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Abstract: This work presents a novel and generic data-driven method for recognizing human full body actions from
live motion data originating from various sources. The method queries an annotated motion capture database
for similar motion segments, capable to handle temporal deviations from the original motion. The approach
is online-capable, works in realtime, requires virtually no preprocessing and is shown to work with a vari-
ety of feature sets extracted from input data including positional data, sparse accelerometer signals, skeletons
extracted from depth sensors and even video data. Evaluation is done by comparing against a frame-based Sup-
port Vector Machine approach on a freely available motion capture database as well as a database containing
Judo referee signal motions and concludes by demonstrating the applicability of the method in a vision-based
scenario using video data.

1 INTRODUCTION

Consumer motion capture systems (like Kinect, Wi-
iMote, EyeToys, accelerometers) have received a lot
of attention in recent years, primarily because they en-
able the user to interact with an application in a very
natural way using low cost hardware. The field of
usage exceeds replacing the classic game controller
in computer games, as new applications beyond the
field of computer games are emerging. This paper is
motivated by such a novel example application: The
automated detection of Judo referee signals, i.e. the
recognition of full body movements as belonging to
a set of small motion segments which are detected
as certain referee signals (usually denoted by their
Japanese names). Taking the developed method to the
gym would allow for cost-effective automatic score
counting and time keeping and greatly reduce the ad-
ministrative overhead required at Judo competitions.

Technically, a fully data driven action recognition
scheme is devised, where motion sequences can be
detected in real time. The method is very flexible con-
cerning the used sensor input data, which can range
from high quality optical motion capture data, over
medium quality Kinect skeletons to highly noisy ac-
celerometer readings. Adding robust feature extrac-
tion from video data to the recognition pipeline even
enables the approach to detect actions from video in-
put. All this various input data can be compared

in real-time with previously recorded sample mo-
tions in a motion database. The framework detects
if the performed motion is similar (and possibly time-
warped) to one of the annotated clips contained in the
database.

The method requires very little preprocessing—
only sample motions for each action to be recognized
have to be labeled by the name of the action. No fur-
ther explicit learning phases are required. Additional
flexibility comes from the ability to add action tem-
plates to the used action database in an online manner,
requiring only minimal processing.

For the purpose of evaluating different aspects of
the method it is applied to prerecorded high qual-
ity motion capture data, to live captured low qual-
ity motion data obtained by a Microsoft Kinect sen-
sor, to features extracted from video data and to a
sparse accelerometer sensor setup with only four sen-
sors attached to the actor’s body. Interestingly, even
for these very sparsely distributed accelerometers, the
method is able to detect some actions, making it very
effective in a low-cost sensor setup.

2 RELATED WORK

Related work for the method can be divided into four
groups, image-based action recognition, 3D point tra-
jectory action recognition methods, methods using
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accelerometers as sensors and data-driven techniques
in the field of computer animation.

The first group of techniques uses 2D informa-
tion such as images coming from a video camera
to infer information about the actions taking place.
The work by (Bobick et al., 2001) presents a view-
based approach to action recognition using temporal
templates, which are static vector-images where the
vector value at each point is a function of the mo-
tion properties at the corresponding spatial location
in an image sequence. (Schuldt et al., 2004) use local
space-time features in combination with SVM classi-
fication schemes for action recognition.

The second group works directly on 3D point tra-
jectory data. (Barbič et al., 2004) show methods for
automatically segmenting motion capture data into
distinct behaviours. The work by (Campbell and
Bobick, 1995) presents techniques for representing
movements based on space curves in subspaces called
phase spaces, recognizing actions by calculating dis-
tances between these curves at every time step.

(Arikan et al., 2003) use an interactively guided
Support Vector Machine to generalize example anno-
tations made by a user to the entire motion capture
database. Their approach works well on the small (7
minutes) motion capture database presented in their
paper. The method presented in this paper uses a simi-
lar SVM approach for comparison with the developed
method.

Data-driven k-nearest neighbor approaches have
been quite popular in the field of computer anima-
tion in recent years. In the context of synthesiz-
ing motions, (Chai and Hodgins, 2005) show how to
transform the positions of a small number of mark-
ers to full body poses. For nearest neighborhood pose
searches, they construct a neighbor graph, allowing
approximate NN-searches and requiring a quadratic
preprocessing time in the size of the number of poses
in the database. (Krüger et al., 2010) improve the
method presented in (Chai and Hodgins, 2005) by
querying a kd-tree for determining the neighborhood
of a query pose resulting in exact neighborhoods for
arbitrary query poses.

A novel and very intuitive puppet interface is used
by (Numaguchi et al., 2011) to retrieve motions from
a motion capture database. By sketching actions
with the 17-degree of freedom puppet, the method
matches the puppet’s sensor readings retargeted to hu-
man motion to behaviour primitives stored in the mo-
tion database.

(Raptis et al., 2011) develop a method to clas-
sify human dance gestures by using a special an-
gular skeleton representation designed for recogni-
tion robustness under noisy input. They use a

cascaded correlation-based classifier for multivariate
time-series data in combination with a dynamic-time
warping based distance metric to evaluate the differ-
ence in motion between a performed gesture and an
oracle for the matching gesture. Although the clas-
sification accuracy of their approach is very good, it
assumes that the input motion adheres to the under-
lying musical beat, whereas the approach presented
here does not rely on such assumptions.

Another class of methods is about using ac-
celerometers for activity recognition. (Bao and In-
tille, 2004) present a system designed for context-
aware activity recognition detecting everyday physi-
cal activities from acceleration data. They focus on
a semi-naturalistic data collection protocol to train a
set of classifiers, and find this is best evaluated by de-
cision tree recognition algorithms. Along the same
lines, (Maurer et al., 2006) study the effectiveness
of activity classifiers also within a multi-sensor sys-
tem. Their analysis of the proposed activity recog-
nition and monitoring system concludes it is able to
identify and record a subject’s activity in real-time.

While (Ravi et al., 2005) also study the activity
recognition techniques, they present a solution using
only a single triaxial accelerometer worn within dif-
ferent data collection setups. Within this context, they
analyze the quality of known classifiers for recog-
nizing activities with particular emphasis on the im-
portance of selected features and level of difficulty
of recognizing specific activities. The system de-
veloped by (Khan et al., 2010) is capable of recog-
nizing a broad set of human physical activities us-
ing only a single triaxial accelerometer. The ap-
proach is of higher accuracy than the previous works
due to a novel augmented-feature vector. Addition-
ally, they provide a data acquisition protocol using
data collected by the subjects at home without the re-
searcher’s supervision.

Since activity-aware systems have inspired novel
user interfaces and new applications, recognizing hu-
man activities in smart environments becomes in-
creasingly important. In this spirit, (Choudhury et al.,
2008) propose an automatic activity recognition sys-
tem using on-body sensors. Several real-world de-
ployments and user studies show the relevance of us-
ing the results to improve the hardware, software de-
sign, and activity recognition algorithms to context-
aware ubiquitous computing applications.

This paper presents a method which is data-driven
and uses motions from a motion capture database
to construct a prior-database. Publicly available
datasets, like the Carnegie Mellon University motion
capture database (Carnegie Mellon University Graph-
ics Lab, 2004) and the HDM05 (Müller et al., 2007)
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library, recorded at the Hochschule der Medien in
Stuttgart, contain large amounts of motion capture
data.

In this paper we used data from the HDM05 li-
brary, which contains more than three hours of sys-
tematically recorded and well documented motion
capture data. Of great benefit in the evaluation of
the action recognition method are the manually cut
out motion clips that were arranged into 64 differ-
ent classes and styles. Each such motion class con-
tains 10 to 50 different realizations of the same type
of motion covering a broad spectrum of semantically
meaningful variations. The resulting motion class
database contains 457 motion clips of a total length
corresponding to roughly 50 minutes of motion data.

3 OVERVIEW

The workflow of the proposed action recognition
method can be divided into three distinct processes.
First, in an offline step, the motion capture database
is created from motion data, where the quality can
range from sparse and noisy data such as of a sensor
setup using only a single accelerometer to high accu-
racy optical motion capture data. All such data sets
can easily be handled and are manually or automati-
cally annotated by specifying start and end frames as
well as a keyword for labeling. This is followed by a
preprocessing phase in which a kd-tree is created us-
ing a specific feature set allowing fast k-nearest neigh-
borhood searches on the poses in the database. This
feature set depends on the application which, in turn,
is interdependent on the specific type of motion cap-
ture system respectively the employed sensor setup.

As of now, the workflow can be split into the ac-
tion graph-based (dark blue in Fig. 1) and the SVM-
based (green in Fig. 1) action recognition workflow.
The SVM-based method is implemented for compar-
ison with the action graph during evaluation. In the
online phase of the action graph method, actions are
recognized from any type input motion sequence by
feeding new frames of the input motion into the anno-
tation module. This module then uses similar poses
retrieved from the kd-tree built up from the motion
capture database in an action aware neighborhood
graph (see Subsection 4.3) to output all recognized
actions as soon as they are detected. Within the SVM-
based situation, the preprocessing phase consists of
learning SVM parameters on a training set, whereas in
the online phase, the SVM classifier checks whether
a frame derived from the input query motion belongs
to a previously annotated action.

Since the approach at hand is generic, the input
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Figure 1: Workflow of the proposed method. Starting out
with a motion capture database annotated with actions of
interest in an offline phase, the method builds up a kd-tree
from this data in the preprocessing phase. The online phase
then consists of feeding new frames of the input motion into
the annotation module, recognizing actions as soon as the
actor finishes executing them.

need not be of a specific data type and may even cover
cross-modal signals.

4 ACTION RECOGNITION
METHODS

Evaluation is done by comparing two different action
recognition methods side-by-side, the online-capable
action graph, where the input motion sequence is ef-
ficiently compared to annotated motions in the mo-
tion capture database and an offline Support Vector
Machine (SVM) approach similar to one that was in-
troduced for motion capture data by (Arikan et al.,
2003).

4.1 Data Preparation

Since the preparation of motion capture data for our
method is highly dependent on the application and
sensors used, one cannot give general rules for prepar-
ing the data in the database or for processing the poses
of the query motion. Various applications presented
in the results in Section 5 show realistic examples.

4.2 Data Annotations

For the training phase of the action recognition meth-
ods, as well as for evaluations during the testing
phase, accurate annotations are needed. Annotations
inform the system at which time in a motion sequence
specific actions are performed by the actor. For this
reason, in this method, all used datasets were anno-
tated by hand. Another possibility would be to use
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automatically annotated mocap data, e.g. by meth-
ods presented in (Arikan et al., 2003) or (Wyatt et al.,
2005). In this work, the decision was made on a com-
plete, reliable, manual annotation procedure to ensure
that the results are not affected by false, automatically
computed annotations. For each relevant action, an
annotator gives a start frame, an end frame and a key-
word that describes the performed motion, ultimately
creating a mapping from database frame f to the an-
notations stored in f .

4.3 Action Graph Based Recognition

The presented action recognition method searches for
motion segments that are similar to annotated actions
in the motion database by taking into account the tem-
poral continuity of the underlying motion. This is
in contrast to the SVM-based approach presented in
Subsection 4.4 for comparison, which ignores this in-
formation and decides whether a frame belongs to an
action on a frame-by-frame basis, leading to many
possible ambiguities.

To this end, the action graph detects if an action
ends at the current frame and then tries to find possi-
bly time-warped motion segments spanning the action
in its entirety. Looking at the individual pose neigh-
borhoods of the knn-search alone can lead to possi-
bly many different annotations. By using the action
graph, paths representing motion segment matches
can be found through the annotated neighborhoods,
resolving the ambiguity.

Basically, the method presented in this paper ex-
tends the Lazy Neighborhood Graph (LNG) proposed
by (Krüger et al., 2010) to find motion segments simi-
lar to the currently performed motion, enabling its use
for action recognition. In its original implementation,
the LNG first retrieves the k nearest neighbors from
a motion database for every pose in the query mo-
tion. To bridge the gap from these locally matching
poses of the retrieved pose neighborhoods to glob-
ally matching similar motions in the database, their
method constructs a directed acyclic graph by regard-
ing the retrieved local neighboring poses from the mo-
tion database as vertices in the graph. Now, an edge
connects a pair of neighbors of temporally adjacent
pose neighborhoods, if certain stepsize conditions are
satisfied, similar to Dynamic Time Warping. In its
simplest form, the step tuple (steppose;steptime) =
(1;1) connects pose p at time t to pose p+ 1 at time
t + 1. By allowing additional step tuples, the results
could also possibly be time warped. After having
made all possible connections, a single source vertex
s is connected to all the pose neighbors in the first
neighborhood. The problem of finding a motion con-

tained in the database which is most similar to the
query motion can now be reduced to solving a single-
source shortest paths problem. Starting the search at
vertex s, one only has to check whether there exists
a path which terminates at a vertex in the last neigh-
borhood. The entire global matching can be solved
in O(km log(n)), where k is the number of retrieved
nearest neighbors, m the number of frames contained
in the query motion and n the number of frames in the
motion capture database.

In contrast to the original implementation of the
LNG, the developed action recognition framework
tries to find motion segments which start close to the
beginning of an annotated action having the currently
processed frame close to the terminating frame of an
annotation (see Fig. 2). This is accomplished by first
inspecting the pose neighborhood of the current frame
fn for annotated ending poses. For each of these
found action ending poses, a search for a starting pose
annotated with the same action is performed in all
neighborhoods up to frame fn�1. All of these start-
ing poses are then connected with the single source
vertex mentioned above. If an annotated action in the
database is similar to the currently performed motion
and is contained in the pose neighborhood queue of
length w, the single-source shortest paths algorithm is
able to find paths from the start of an action to the end
of the action, containing only the specified annota-
tion. The found actions are possibly time-warped ac-
cording to the allowed time-steps, making the method
very flexible and robust to time-variations in motion
performance.

In the technical part of the motion detection sce-
nario, we test by considering a query motion take, e.
g. from a Kinect recording, against a set of query
action classes A, that is, annotated classes which are
present in the data base. As a result of searching the
action graph for motions associated with these class
annotations we get a set of path candidates C = fsig
consisting of similar motion segments si. The size of
this set depends on the employed data base, but may
range from zero to several thousand retrieved seg-
ments. Consequently, we compute the percentage of
detected paths si from the action graph which agree
with the query set A, thus automatically addressing
the fundamental question whether we came across
any action contained in A. We collect the annotations
which are represented most strongly, i. e. make for
more than 10% of the whole set C and computing the
respective start and end frames of these as follows.
We calculate the frame window which contains the
intersection of the annotation ground truth and a min-
imum of 75% of all according paths retrieved from the
action graph. The start and end of this window marks
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the start and end frame of the annotation at hand. Note
that in case we aim at evaluation rather than detection,
we follow a slightly different protocol. This will be
addressed in Section 5.

4.4 SVM-based Action Recognition

We additionally evaluate frame classification based
on a Support Vector Machine (SVM) with a stan-
dard Radial Basis Function kernel (RBF). To this end
we use the LibSVM implementation (Chang and Lin,
2011). Optimal SVM parameters C balancing hyper-
plane minimization and the influence of slack vari-
ables as well as the RBF kernel width g are deter-
mined using grid search with cross validation. To re-
duce the time consumption for training, we use only
30% of the frames of each training sequence that are
chosen randomly. To take possible influence of this
random selection into account, we conduct four runs
each time using a different training frame selection
and average the resulting classification accuracies.

5 RESULTS

Applications used for Ervaluation

For evaluation purposes, we considered five applica-
tions. First, in Section 5.2.1, we performed ac-
tion recognition tests on a cut dataset taken from the
HDM05 motion capture database. For this reason we
separated the cut sequence database into a training
part that contained exactly nine realizations of each
motion class, and a testing part that contained at least
3 realizations. The same motion capture database is
then used to test our algorithm on a sparse accelerom-
eter setup, detecting actions using a total of four sim-
ulated accelerometers on the wrists and ankles.

In Section 5.2.2, we tested the behavior of the
methods with Judo referee signal movements in an
online scenario, using query motions coming from an
optical mocap system. In this scenario, the database
contained typical referee signals performed by three
different actors with at least three repetitions. This
database was captured with a Vicon motion capture
system and the motion capture data was stored in the
skeleton based .v file format.

We also modified the previous scenario to a cross-
modal scenario, where the query motion was captured
with a Microsoft Kinect sensor, obtaining the skeletal
data using the Microsoft Kinect SDK. For this reason,
the Judo database had to be resampled to the native
frequency of the Kinect sensor (30Hz).

In the last application example (Section 5.2.3), in-
terest points extracted from video data serve as input
for the proposed algorithm, demonstrating applicabil-
ity in a vision-based context.

For each of the evaluated applications, we build
up two databases, one including motion clips of the
actor and the other with clips of the actor excluded.

Some applications which require poses in the
database to be comparable need to perform a nor-
malization step on each pose, making them scale-
and view-invariant. Along the lines of (Krüger et al.,
2010), the root node of the skeleton is transformed
such that the skeleton faces forward and is anchored
at the global coordinate frame origin. If the skeleton
is given in a hierarchical representation (e.g. HDM05
and Judo database skeletons), the root node’s position
is translated to (0;0;0)T and its orientation is set to the
multiplicative identity quaternion, followed by a for-
ward kinematics calculation to update the remaining
skeleton nodes. When normalizing skeletons where
joint positions are given in absolute world coordinates
with no rotational information (e.g. Kinect skeletons),
the orientation of the root node is estimated by ex-
ploiting rigid connectivity between the pelvis and its
neighboring joints, similar to the normalization step
used for raw optical marker data in (Baumann et al.,
2011).

To obtain scale-invariance, the bones of any query
skeleton are resized to match the skeleton that was
used to build up the database.

Description of the Evaluation

Allowing detection of more than one particular action
at a time does not make sense for evaluation of the de-
tection method, especially when this is done by means
of confusion matrices. The decision criteria presented
in Section 4.3 which allow for several strongly rep-
resented action classes to contribute to the detection
results, is clearly not suitable for evaluation purposes.
Instead, we decide for the single most strongly rep-
resented action class found in the action graph paths.
To evaluate the quality of the decision method we dis-
tinguish the following cases:

1. The retrieved motion paths lie completely within
the relevant ground truth interval, in which case
the method is regarded as properly working.

2. The motion paths lie outside the ground truth in-
terval as a whole, in which case the method is dis-
missed as incorrect (this was rarely observed to be
the case).

3. The retrieved path set intersects the ground truth
interval, in which case we further differentiate: if
this intersection includes more than 90% of the
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Figure 2: Detecting actions in current frame fn using the action graph. In this example, we illustrate detecting a ’Jumping
Jack’ motion which is performed in the last six frames ( fn�5 to fn) using a window of w = 6 frames. The poses of the
’Jumping Jack’ are color coded, ranging from green to red, representing the start and end of the action, respectively. First, all
poses annotated with starting poses of actions (green) are connected to the single source vertex required for the single-source
shortest path algorithm, regarding all past neighborhoods up to window size w. Now, for every neighborhood, poses are
connected with edges according to the allowed time and pose steps S (S = f(1;1);(2;2)g in this example). After running the
single-source shortest path algorithm, we check for every candidate path terminating at an action ending pose (red pose in
neighborhood fn) whether the nodes on the path are consistently annotated with the same action, in which case this action is
reported as found. Note that every ’JumpingJack’ motion contains a ’ClapAboveHead’ in its middle, as can be seen in the
pose neighborhoods (dashed circles). Consequently, this clap is also detected, but at an earlier stage (frame fn�2).
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Figure 3: Example action recognition run on frames 0� 1686 of motion HDM bd 03-05 02 120 from the HDM05 motion
capture library, comprising four jumping jack motions followed by three complete and one half skiing motion starting with
the left foot. Note that our method also detects sub-actions like the clap above the head, which is contained in the middle of
each jumping jack. The half-executed skiing motion at the end is not detected, because the action graph is unable to find an
annotated end frame in this case.

total retrieved paths, the method is considered to
work well, otherwise this hypothesis is dismissed.

According to the above, matrices similar to con-
fusion matrices are used to visualize the performance
of the action recognition algorithm. The columns of
the matrix represent instances of the recognized ac-
tions while the rows represent the actual actions. Tak-
ing into account the cases in which the algorithm fails
to detect any action, a column labeled none is added.
A perfect action recognition would have a confusion
matrix with 1 on the diagonal and 0 for every other

element.

5.1 Details on knn Search

Choosing a feature set for the HDM05 cut database
was straightforward. The results from (Krüger et al.,
2010) indicated that feature set F 15

E , which includes
the positions of the head, hands and feet, would work
very well on this database. The confusion matrices
presented below (Fig. 4) confirm that this assumption
holds. Instead of encoding temporal information (e.g.
velocities) in the feature set directly, these are repre-
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sented in the structure of the action graph: Edges are
inserted between successive database indices, accord-
ing to the allowed step size conditions.

According to (Krüger et al., 2010) we use the step
sizes (1,1), (2,1), (1,2) and (2,2). Thus, the action
graph easily runs in real-time when searching for 256
nearest neighbors, achieving an average frame rate
above 75Hz in a multi-threaded implementation on
the regarded motion capture databases. The described
results were obtained using a system with an Intel hex
core CPU with 3.33GHz and 24Gb of memory.

The knn search used in our approach can be re-
placed by a fixed radius search. This variation does
not produce convincing results, due to the following
reasons: First, a fixed radius can mean that we do not
find any neighbors. Second, we found in our tests
of this variant, that the variability between motions
in some classes (cartwheel) is larger than variability
in other classes (walk two steps). Therefore it is not
possible to specify a uniform radius for all regarded
motion classes.

5.2 Discussion of Results

5.2.1 Action Recognition Tests on HDM05
Motion Classes

We conducted action recognition tests on the HDM05
cut library, which contains manually cut out motion
clips that were arranged into several different classes
and styles, having multiple realizations of the same
motion. These motions were divided into a train-
ing set, containing 142 motions, and a test set, con-
taining 273 motions. The confusion matrices for the
two action recognition methods on this dataset using
k = 1024 in the k-nearest neighborhood search can
be seen in Fig. 4. Examining the confusion matri-
ces shown in Fig. 4, the SVM-based approach shows
a good performance for a pose-based approach, hav-
ing a clearly visible diagonal with a few outliers, pri-
marily confusing walking motions. The action graph
shows a crisp diagonal, with only two major out-
liers, namely recognizing a sideways punch instead
of a cartwheel starting with the right hand and rec-
ognizing a clap above the head instead of a jump-
ing jack. However, in both cases the correct actions
are sub-actions of the recognized one, which is illus-
trated in Fig. 2 and Fig. 3 for the jumping jack mo-
tion. Also, when visually comparing the cartwheel in-
stances with the sideways punches, the starting phases
of the cartwheels show huge similarities with the side-
ways punches, leading to false recognitions. This in-
dicates the method is broadly suitable. Inspecting the
accuracy plot for the HDM05 library in Fig. 7, the

recognition method detects 90% of actions correctly
and its accuracy peaks at approximately 90% using
k = 1024.

Testing of the method was also done by evaluating
performance on a sparse accelerometer setup consist-
ing of only four accelerometers attached to the wrists
and ankles. Again, the HDM05 cut library was used
for this experiment. As can be seen in Fig. 5, the pose-
based SVM approach mislabels many action classes,
whereas the action graph method shows a dark di-
agonal with fewer mislabelings, indicating that the
method works well on this sensor setup. Taking a
closer look at the results also shows that the method
often confuses very similar actions, from which many
are not distinguishable from each other using ac-
celerometers alone. One such example are the clap
above head and clap hands actions, which produce the
same sensor reading in the given sensor setup.

5.2.2 Judo Referee Signals

In a cross-modal scenario, we used skeletons ex-
tracted from a Microsoft Kinect device to query for
similar motions in the optical motion capture database
containing the Judo referee signal motions. Skele-
tal data obtained from this sensor contains positional
data only and is of much lower quality than the opti-
cal mocap data, meaning the positional noise is much
more noticable and the accuracy of the system is not
on par with optical systems. Since the Microsoft
Kinect delivers skeletal motion data at 30Hz, whereas
the optical motion capture system has a frame rate
of 119.88Hz, the Vicon data is downsampled to the
lower rate to obtain temporal comparability.

In order to improve the probability of finding
paths through the pose neighborhoods using the ac-
tion graph, we ran additional tests with an increased
number of allowed steps (see Fig. 8). Interestingly,
feature set F 15

E gains in accuracy when allowing 8
steps and 210 neighbors.

5.2.3 Action Recognition from Video Data

To show that the action recognition concept easily ap-
plies to other sorts of data, we refer to the example
of video data. In order to keep emphasis on our ac-
tion recognition method, we use a simple setup to
demonstrate the concept. To this end, we annotate
positions of hand, feet and the head in the first frame
of video data and use standard feature detection meth-
ods (MSCR and SURF) to track the relevant features
used in our algorithm. Based on these we obtain a ten
dimensional feature set F 10

E-2d consisting of five two di-
mensional positions. Camera parameters are derived
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Figure 4: Confusion matrices for SVM-based and action graph recognition methods, calculated on the HDM05 cut database
using feature set F 15

E and the precision-recall diagram. We further distinguish the results between two different databases. In
the actor included scenario, motion clips of the actor of the currently tested action are allowed to be present in the database.
In the actor excluded scenario, the database is cleared of all clips of the actor in a preprocessing step.

Figure 5: Confusion matrices for SVM-based and action graph recognition methods, calculated on the HDM05 cut database
using data obtained from accelerometers attached to the wrists and ankles. On the right we show the precision-recall diagram.

Figure 6: Confusion matrices for SVM-based and action graph recognition methods, calculated on Judo Motions using feature
set F 15

E for Kinect and V-Files and the corresponding precision-recall diagram.

Figure 7: Confusion matrices for different values of the parameter k (128,256,512) using feature set F 15
E on the HDM05

database and the corresponding precision-recall diagram.

by incorporating knowledge about the scene and ac-
tors.

Since the motion database consists of three-
dimensional positional data in this example and the
feature extraction from video yields two-dimensional
interest points, we perform parallel projections of all
poses contained in the database. To handle different
viewing directions, projections were performed from
different viewing angles in 20 degree steps. All re-
sulting two-dimensional features were used to con-
struct a kd-tree for knn search. The back-projection
of kd-tree indices results in database indices in the

motion’s original space, enabling the use of the ac-
tion graph to detect the performed actions. Since the
tracked features are very noisy in our case, the action
graph does not return paths in all relevant cases. To
alleviate this we adapted step size conditions for this
scenario to allow for steps (1,3),(3,1),(4,1) and (1,4)
in addition to the previously mentioned ones.

5.2.4 Comprehensive Analysis of the Results

As demonstrated by the confusion matrices in Fig. 4
and Fig. 5, the results of the above-mentioned tests
show that the proposed detection method works very
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Figure 8: Confusion matrix and precision-recall diagram for
Kinect queries in the Judo scenario where larger step sizes
were used.

well on optical motion capture data and still well for
accelerometer data. However, the Judo results lag far
behind this good score both for motion capture data
as well as data from Kinect recordings (see Fig. 6).
In both cases this is partly due to the fact that the
recorded referee motion repertoire turns out to be a
challenge for the method in itself: For one, most of
the gestures typical for Judo referees are fairly static
and do not display the continual movement a sensible
action recognition method is based on. Additionally,
referee gestures with different meanings often differ
only marginally, especially for the noisy Kinect data
and its poorly aligned skeletons. This causes condi-
tions to deteriorate.
Fig. 7 illustrates the transition of the resulting preci-
sion respectively recall for increasing choices of the
number k of nearest neighbors in the action recogni-
tion test. As can be seen, the results for k = 512 al-
ready display satisfactorily high precision. Achieving
this is obviously easy if we require as little recall. A
more reliable framework forces the recall to be higher
by employing a parameter k = 1024, although this ef-
fects in some loss of precision.

6 CONCLUSION AND FUTURE
WORK

This paper examined methods to automatically detect
human full body motions using motion capture data
obtained from various setups. This includes working
with high quality optical motion capture data, skele-
tons associated to the Microsoft Kinect within a cross-
modal setup as well as sparse and noisy data obtained
from accelerometers. Moreover, the method extends
to features extracted from video data. In particular,
the presented data-driven motion based detector was
found to be superior to support vector machines in
terms of their performance.

The approach at hand is parameterized by the em-
ployed feature sets, hence will work with other capa-
bilities. It will therefore be a matter of future work to
use and to evaluate the very recently proposed more

robust feature sets (Ofli et al., 2012) within our frame-
work. There are certain areas which turn out to serve
as fertile grounds for future work: From one point of
view, the application of the fixed radius search method
has revealed there is a striking amount of variation in
the respective retrieved pose neighborhoods of certain
queries. In particular, the gaps occurring within these
neighborhoods seem noteworthy. Analyzing neigh-
borhood variation phenomena should provide inter-
esting new insight.

Although our method is already real-time capable
in many scenarios, it allows for modifications to in-
crease this capability to scenarios with many allowed
time steps and large pose neighborhoods: It is clearly
not necessary to create a complete graph structure for
every single frame throughout the process. Working
out a more efficient solution which avoids discarding
previously acquired information in the spirit of (Taut-
ges et al., 2011) will contribute significantly to greater
efficiency.
Moreover, since all significant processes involved in
our method are easy to parallelize, they come with
even more advantages when executed on highly par-
allel units. In particular, implementing the proposed
techniques on a GPU seems a logical step which shall
be taken in the future.

Another line of future research is the exploration
of other consumer electronic devices—such as con-
tact sensors, simple 1-or-2 axes accelerometers, al-
timeters, etc.—and their combinations. We refer to
(Latré et al., 2011) for a recent survey of wireless
body area networks and to (Khan et al., 2010) for
a recent accelerometer based physical activity sys-
tem. Although not all of these are suitable for our
approach, many of them present promising perspec-
tives. Especially cell phones come with an increasing
variety of sensors and hence become popular objects
of study. Combining the information from differ-
ent sensors at different body locations combined with
Bayesian a priori knowledge on the temporal evolu-
tion of human motions taken from databases—as our
approach can be summarized—might be beneficial in
this more general context as well.
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