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Abstract: Integrative approaches that incorporate multiple experiments have shown a potential application in the 
discovery of disease-related attributes. This study presents a unique, data-driven, integrative, Bayesian 
approach to merge gene expression data from various experiments into prognostic models and evaluate 
them for the discovery of bipolar-related attributes. Two prognostic models were constructed: a singly-
structuredBayesian and a Bayesian multi-net model, which differentiated Bipolar disease state at a higher 
level of abstraction. These prognostic models were evaluated to find the most common attributes 
responsible for the disease and their AUROC, using external crossvalidation. 
The multi-net model achieved an AUROC of 0.907 significantly outperforming the single-structured model 
with an AUROC of 0.631. The study found six new genes and five chromosomal regions associated with 
the bipolar state. Enrichment analysis performed in this study revealed biological concepts and proteins 
responsible for the disease. We anticipate this method and results will be used in the future to integrate 
information from multiple experiments for the same or related phenotypes of variousdiseases and also to 
predict the disease state earlier. 

1 INTRODUCTION 

Over the past ten years, the emergence of high-
throughput genetic data has presented a new 
opportunity for the development of diagnostic and 
prognostic tools for disease and the discovery of 
new disease-related genes (Clark et al., 2001), 
(Collins et al., 2003). Previous studies have shown 
an improvement in discovering disease-related 
attributes by integrating the phenotypic content of 
many experiments (Aerts et al., 2006), (Calvo et al., 
2006), (Freudenberg et al., 2002), (English et al., 
2007). Traditionally, however, these approaches 
have been verified through comparison to gold 
standard gene lists, which are themselves the 
products of previous experiments. This is an 
arbitrary method of validation, and even more 
ominously, shifts the focus of bioinformatics 
research away from discovery. 

In the present study, we use a completely data-
driven Bayesian approach to discover bipolar 

disorder attributes and validate them without 
resorting to a priori information knowledge bases. 

The topic of bipolar disorder warrants further 
study for proper prevention and cure, as Bipolar 
disorder (Beynon et al., 2009), (Schiffer, 2007), 
(Benazzi, 2007), (Morriss et al., 2007), (Sachs et al., 
2007) affects approximately 5.7 million adult 
Americans, or about 2.6% of the U.S. population age 
18 and older every year and results in 9.2 years 
reduction in expected life span, and as many as one 
in five patients with bipolar disorder completes 
suicide as per the National Institute of Mental 
Health. Bipolar disorder causes a condition in which 
people go back and forth between periods of a very 
good or irritable mood and depression. The "mood 
swings" between mania and depression can be very 
quick. 

Current diagnostic techniques like medication, 
talk therapy depict Success rates of 70 to 85% with 
lithium for the acute phase treatment of mania. 
However, lithium response rates of only 40 to 50% 
are now commonplace. The diagnosis is also 
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sometimes misdiagnosed with depression in women 
and schizophrenia in men. But the studyof high 
throughput gene expression data shows potential in 
developing more accurate prognostic and diagnostic 
methods for fast prevention and cure of the disease. 

The main goal of the present study is to create 
unifying predictive models across multiple 
experiments and to enable accurate prognosis and 
diagnosis of Bipolar disorder. The statistical 
modelling in this study is based on Bayesian 
networks. Bayesian networks are directed acyclic 
graph structures that extend Bayesian analysis 
(Pearl, 1988), and are a set of multivariate 
probabilistic models that have increased the power 
in learning and classification due to their compact 
factorization of data (Alterovitz, 2007), (Sebastiani 
et al., 2005). Bayesian networks are powerful in 
their ability to learn conditional relationships from 
large datasets and to use this probability distribution 
to classify other instances based on their feature 
values. When they are used to represent biological 
systems (Table S - 1), Bayesian networks create 
models of simultaneous genetic associations and 
dependencies, as well as genetic interplay with 
clinical and environmental variables (Sebastiani et 
al., 2005). These models are capable of capturing 
weak epistatic dependencies between genes, and 
previous studies have used Bayesian networks to 
analyze many types of genome-scale data, including 
genotype data (Sebastiani et al., 2005), gene 
expression date (Friedman, 2004), and protein-
protein interactions. 

Furthermore, the presented approach identifies 
genes, biological functions, and pathways related to 
disease that can serve as the basis for future studies. 

Many construction approaches exist for Bayesian 
networks. The NaiveBayes classifier, which requires 
only a small amount of training data to estimate the 
parameters (Mean and Variance of the variables) 
necessary for classification is used in this model to 
perform external cross-validation. Depending on the 
precise nature of the probability model, naive Bayes 
classifiers are trained very efficiently in a supervised 
learning setting. This prognostic model can be used 
to improve the accuracy of classification for a single 
phenotype across multiple classes of patients as well 
as different but related phenotypes. 

In this project, Naïve Bayes classifier (Harry, 
2004), (Caruana and Niculescu-Mizil, 2006), 
(George and Pat Langley) is used to integrate several 
bipolar disorder phenotypes in a predictive setting. 

 

Table S-1: Classification of samples collected from 
Bipolar disorder patients – Actual class Vs Predicted class 
(Control, GDS2190 and GDS2191). 

   Predicted Class 
 

 

  Control  GDS2190 GDS2191
 

C
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ss
 Control 38  4 0

 

 

GDS2190 10  20 0
 

A
ct

u
al

 

 

GDS2191 1  0 9
 

      

      
 

2 MATERIALS AND METHODS 

2.1 Data Mining and Collection 

Two Gene Expression Omnibus (GEO) datasets 
from NCBI were used in this study and are stored 
in GDS2190 and GDS2191 in various forms of the 
Affymetrix microarray platform (Dalma-
Weiszhausz et al., 2006). These two GDS datasets 
correspond to previous genome-scale experiments 
that relate to bipolar disorder related phenotypes: 
 

(1) GDS2190 (Ryan et al., 2006) contains 61 
samples of GPL96, taken from homo-sapiens; 

 

(2) GDS2191 (Ryan et al., 2006) contains 21 
samples of platform GPL96, taken from 
Homo-Sapiens 

 

Total number of samples that correspond to 
Control, GDS2190 and GDS2191 are shown in 
Table(S-1) and plotted in Figure 1. For each GDS, 
genes corresponding to multiple Affymetrix Probe 
IDs were collapsed down to the maximum value. 
The gene expression datawere normalized through 
the reasonable assumption that the total gene 
product in each individual is approximately equal. 
The normalization was done by setting all means 
and variances equal to the reference mean and 
variance of data in GDS2190, such thatµ = 
µGDS2190 and σ = σGDS2191. This second 
normalization step was done in order to merge the 
controls from all experiments. 

2.2 Finding Differentially Expressed 
Genes 

Differentially expressed genes were found using 
the Bioconductor package (Gentleman et al., 2005). 
Moderated t-statistics (R Documentation, 
http://rss.acs.unt.edu/) with Benjamini-Hochberg 
multiple hypothesis correction(Benjamini and 
Hochberg, 1995) ranked the top differentially 



expressed genes of bipolar disorder infected 
patients versus controls for each experiment by p-
value. Analyses were done to construct two 
prognostic models of significant genes. The gene 
obtained from Variance filtering of each 
experimental gene list was compiled, and the genes 
in common across these lists were considered the 
shared-feature set. 

2.2.1 Algorithm in R (to Generate Prognostic 
Models) 

1. Determine the Gene ID’s for Bipolar disorder 
2. Find ALL Common Genes across all Gene ID’s 
3. Separate the samples according to Control Vs 

non-Control 
4. Find Common Top differentially expressed 

genes for each experiment 
5. Create "interesting reduced experiments" (IREs), 

which are essentially data tables that represent 
each of the interesting experiments and their 
expression data from each GSM sample. They 
are "reduced" because only the data from the 
common genes is included in each data table. 

6. Normalize IREs by using a reference IRE, 
finding its median, and subtracting the difference 
between the reference median and the IRE's 
median from each value in the IRE 

7. Binarize the expValues for 1’s and 0’s 
8. Create ARFF files stored as .txt file with the data 

from these genes 

 
Figure 1: Classification of samples collected from the 
Bipolar disorder patients through GDS2190 and GDS2191 
datasets, taken from NCBI. 

2.3 Construction of Classifier  
and Evaluation using External 
Crossvalidation 

For the present study, Weka GUI was used to find 
the ‘best set of features’, build a classifier and 
implement  External Cross validation on the top 
differentially expressed binarized genes to calculate 
their AUROC. Linear forward selection search 

method was used to filter the best attributes from a 
given larger set. The evaluator evaluated the 
attributes using an independent feature model called 
Naïve Bayes classifier which assumes that the 
presence (or absence) of a particular feature of a 
class is unrelated to the presence (or absence) of any 
other feature. While the search method is Extension 
of BestFirst. It takes a restricted number of k 
attributes into account. Fixed-set selects a fixed 
number k of attributes, whereas k is increased in 
each step when fixed-width is selected. The search 
uses either the initial ordering to select the top k 
attributes, or performs a ranking (with the same 
evaluator the search uses later on). The search 
direction can be forward or floating forward 
selection (with optional backward search steps). 

In external crossvalidation, thesamples were 
divided into 10 subsets of approximately equal size. 
In each iteration, nine subsets were used to find a 
common-feature set and train the model. The final 
subset is used to test the model. This procedure is 
essential to correct the bias induced through feature 
selection step. The Area Under Receiver Operating 
Characteristic (AUROC) curve in Figure 2 was 
estimated by averaging the AUROCs across the ten 
folds. 

2.3.1 Algorithm in Weka (to Perform 
External Crossvalidaton) 

1. Convert the .txt file obtained from R pipeline 
into weka supported .arff file. 

2. Extract the Best set of features using 
AttributeSelectionClassifier in Weka GUI 

3. Use Training Set to evaluate the Results of 
External Cross-validation and calculate the 
AUROC 

 
Figure 2: Threshold curve with an AUROC of 0.907. 

2.4 Biological Enrichment 

We employed our newly developed prediction-based 
Bayesian network analysis to find molecular 
processes and pathways that are significant predictor 



of phenotype. To determine molecular processes and 
pathways we used Gene Ontology (GO) and Kyoto 
Encyclopaedia of Genes and Genomes (KEGG). See 
Table 2. 

3 RESULTS 

GEO DataSets (GDS) on the Affymetrix platform17 
related to Bipolar Disorder (Table S-1) were merged 
to form a set of 40 infected patients and 42 control 
patients. This set of samples was then used to 
construct Bayesian prognostic model and perform 
external cross validation on the results, for 
predicting bipolar disorder disease genes. 

Our unique contribution lies in validating the 
multi-net prognostic model through a data-driven 
approach by calculating the Area Under Receiver 
Operating Characteristic (Bewick et al., 2004) 
(AUROC) through External cross-validation(Braga-
Neto and Dougherty, 2005), (Ambrosie and 
McLachlan, 2002) process that corrects the bias 
induced through the feature selection 
procedure(Ambrosie and McLachlan, 2002) (see 
Materials and Methods for more detail). Prediction 
based enrichment analysis (Harris et al., 2004) was 
then used for the shared-feature gene set to reveal 
pathways significant to Bipolar Disorder 
outcomes(Kanehisa and Goto, 2000), (Watford et 
al., 2004). The computed significant common-
feature genes for bipolar-disorder (Beynon et al., 
2009), (Schiffer, 2007), (Benazzi, 2007), (Morriss et 
al., 2007), (Sachs, 2007) related, from the results of 
external cross validation are shown in Table 1. 
Enrichment analysis is shown in Table 2. 

 
Figure 3: The prognostic accuracies of computed 
significant common-feature genes with average AUROC - 
0.907. 

3.1 Result Analysis 

The probability of correctly classified Instances and 
errors after external cross validation showed that the 
model outperformed well in predicting the disease 
state genes from fewer samples by integrating 
common controls via the multi-nets, with an 
AUROC of 0.907 (as plotted in Figure 4). 

The six genes found responsible for bipolar 
disorder are: 

3.1.1 ADH5 

Alcohol dehydrogenase class-3 is an enzyme that in 
humans is encoded by the ADH5 gene. This gene 
encodes glutathione-dependent formaldehyde 
dehydrogenase or class III alcohol dehydrogenase 
chi subunit, which is a member of the alcohol 
dehydrogenase family. Members of this family 
metabolize a wide variety of substrates, including 
ethanol, retinol, other aliphatic alcohols, 
hydroxysteroids, and lipid peroxidation products. 
This enzyme is an important component of cellular 
metabolism for the elimination of formaldehyde, a 
potent irritant and sensitizing agent that causes 
lacrymation, rhinitis, pharyngitis, and contact 
dermatitis. This gene has shown its influence on 
Brain and Brain GAMG Cancer. Hence, studies are 
further focussed on these relations for validation 
through medical test. 

3.1.2 MCL1 

MCL1 (myeloid cell leukemia sequence 1 (BCL2-
related)) is a protein-coding gene. This gene encodes 
an anti-apoptotic protein. Alternative splicing results 
in multiple transcript variants. The longest gene 
product (isoform 1) enhances cell survival by 
inhibiting apoptosis while the alternatively spliced 
shorter gene products (isoform 2 and isoform 3) 
promote apoptosis and are death-inducing. Diseases 
associated with 
 

MCL1 include cholangiocarcinoma, and t-cell
leukemia, and among its related super- 

pathways are Apoptosis and Immune response IL-22 
signaling pathway. GO annotations related to this 
gene include protein channel activity and protein 
heterodimerization activity which reveal abnormal 
behaviour in bipolar patients. 

3.1.3 PDE1A 

Cyclic nucleotide phosphodiesterases (PDEs) play a 
role in signal transduction by regulating intracellular 



cyclic nucleotide concentrations through hydrolysis 
of cAMP and/or cGMP to their respective 
nucleoside 5-prime monophosphates. Members of 
the PDE1 family, such asPDE1A, are 
Ca(2+)/calmodulin (see CALM1; MIM 114180)-
dependent PDEs (CaM-PDEs) that are activated by 
calmodulin in the presence of Ca(2+). While the 
PDE1A protein expression data from MOPED 
reveals the interrelation of this gene with brain and 
thus with bipolar, PDE1A is further validated 
through medical test for thorough confirmation of its 
presence in bipolar disorder patients. 

3.1.4 ASPH 

ASPH (aspartate beta-hydroxylase) is a protein-coding 
gene.  Diseases associated  with ASPH include  Brain
GAMG Cancer,  regular  astigmatism,
and  catecholaminergic  polymorphic  ventricular

tachycardia. GO annotations related to this gene 
include electron carrier activity and calcium ion 
binding. An important paralog of this gene is  
ASPHD2. This gene is thought to play an important 
role in calcium homeostasis. The gene is expressed 
from two promoters and undergoes extensive 
alternative splicing. 

3.1.5 NTM 

NTM (neurotrimin) is a protein-coding gene in 
brain. Diseases associated with NTM include  
crimean-congo  haemorrhagic fever, and  
olivopontocerebellar atrophy. GO annotations 
related to this gene include protein binding shown in 
Table 2. 

 
Figure 4: The plot of correctly classified instances and 
incorrectly classified instances Vs Total Number of 
Instances and errors after External Cross validation. 

3.1.6 C8ORF44 

C8ORF44 is chromosome 8 open reading frame 44 
related to brain and hence also found to be 
associated with bipolar disorder with an AUROC of 
0.907 

4 DISCUSSION 

AUROC provides an objective metric for 
quantifying predictor performance. An AUROC of 
0.7 to 0.8 is considered “fair,” from 0.8 to 0.9 is 
considered “good”, and from 0.9 to 1.0 is considered 
“excellent” (Caruana and Niculescu-Mizil, 2006). 
The multi-net classifier for Bipolar disorder across 
classes of patients achieved ‘excellent’ performance. 
However, the singly-structured model for Bipolar 
disorder, whose structures were fixed across all 
patients, only achieved ‘good’ performance. These 
results indicate the power of this experiment-
integration framework as that: 
 

(1) Merging controls in related experiments results 
in a larger control group increasing the power of 
association in learning and, 

 

(2) The External cross validation improves the 
results accuracy and determines the best genes 
responsible for the disease. 

4.1 Newly Implicated Genes 
and Chromosomal Loci 

Using this integrative approach, new genes were 
discovered by testing Bipolar disorder infected 
patients from many experiments against a larger set 
of merged controls. The six genes MCL1(Gene 
MCL1), PDE1A(Gene PDE1A), ADH5(Gene 
ADH5), ASPH(Gene ASPH), C8ORF44(Gene 
C8ORF44) and NTM(Gene NTM) (Table 1, Figure 
5) should be studied in the future context of Bipolar 
disorder as these studies can shed some light on 
these relationships and the functions of these genes 
and gene products. 

Analysis of these genes showed that five 
significant chromosomal regions - Chromosomes 1, 
2, 4, 8 and 11 (Figure 6) were significant in Bipolar 
disorder. Because gene expression in nearby 
chromosomal loci is strongly related, these 
significant regions are of medical interest (Takizawa 
et al., 2008). 



 
Figure 5: Common-feature genes responsible for Bipolar 
disorder resulted from External Cross validation with an 
accuracy of 90.7% 

 
Figure 6: Analysis of genes from all the multi-net models 
showed that five significant chromosomal regions on 
Chromosomes 1, 2, 4, 8 and 11 were significant in Bipolar 
disorder due to the presence of the Genes MCL1, PDE1A, 
ADH5, ASPH, CRO8F44 and NTM in them. 

4.2 Enrichment Analysis and Features 
in Bipolar Disorder Genes 

Enrichment analysis of the shared-feature set (in 
Table 1) reveal GO and KEGG biological concepts 
related to bipolar disorder disease. Many of the 
biological pathways with p-value <=0.05 have 
shown to be associated with Bipolar Disorder genes. 
Peptidyl-amino acid modification is the alteration of 
an amino acid residue in a peptide which lowers in 
bipolar disorder infected patients. Electron carrier 
activity is a molecular entity that serves as an 
electron acceptor and electron donor in an electron 
transport system, present in ADH5 and ASPH. 
Furthermore, Bipolar disorder was also found to be 
associated with neoplasia (in Table 2) which needs a 
further study. 

The proteins with certain p-value in Table 3 
specify the bipolar disease state in six genes – 
MCL1, PDE1A, ADH5, C8ORF44, NTM, ASPH. 

Table 1: The computed significant common-feature genes 
for bipolar disorder related, from the results of external 
cross-validation. 

Gene Gene   
Symbol ID Organism Gene Name 

    
   myeloid cell leukemia
  Homo sequence 1 (BCL2-

MCL1 4170 sapiens related) 
    
  Homo phosphodiesterase 1A,

PDE1A 5136 sapiens calmodulin-dependent
    
   alcohol 
   dehydrogenase 5 
   (class III), chi 
   polypeptide, 
   pseudogene 4; alcohol
   dehydrogenase 5 
  Homo (class III), chi 

ADH5 128 sapiens polypeptide 
    

  Homo chromosome 8 open
C8ORF44 56260 sapiens reading frame 44 

    
  Homo aspartate beta- 

ASPH 444 sapiens hydroxylase 
    
  Homo  

NTM 50863 sapiens Neurotrimin 
    

Table 2: Enrichment analyses of the shared-feature set 
reveal GO and KEGG biological concepts related to 
Bipolar Disorder. 

Biological Concept p-value
GO:0018193~peptidyl-amino acid 0.0451
modification(ADH5, ASPH)  
GO:0009055~electron carrier activity 0.0502
(ADH5, ASPH)  

21275:lung_normal_3rd (ADH5, NTM) 0.0234

519:pancrea_neoplasia_3rd (ADH5, ASPH) 0.0277
  

38125:esophagu_neoplasia_3rd (ADH5, 0.0473
ASPH)  

26751: lymph node_neoplasia_3rd (ADH5, 0.0485
ASPH)  

BM-CD105+Endothelial_3rd (MCL1, 0.0229
PDE1A, ASPH, C8ORF44, NTM)  

Adrenal Cortex_3rd (MCL1, PDE1A, 0.0366
ADH5, ASPH)  

 
 



Table 3: Proteins in Bipolar genes that specify the disease. 

Proteins Genes p-Value
 

HFH3 MCL1, PDE1A, 0.0044
 

 ADH5, ASPH,  
 

 C8ORF44, NTM  
 

SRY MCL1, PDE1A, 0.0051
 

 ADH5, ASPH,  
 

 C8ORF44, NTM  
 

FREAC7 MCL1, PDE1A, 0.0110
 

 ADH5, ASPH,  
 

 C8ORF44, NTM  
 

LUN1 MCL1, PDE1A, 0.0129
 

 

ADH5, ASPH, 
  

  
 

 C8ORF44, NTM  
 

FOXD3 PDE1A, ADH5, 0.0244
 

 ASPH, C8ORF44,  
 

 NTM  
 

4.3 Unique Contribution and Future 
Work 

This study presents a completely data-driven 
approach to integrate phenotypic content from 
multiple experiments, to discover significant bipolar 
disorder-related genes and biological pathways, and 
to verify their importance without resorting to a 
priori information bases. External cross validation is 
utilized as an integrative tool to construct the best 
classifier for disease analysis and evaluate it using 
best evaluation method. The multi-net model, used 
for the first time in disease analysis with external 
cross validation, showed huge improvements over 
singly-structured models in predicting Bipolar 
disorder state from gene expression. The results 
demonstrate the involvement of six new genes and 
five chromosomal regions in bipolar disorder that 
should be targeted in future clinical studies. In the 
future, we anticipate that this novel, data-driven and 
prediction-based integrative approach will enable the 
discovery of the genetic basis of many diseases. 

5 CONCLUSIONS 

Using this integrative approach, 6 Genes - MCL1, 
PDE1A, ADH5, ASPH, C80RF44 and NTM were 
identified as responsible for Bipolar disorder in 
humans. Future studies can shed some light on these 
relationships and the functions of these genes and 
gene products. Results indicated that the Multi-
netmodel with external cross validation 
‘outperformed’ singly-connected ones in predicting 
Bipolar disorder disease state genes from gene 
expression with an ‘excellent’ AUROC of 0.907. 

We are also further working on implementing 
this design on other pathologies for advanced 
prevention and cure of diseases like Cancer, AIDS 
etc. 
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