
Experimental Comparison of Vasculature Segmentation Methods 

Yuchun Ding and Li Bai 
School of Computer Science, Nottingham University, Wollaton Road, Nottingham, U.K. 

Keywords: Vascular Segmentation, Retinal Vasculature, Micro-CT. 

Abstract: Vessel segmentation algorithms play a very important role in vascular disease diagnosis and prediction. 
Current vessel segmentation research uses mostly images of large vessels, which are relatively easy to 
extract, but segmenting microvasculature is more challenging and very important for analysing vascular 
disease such as Alzheimer’s Diseases. The aim of this paper is to report experimental results of several 
common vessel image segmentation methods. Retinal vessel image database DRIVE is used for 2D 
experiments and a micro-CT image is used for 3D experiments. 

1 INTRODUCTION 

Vascular pathology is present in most human 
diseases, so there has been intense research in the 
past in Magnetic Resonance Imaging (MRI) for 
diagnosis and treatment of vascular diseases. 
Recently the role of neurovascular dysfunction has 
been identified, including Alzheimer's Diseases 
(AD). A significant finding is that vascular 
abnormalities and angiogenesis could potentially 
serve as an early biomarker of the diseases. But the 
lack of computational tools is becoming increasingly 
apparent. A feasible way to validate the theory 
linking microvasculature to pathology of 
neurodegenerative conditions on large datasets is to 
develop an automated computational analysis 
method. However, existing algorithms for image 
analysis have mostly been developed for segmenting 
large vessels, and analysis of these vessels has been 
limited to measuring curvature and diameter of 
individual vessels, which are unsuitable for 
microvasculature. Imaging devices such as micro-
CT can achieve resolutions on the order of several 
μm, allowing imaging the three dimensional (3D) 
microvasculature down to the capillary level. The 
main weakness of using micro-CT for vascular 
research is considered to be the lack of software for 
3D quantification of microvasculature. Four well-
known segmentation methods were investigated, 
which include local entropy thresholding (LET), 
level set methods, vesselness filter, and wavelet 
transform modulus maxima (WTMM). All of these 
are well-performed on 2D retinal images and the aim 

of this paper is to review, analyse and compare the 
vessel segmentation methods in both 2D and 3D 
vessel images and to show the microvasculature 
detection performance of each method. 

2 METHODS 

2.1 Image Databases 

We have chosen the retinal vessel image from a 
publicly available database DRIVE (Staal et al., 
2004) for our 2D experiments because it is a 
commonly used database for previous research on 
vessel segmentation. The database is made up of 40 
images that have been randomly selected from a 
diabetic retinopathy (DR)-screening program. Each 
image has a dimension of 565 by 584 pixels. For 
each image in the test set, two manual segmentations 
of blood vessels are available. The second set of 
manual segmented image will be used in this 
investigation because is it the observer results most 
commonly used when comparing effectiveness of 
method.  

As the existing publicly available brain 
vasculature dataset such as MRI, CTA or MRA 
images only contain large vessels, which is not 
possible for analysing the microvasculature, a 
corrosion casting method was used to prepare 3-D 
resin casts of the microvasculature of wild type and 
transgenic Alzheimer mice model brains (Bedford et 
al., 2008). The animals were lightly fixed in 4% 
paraformaldehyde by transcardiac perfusion at 
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120mmHg prior to delivery of fluorescent PN4 resin 
via a syringe pump. After 48hr curing time, the 
brains were removed and macerated in 10% KOH 
for a period of 2 weeks at 37°C. The resin casts were 
thoroughly washed in DDH2O and immersed in 2% 
Os04 for a further 3 days then washed and freeze 
dried for micro-CT (Skyscan 1174) scanning. 
Measurements were obtained at a voltage of 40 kV, 
current of 800 μA and voxel resolution of 24 μm. 

Figure 1 shows a 3D view of the original Micro-
CT scanned image of dimension 305 ൈ 305 ൈ 320 
pixels visualised using MRIcron (Rorden et al., 
2007). Due to limitations of the viewer selected, 
those faint and narrow vessels with low contrast are 
barely visible, a simple thresholding method was 
applied to reveal the vessels in the image for the 
purpose of visualisation. The image on the right in 
Figure 1 shows the expected resulting image. 

 
Figure 1: Original Image (left), Enhanced Image (right). 

2.2 Image Enhancement 

A review of retinal blood vessel segmentation using 
images from the DRIVE database has shown that 
most of the vessel image segmentation algorithms 
could only achieve 70% and 80% of blood-vessel 
pixel are correctly classified (Fraz et al., 2012). This 
is due to the difficulty of visualising small vessels in 
images. As such, it is desirable to enhance the 
vessels in images prior to segmentation. The paper 
uses following enhancement methods. 

2.2.1 Gabor Filter 

The Gabor filter is a Gaussian kernel function 
modulated by a sinusoidal plane wave in 2D and it is 
capable of tuning a signal to specific frequencies 
(Daugman, 1988). The Gabor filter that we use for 
our work (blood vessel enhancement) can be 
represented by: 
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 x ′ ൌ xcos θ ൅ y sin θ (2) 

 y ′ ൌ െx sin θ ൅ y cos θ (3) 
 

where λ  is the wavelength of the cosine factor, θ 
specifies the filter direction, φ  is a constant 
representing the phase offset, γ  represents spatial 
aspect ratio, with σ as the standard deviation of the 
filter’s Gaussian factor. 

2.2.2 Matched Filter  

Matched filter convolves a signal with a designed 
kernel and extracts information (from that signal) 
which matches the kernel. Based on the fact that 
those blood vessels are typically line-like, with small 
curvatures and usually have a relatively low 
contrast, a matched filter kernel was given that 
matched the multiple intensity profile of the vessels’ 
cross section rather than a single one (Pająk, 2003): 
 

 ݂ሺݔ, ሻݕ ൌ െ݁݌ݔቆ
െݔଶ

ଶߪ2
ቇ , |ݕ|	ݎ݋݂ ൑  (4) ,2/ܮ

 

Here, ߪ  defines the spread of the intensity profile 
and ܮ is the length of the segment. It is assumed that 
a fixed vessel has orientation along the y-axis. In 
reality, vessels are oriented in many different 
directions, so a set of kernels is applied at each pixel 
and only the maximum response is retained.  

2.3 Segmentation 

This section reviews four vessel segmentation 
methods, and describes our own experiments with 
the methods. 

2.3.1 Local Entropy Thresholding 

2.3.1.1 Theory 

Local entropy thresholding (LET) was proposed for 
segmenting retinal blood vessels (Chanwimaluang 
and Fan, 2003). The key point of this method is to 
automatically estimate the threshold value, based on 
the entropy of an image, using a co-occurrence 
matrix. A gray level co-occurrence asymmetric 
matrix ݐ௜௝  is created to indicate spatial structural 
information of an image – the 	ሺ݅, ݆ሻ݄ݐ entry of the 
matrix that gives the number of times the gray level j 
follows the gray level i: 
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where 
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Let ݏ  be the threshold such that 0 ൑ ݏ ൑ ܮ െ 1 . 
Then threshold ݏ partitions the co-occurrence matrix 
(Pal and Pal. 1989),  into 4 quadrants, namely A, B, 
C, and D, as shown in Figure 2, where A and C 
represent gray level transition within the vessel 
object and background respectively. The gray level 
transition between the vessel object and background 
are placed in quadrant B and D. 

 

Figure 2: Quadrants of co-occurrence matrix. 

The normalised probabilities of each quadrant are 
defined as: 
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ݏ	ݎ݋݂ ൅ 1 ൑ ݅ ൑ ܮ െ 1, ݏ ൅ 1 ൑ ݆ ൑ ܮ െ 1 
 

Where ݌௜௝ is the probability of co-occurrence of gray 
levels i and j. ஺ܲ  and ஼ܲ  are the probabilities of 
vessel object and background. 
Hence, the total second-order local entropy of the 
object and background can be written as: 
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The gray level corresponding to the maximum of 

்ܪ
ሺଶሻሺݏሻ gives the optimal threshold for vessel and 

non-vessels classification. Then length filtering is 
used to remove misclassified pixel. 

2.3.1.2 Experiment 

For testing the performance of LET, we choose 
matched filter followed by Gabor filter for vessel 
enhancement (Ding et al., 2013). Gabor filters 
parameters are selected using a genetic algorithm 
tool in MATLAB. The algorithm continually 
reproduces a new generation of ‘offsprings’, which 
inherit features from the previous generation and 
eventually leads to an optimal solution.  

The proposed method retains the computational 
simplicity and straightforwardness and at the same 
time achieves accurate segmentation results of 
retinal images. Using a genetic algorithm can help to 
find good parameters for the filter but it is also time 
consuming, technically the selected value can be 
only used for specific image of current interest.  

Figure 4 clearly shows that LET with the Gabor 
filter performed very well compared to LET, as 
shown in Figure 3. More narrow vessels are detected 
although few non-vessel pixels are incorrectly 
classified. 3D enhancement was not implemented as 
it is not sufficient to convolve all 26 directions. 
Figure 5 visualised the result of LET without pre-
processing the image and many narrow vessels were 
misclassified. The drawback of the LET method is 
that it is not scale-invariant and does not handle 
vessels of different parameters well. 

 

Figure 3: Result of LET without Gabor Filter in 2D. 
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Figure 4: Result of LET with Gabor Filter in 2D. 

 

Figure 5: Result of LET in 3D. 

2.3.2 Level Set 

2.3.2.1 Theory 

The level set method is a powerful mathematical and 
computational tool for tracking the evolution of 
curves/surfaces. The basic idea of the method is to 
evolve a curve by applying forces normal to the 
surface and the contour evolution stops at positions 
where the values of gradient magnitude are large. 
This method is fast on regular image but it often 
fails at low contrast edges or gaps in the object as it 
is highly dependent on image contrast; as a result, 
the evolving contour simply leaks through the gaps 
and the object is represented by incomplete contours  
in some particular fashion.  

A complex level set method was introduced 
based on local phase (Lathen et al., 2008). Because 
vessels appear either as lines or edge pairs with 
varying widths and contrasts, the method uses the 
outcome of quadrature filters as a complex valued 
filter pair consisting of a line filter as real part and 
an edge filter as imaginary part. The filtered signal is 

strongly "line-like" when the filter response is purely 
real, is edge-like when it is purely imaginary. The 
magnitude of the filter response gives the strength of 
the structure, while the angle (local phase, the 
argument of the complex value) of the response 
indicates whether it is line or edge. Because it is 
independent of signal strength, the local phase as a 
line/edge detector is invariant to image contrast, 
making it more powerful when compared to 
gradient-based edge detectors. Multiscale is then 
achieved using a weighted sum over all scales, and 
normalisation is applied to the output. The outcome 
is a "global" phase that can be used to drive a 
contour robustly towards the vessel edges. 

Then a level set method (Osher and Sethian, 
1988) for front propagation is used to relate to the 
phase based edge detector (global phase map). The 
idea is to use the real part of the phase map as a 
speed function. This is expressed by: 
 

 
߲߶
ݐ߲

ൌ െܴ݁൫ݍොሺߪሻ൯|׏߶| ൅  (11) |߶׏|ϗߙ

 

Where ݍො  denotes the normalized phase map, ߙ is a 
regularisation parameter and ϗ is curvature. 

2.3.2.2 Experiment 

The local phase method described can distinguish 
line and edge by taking local phase into account. 
Most importantly, it halts the evolving contour at the 
end of the vessel to prevent leakage. Although the 
method succeeds in object and motion segmentation, 
it fails for images that contain faint and narrow 
vessel pixels, leading to the level set terminating 
early and leaving many vessels undetected, as shown 
in Figure 6. 

 

Figure 6: Result of Phased Based Level Set. 

In our experiment we use matched filter to enhance 
vessel image before level set segmentation. Figure 7 
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shows the result image using level set with matched 
filtered image, many faint vessels were detected, 
although level set contour was not terminated at few 
background pixels. 

 

Figure 7: Result of our method. 

We have failed to complete the experiment using 3D 
images because of high computational cost. The 
image shown in Figure 8 is the 3D segmentation 
result after 30 minutes implementation. 

 

Figure 8: Result of Level Set in 3D. 

2.3.3 Multiscale Vesselness Filter 

2.3.3.1 Theory 

The multiscale second order local structure of an 
image (Hessian) is examined to develop a vessel 
enhancement filter (Frangi et al., 1998). A 
vesselness measure is obtained from all eigenvalues 
of the Hessian to determine a pixel is plate-like (Sato 
et al., 1998), tubular-like or blob-like. Let 	ߣ௞ be the 
eigenvalue with the k-th smallest magnitude, for an 
ideal tubular structure in a 3D image, given as: 
 

 
|ଵߣ| ൑ |ଶߣ| ൑  |ଷߣ|

|ଵߣ| ൎ |ଵߣ| ,0 ≪ ଶߣ ,|ଶߣ| ൎ  ଷߣ
(12) 

 

The vesselness function is then defined by 
probability-like estimates of vesselness according to 
two geometric ratios (ܴ஺	ܽ݊݀	ܴ஻  ) to ensure that 

only the geometric information of the image is 
captured: 
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ܴ஺  refers to the largest area cross section of the 
ellipsoid, used for distinguishing between plate-like 
and line like structure, whileܴ஻  accounts for the 
deviation from a blob-like structure but cannot 
distinguish between a line and a plate like pattern,  ܵ 
is defined using Frobenius matrix norm to control 
the sensitivity of ଴ܸሺݏሻ to background noise. Here ܦ 
is the dimension of the image. This measurement 
will give a high value for regions with high contrast 
and a low value for the background where no 
structure is present. ܽ, ܾ and ܿ are thresholds which 
control the sensitivity of the line filter to the 
measures ܴ஺, ܴ஻and ܵ. The equation for 2D images 
follows from the same reasoning as in 3D where  
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A final estimate of vesselness will then be integrated 
with the filter responses at different scales ݏ  as 
vessels appearing in varying width. 

2.3.3.2 Experiment 

The advantages of the vesselness filter are that it is 
fast, simple, and accurate, as shown in Figure 9.  

 

Figure 9: Result of Vesselness Filter in 2D. 
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It can also be utilised for separating arteries or 
muscles from veins using specified scale values. 
Figure 10 shows the 3D result that uses two different 
scale values. 3D vesselness filter is a most 
commonly used methods for enhancing or extracting 
vasculature, although it still suffers from two major 
drawbacks. It is not scale invariant: user interaction 
is required for selecting the range of scales, although 
it is very difficult to adjust the value; It does not 
perform well on retinal images with massive amount 
of lesions, therefore pre-processing is required. 

 

Figure 10: Result of Vesselness Filter in 3D. 

2.3.4  WTMM 

2.3.4.1 Theory 

A multiscale edge detection algorithm was 
developed base on wavelet transform modulus 
maxima (Mallat and Sifen, 1992). The method can 
detect the irregularities (edges) in an image with 
slight noise and without intensity inhomogeneity. 
Suppose ߶ሺݔ, ሻݕ  is a smooth two-dimensional 
differentiable function, then a two dimensional 
wavelet (e.g. Gaussian) can be defined as 	߶௫ሺݔ,  ሻݕ
and  ߶௬ሺݔ,   :ሻ whereݕ
 

												߶௫ሺݔ, ሻݕ ൌ
డథሺ௫,௬ሻ

డ௫
, ߶௬ሺݔ, ሻݕ ൌ

డథሺ௫,௬ሻ

డ௬
  (15) 

 

The wavelet transformation uses only two 

components หܹଶೕ
௫݂ሺݔ, ሻหݕ

ଶ
and หܹଶೕ

௬݂ሺݔ, ሻหݕ
ଶ

, in 
dyadic scales: 
 

 ቤ ଶܹೕ
௫ ݂ሺݔ, ሻݕ

ଶܹೕ
௬݂ሺݔ, ሻݕ

ቤ ൌ 2௝ ተተ

߲൫݂ ∗ ߶ଶೕ൯ሺݔ, ሻݕ

ݔ߲
߲൫݂ ∗ ߶ଶೕ൯ሺݔ, ሻݕ

ݕ߲

ተተ (16) 

Here * expresses the convolution. Wavelet transform 
modulus and gradient direction at each scale 2௝ are 
defined by: 
 

  

,ݔଶೕ݂ሺܯ ሻݕ

ൌ ට|ܹଶೕ
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ܹଶೕ
௫݂ሺݔ, ሻݕ
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For any point in the original image, two 
neighbourhoods along the gradient direction are 
compared. If edge intensity 	ܯଶೕ݂ሺݔ, ሻݕ  is local 
maxima, it is retained and considered as an edge 
pixel, otherwise the point will be deleted. Following 
this, a threshold value is chosen to filter out the 
noise. 

2.3.4.2 Experiment 

Figure 11 shows that method is much likely to be a 
Canny edge detector. Figure 12 shows the output 
using WTMM on 3D image. The image size is much 
increased in the transition of the problem from 2D to 
3D, and so more problems with the methods occur. 
For instance, the computational time was 
exponentially increased with the size of image. 
When the scales were large, thin vessels were 
blurred due to the large Gaussian window 
convolution, which unable to show the analytical 
model due to the removal of crispness of the thin 
vessels. Thus these thin vessels appear to be a 
slightly broader, when compared to the results of 
thresholding schemes. 

The major advantage of the system was its 
simplicity in implementation. The drawback of this 
method is that edges found are not connected, and 
also it is susceptible to errors for noisy images. 

  

Figure 11: Result of WTMM in 2D. 
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Figure 12: Result of WTMM in 3D. 

3 COMPARISON AND ANALYSIS 

Table 1 and 2 contain performance detail on each 
database separately. Performance measures are 
sensitivity, the percentage of correctly classified 
blood-vessel pixels, obtained by TP/(TP+FN); 
specificity, the percentage of correctly classified 
non-blood-vessel pixels, obtained by TN/(FP+TN); 
accuracy, how close the number of correctly 
classified pixels is to the actual value, obtained by 
(TP+TN)/(TP+FP+FN+TN) and precision, how 
close the true positive and false positive are, 
obtained by TP/(TP+FP); where T=TURE, 
F=FALSE, P=POSITIVE and N=NEGATIVE. 

3.1 2D 

WTMM was the fastest. The speed of the vesselness 
filter and LET were acceptable, but LET with Gabor 
filter and all level set methods are slower due to 
parameter selection for the Gabor filter. LET with 
Gabor filter achieved the highest sensitivity 
(89.83%). Both this method and our level set method 
provided higher sensitivity as more vessels are 
detected. WTMM and LET produced low sensitivity 
due to unconnected and missing vessels. Vesselness 
filter has produced low sensitivity (62.64%) as user 
selected scales and threshold values were susceptible 
to errors. The best specificity obtained is by the 
vesselness filter (98.74%), because it is robust to 
image noise. While improved LET, level set 
methods, and WTMM are sensitive to image noise. 
Vesselness filter produced the highest accuracy 
(94.25%) whilst the results of LET and WTMM are 
not good as a large number of vessels are missing or 
disconnected. Vesselness filter achieved the highest 
precision (87.64%). 

3.2 3D 

Implementation cost using vesselness filter and LET 
remained acceptable. WTMM took longer than 2 
minutes. Both level set methods failed the 
segmentation because it was computationally 
expensive in 3D. Vesselness filter achieved the 
highest sensitivity (86.26%) as more small vessels 
were corrected detected than using LET. WTMM 
failed the experiment because all vessels were 
broader   than  the  original  vessels.  All  Specificity 

Table 1: Performance Detail using 2D Retinal Vessel Image. 

2D Sensitivity Specificity Accuracy Precision Run time Drawback 

WTMM 0.4545 0.9518 0.8916 0.5648 0.27s Unconnected vessels 

LET 0.7599 0.9621 0.9383 0.7282 2.15s Missing vessels 

LET+Gabor Filter 0.8983 0.9435 0.9378 0.6955 16.15s Parameter selection 

Phase Based Level Set 0.8567 0.9399 0.9299 0.6626 40.53s Early termination 

PB Level Set+Matched Filter 0.8712 0.8610 0.8622 0.4631 25.46s Non-smooth vessels 

Vesselness Filter 0.6264 0.9874 0.9425 0.8764 1.05s 
Need user 
interaction 

Table 2: Performance Detail using 3D Rat Brain Vessel Image. 

3D Sensitivity Specificity Accuracy Precision Run time Drawback 

WTMM 0.4711 0.9895 0.9868 0.1889 255.35s Thick vessels 

LET 0.4181 0.9989 0.9959 0.6668 33.81s Not scale-invariant 

Vesselness Filter 0.8626 0.9985 0.9978 0.7468 74.67s Need user Interaction 
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values were high as the amount of noise was very 
little. The highest value obtained was by LET 
(99.89%). Vesselness filtered image was much 
similar to the expected result and it obtained the best 
accuracy (99.78%) and precision (74.68%). 

4 CONCLUSIONS 

We have reviewed and analysed a number of vessel 
enhancement and segmentation algorithms using 
both 2D and 3D image. Vesselness filter can be used 
to detect vessels of varying scales. A potential 
application of this method is to extract the brain 
microvasculature and compare healthy and diseased 
brains. LET has produced the highest sensitivity in 
2D experiment but this method is recommended 
only when the vessels are large and on a simple 
background. Although WTMM and level set method 
failed the performance tests, they are capable of 
detecting edges of large objects, such as brain 
tumours. The main issue in this work is that the 
performance test was not technically accurate due to 
the poorly made ground truth and insufficient test 
images so the 3D segmentation result has not been 
100% validated. For further work we aim to produce 
valid ground truth images for testing segmentation 
algorithms. We will also continue to develop robust 
wavelet filters and in combination with other 
mathematical methods and metrics such as high-
order flows (Lim et al, 2013) non-Euclidean distance 
functions (Pujadas et al, 2013) for handling 
multiscale vessels and improving segmentation 
speed and accuracy for microvascular analysis 
(Ward et al, 2013). 
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