the hands
move in still do not coincide. This causes another in-
direction which counteracts an intuitive interface and
is confusing for novice users. The introduction of fu-
ture virtual reality glasses with large view frustums
like for example the Occulus Rift could potentially
help solving this problem. This headset would allow
us to merge the coordinate systems of the hand and
the scene (assuming a stable tracking).

6 CONCLUSIONS

In this paper, we have examined the viability of real
3D interaction using recent consumer hardware, espe-
cially the Leap Motion controller. In our tests it be-
came apparent that there are three fundamental prob-
lems. The lack of a clicking gesture, bad depth per-
ception with standard displays and the discrepancy
between the plane of interaction assumed by the soft-
ware and the user.

As it turns out the precision of true 3D interaction
is not limited by the resolution of the input device.
In fact the Leap provides enough temporal and spatial
resolution to support all our modeling needs. The im-
precision in the modeling procedure is inflicted by the
misalignment of the imagined and the actual coordi-
nate system, as we showed in Section 5.

When interacting with a mouse the hand is sta-
belized by the table top. Using 3D interaction, it has
to float above the table forcing the muscles to retain
the position. This is another source of imprecision as
the hand will move unintentionally.

In conclusion we think that the viability of true
three dimensional interaction is not limited by hard-
ware at the current point of time. The limiting factor
rather is the software processing and interpreting the
input.

ACKNOWLEDGEMENTS

We would like to thank the BlendSwap community
for the models we used in our scene interaction appli-
cation. The Space Marines were created by hjmedias-
tudios, the House by julsengt.

REFERENCES

Araujo, B. R. D., Casiez, G., Jorge, J. A., and Hachet, M.
(2013). Mockup builder: 3d modeling on and above
the surface. Computers and Graphics.

Argelaguet, F. and Andujar, C. (2013). A survey of 3d
object selection techniques for virtual environments.
Computers and Graphics.

Gallo, L., Placitelli, A. P., and Ciampi, M. (2011).
Controller-free exploration of medical image data:
Experiencing the kinect. In Computer-Based Medical
Systems (CBMS), 2011 24th International Symposium
on.

Hilliges, O., Izadi, S., Wilson, A. D., Hodges, S., Garcia-
Mendoza, A., and Butz, A. (2009). Interactions in the
air: adding further depth to interactive tabletops. In
Proceedings of the 22nd annual ACM symposium on
User interface software and technology, UIST ’09.

Intel Corporation (2013). Available from: http:
//software.intel.com/en-us/vcsource/tools/
perceptual-computing-sdk.

LaViola, J. J. and Keefe, D. F. (2011). 3d spatial interac-
tion: applications for art, design, and science. In ACM
SIGGRAPH 2011 Courses, SIGGRAPH ’11.

Leap Motion, Inc. (2012). Available from: http://
leapmotion.com.

Massie, T. H. and Salisbury, J. K. (1994). The phantom
haptic interface: A device for probing virtual objects.
In Proceedings of the ASME winter annual meeting,
symposium on haptic interfaces for virtual environ-
ment and teleoperator systems.

Microsoft Corporation (2010). Available from: http://
www.microsoft.com/en-us/kinectforwindows/.

Ren, G. and O’Neill, E. (2013). 3d selection with freehand
gesture. Computers and Graphics.

Ren, Z., Yuan, J., and Zhang, Z. (2011). Robust hand
gesture recognition based on finger-earth mover’s dis-
tance with a commodity depth camera. In Proceedings
of the 19th ACM international conference on Multime-
dia.

Saggio, G., Bocchetti, S., Pinto, C., and Orengo, G. (2010).
Wireless data glove system developed for hmi. In
Applied Sciences in Biomedical and Communication
Technologies (ISABEL), 2010 3rd International Sym-
posium on.

Evaluating�the�Usability�of�Recent�Consumer-grade�3D�Input�Devices

423


