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1 ABSTRACT 

The European chemical industry is the world leader 
in its field. 8 out of the 15 largest chemical 
companies are EU based. Furthermore, 29 % of the 
worldwide chemical sales originate from the EU. 
These industries face future challenges such as rising 
costs and scarcity of raw materials, an increase in 
the price of energy, and an intensified 
competition from Asian countries. 

Process Analytical Chemistry represents one of 
the most significant developments in chemical and 
process engineering over the past decade. Chemical 
information is of increasing importance in today's 
chemical industry. It is required for efficient process 
development, scale-up and production. It is used to 
assure product quality and compliance with 
regulations that govern chemical production 
processes. 

If reliable analytical information on the chemical 
process under investigation is available, adjustments 
and actions can be undertaken immediately in order 
to assure maximum yield and product quality 
while minimizing energy consumption and waste 
production. As a consequence, chemical information 
has a direct impact on the productivity and thus 
competitiveness, and on the environmental issues of 
the respective industries. 

Chemometrics is the application of mathematical 
or statistical methods to chemical data. The 
International Chemometrics Society (ICS) offers the 
following definition: 

“Chemometrics is the science of relating 
measurements made on a chemical system or 
process to the state of the system via application of 
mathematical or statistical methods”. 

Chemometric research spans a wide area of 
different methods which can be applied in 
chemistry. There are techniques for collecting good 
data (optimization of experimental parameters, 
design of experiments, calibration, signal 
processing) and for getting information from these 

data (statistics, pattern recognition, modeling, 
structure-property-relationship estimations). 

In this extense list of tasks, we are focused on 
calibration. Calibration consists on stablishing 
relationships, i.e. chemometric models, between 
some instrumental response and chemical 
concentrations. The usual instrumental responses 
come from the use of spectrometers, because they 
allow us to get a lot of on-line cheap data in a non-
destructive way. There are two types of calibration, 
univariate or multivariate calibration, depending on 
the use of only a single predictor variable or several 
ones.  

The current instalations provide us with 
thousands of variables and thousands of samples, 
thus more and more new sophisticated techniques, 
which are capable to handle and take advantage of 
this tsunami of data, are required. 

Our goal is to provide the analytical chemistry 
community with modern and sophisticated tools in 
order to overcome the incoming future challenges. 

2 STAGE OF THE RESEARCH 

The title for the PhD thesis is “Advanced Learning 
Techniques for Chemometric Modelling”. The 
research is carried out as part of the research K-
project called “Process Analytical Chemistry – Data 
Acquisition and Data-processing” (PAC).  

The K-project PAC bundles industrial and 
academic research in Process Analytics. The PAC 
consortium intends to develop and implement 
technologies which allow for a direct and remote 
acquisition of chemical information on continuous 
and batch processes which are currently run at the 
production sites of the industrial partners. 

The scope of the research program comprises: 

 Development and integration of novel 
detection principles for the measurement of 
data representing the chemical properties of the 
involved substances. The acquisition is 

19
Cernuda C., Lughofer E. and Klement E. (2013).
Advanced Learning Techniques for Chemometric Modelling.
In Doctoral Consortium, pages 19-28
Copyright c SCITEPRESS



 

performed directly from the running batch and 
continuous processes (Data Acquisition). 

 Development and application of novel 
approaches for turning the measured data into 
valid information on the ongoing chemical 
processes (Data Processing). 

The project is organised in form of 6 sub-
projects, with 4 of them being executed by the 
scientific partners in close colloboration with the 
company partners (4 multifirm-projects). The other 2 
sub-projects are called strategic projects and their 
scope is mainly scientific: 

 Multifirm-Project MP1: Quantification of 
Process Gases. 

 Multifirm-Project MP2: Quantifying and 
Predicting Parameters of Liquids in BATCH 
Processes. 

 Multifirm-Project MP3: Quantification of 
Parameters and Detection of Anomalies 
and critical Parameters in Liquids within 
continuous Processes. 

 Multifirm-Project MP4: Monitoring the 
Production of Viscose Fibres. 

 Strategic Project SP1: Advanced Chemometric 
Modelling. 

 Strategic Project SP2: QCL-WAGS - Sensor 
Systems (Quantum Cascade Lasers and Wave 
Guide - Structures). 

Our research work is maily related to Strategic 
Project 1, with some punctual collaboration in the 
Multifirm projects 2, 3 and 4. Therefore it is directly 
related with the field of Chemometrics.  

The project duration is four years, finishing in 
September 2014. Thus 75% of the work is already 
done in this moment.  

3 OUTLINE OF OBJECTIVES 

The intention of our research is to provide the 
chemometric community with a bunch of new 
advanced techniques, some totally new and some 
adapted from other fields, so that they overcome the 
traditional State-of-Art linear methods. 

Our intention is to try to cover all aspects of the 
chemometric modelling process, from preprocessing 
to validation and posterior adaptation, in more or 
less depth. We will describe the objectives, ordering 
them in terms of the different steps of the modelling: 

 Preprocessing: explore several new off-line 
outlier detection methods based on the use of 

different distance measures, and also on the 
information provided by the application of 
projection methods which permit a better 
understanding of the data properties. 

 Dimensionality reduction / variable selection: 
use of metaheuristic optimization algorithms, 
like ant colony optimization (ACO) or particle 
swarm optimization (PSO) to look for the 
variables that explain best the relationships 
underlying in our calibration data. For the same 
purpose, also the use of genetic algorithms 
(GA), with specifically designed genetic 
operators, will be explored. Moreover, hybrid 
approaches combining the diverse optimization 
characteristics of the previous algorithms will 
be employed. Furthermore, traditional forward 
and backward selection algorithms do not take 
into account the problem specific information. 
Therefore we will propose algorithms, like 
forward selection bands (FSB), which take the 
advantages of the physical/chemical knowledge 
of the chemical process in order to make better 
selections. 

 Off-line batch modelling: use of flexible fuzzy 
inference systems, as a non-linear alternative to 
the conventional linear methods commonly 
employed in chemometrics nowadays. 
Incorporation of external independent 
information decoupled from the spectroscopy 
data, coming from sensors. Develop techniques 
that can handle repeated measurements, in a 
more advanced way than the classical 
averaging approach, by means of procedures 
similar to bagging and ensembling. 

 Robustness analysis: definition of different 
types of confidence intervals and error bars in 
order to estimate the uncertainty present in the 
predictions of our off-line models. 

 On-line modelling: development incremental 
versions of the outlier detection methods, in 
order to handle possible incoming outliers in a 
continuous process. Try to perform incremental 
adaptations of the S-o-A linear modelling 
techniques when possible. Use of incremental 
flexible fuzzy inference systems, exploiting all 
its capabilities, e.g. rules merging, rules 
pruning, forgetting strategies. Use of retraining 
strategies based on sliding windows, with 
many alternatives on how to create, update and 
handle the window, as an alternative to 
incremental approaches. Pros and cons of both 
options will be discussed. 
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 Validation techniques: specific validation 
techniques will be used in specific cases, for 
instance in the presence of repeated 
measurements or when using extra independent 
sources of information. 

 Cost optimization: not present usually in 
research on chemometrics, but unavoidable in 
real world applications. Active learning (AL) 
strategies, both decremental and incremental, 
will be developed. 

Apart from being an advanced manual, full of new 
options for the chemometricians, we pretend to 
motivate the search of innovative techniques, as well 
as to look what researchers from other fields are 
doing, in order to be more open minded and 
receptive. This would lead as towards a successful 
self-adaptation to the new times that are coming. 

4 RESEARCH PROBLEM 

Due to the ever-increasing production of complex 
data by a large variety of analytical technologies, 
chemometric data analysis and data mining have 
become crucial tools in modern science. This 
increase in popularity of chemometrics has boosted 
the awareness of its potential in the era in which data 
tsunamis rule the scientific world. However, it is 
evident that serious shortcomings have so far 
hampered the full exploitation of the chemometric 
potential. First, there is a lack of an underlying 
generic strategy for the data analysis workflow. This 
means that in practice each different data set 
requires its own research project to define the 
optimal pre-processing and data analysis settings to 
cope with its own peculiarities originating from 
different sources. Second, the usual workhorses such 
as principal component analysis (PCA), while 
designed to cope with large multivariate data, are not 
suitable anymore for the complex mega-variate 
and/or multiway data originating from, e.g., 
comprehensive profiling techniques. 

Advanced preprocessing techniques as well as 
robust and accurate non-linear complex models are 
necessary to extract all the knowledge contained in 
the data and fulfill the companies’ requirements 
nowadays, in this global highly competitive 
industrial world. 

The incoming technical advances in data 
adquisition permit us say that our entire world can 
be storaged into data. Therefore, we have the 
challenge and the oportunity of understanding the 
world by means of adequate data mining techniques.

 Everything is there, but we need the tools to see it. 

5 STATE OF THE ART 

The simplest regression method, multiple linear 
regression (MLR), presents several well-known 
disadvantages when applied to datasets where the 
variables are highly correlated 

 The abundance of response variables relative to 
the number of available samples which leads to 
an undetermined situation. 

 The possibility of collinearity of the response 
variables, which leads to unstable matrix 
inversions and unstable regression results. 

These problems can be dealt by means of other kinds 
of regression, like principal components regression 
(PCR) (Jolliffe, 2002), partial least squares (PLS) 
regression (Haenlein and Kaplan, 2004), Ridge 
Regression introducing a penalty term (Cernuda et 
al., 2011), etc. In this sense, these approaches 
enjoyed a great attraction in the field of 
chemometric modeling resp. extracting models from 
spectral data in general, see for instance (Reeves and 
Delwiche, 2003; Vaira et al., 1999; Shao et al., 
2010) or (Miller, 2009).  

In the following, we briefly summarize these 
methods: 

 Principal components analysis (PCA) finds 
combination of variables that describe major 
trends in the data in an unsupervised manner. 
The trends are characterized by those directions 
along which the data has the maximal variance. 
PCA performs a rotation of the coordinate 
system using a singular value decomposition of 
the covariance matrix (Jolliffe, 2002) such that 
the axes of the new system are exactly lying in 
these directions. The first principal component 
with largest eigenvalue is expected to be the 
most important rotated axis, the second 
component with the second largest eigenvalue 
the second most one, etc. According to this 
order, ݇ components with the most significant 
contributions are selected; where the remaining 
ones contribute quite little to the full eigen-
space (the sum of their eigenvalues is low). 
Regression is then conducted using the ݇ 
selected components as inputs and the original 
target as output variable. 

 Partial least squares regression (PLSR) is 
related to both, PCR and MLR, and can be 
thought of as stated in between them. The 
former finds factors that capture the greatest 

Advanced�Learning�Techniques�for�Chemometric�Modelling

21



 

amount of variance in the predictor variables 
while the latter seeks to find a single factor that 
best correlates predictor variables with 
predicted variables. PLS attempts to find 
factors which both capture variance and 
achieve correlation by means of projecting not 
only the predictor variables (like PCA), but 
also the predicted ones, to new spaces so that 
the relationship between successive pairs of 
scores is as strong as possible. 

 Locally weighted regression (LWR) (Cleveland 
and Devlin, 1988) is a procedure for fitting a 
regression surface to data through multivariate 
smoothing: the dependent variable is smoothed 
as a function of the independent variables in a 
moving fashion, analogs to how a moving 
average is computed for a time series. 

 Regression Trees (RegTree) (Cernuda et al., 
2011) use the tree to represent the recursive 
partition of the input space in small local parts 
thus bringing in some non-linearity. Each of 
the terminal nodes, or leaves, of the tree 
represents a cell of the partition, and has 
attached to it a simple model which applies in 
that cell only. 

 Stepwise Regression (StepwiseReg) (Draper 
and Smith, 1998) removes and adds variables 
to the regression model for the purpose of 
identifying a useful subset of the predictors. 
The choice of predictive variables is carried out 
by an automatic procedure, based on a 
sequence of F-tests. 

 An artificial neural network (ANN) (Haykin, 
1999) is a system based on the operation of 
biological neural networks, in other words, is 
an emulation of biological neural system. It is 
formed by three layers of neurons, so called 
input layer, hidden layer and output layer. Once 
a neuron receives an input, performs a function 
evaluation, using a weight value, and 
communicates the result to the neurons to 
which it is connected. The system learns the 
weights by means of optimizing a criterion 
called learning rule. In multi-layer perceptrons, 
usually four essential parameters have to be 
tuned, the number of hidden layers, the number 
of neurons, the momentum (in order to be not 
trapped in local optima) and the learning rate, 
which complicates and increases exponentially 
the computational complexity of the optimal 
parameter elicitation and model selection step. 

 GLMNet: when handling variables that are 
highly correlated, problems of singularities 

arise when it comes to calculating the inverse 
of ்ܺܺ to compute the correlation matrix. 
Ridge regression and the Lasso (Cernuda et al., 
2011) are methods included in the family of 
shrinkage methods. In their setting, the 
covariance matrix is perturbed to encourage 
non-singularity. Lasso and elastic-net 
regularization for Generalized Linear Models 
(GLMNet) is an algorithm for fitting the entire 
lasso or elastic-net regularization path for 
linear regression, logistic and multinomial 
regression models. The algorithm uses cyclical 
coordinate descent (Hastie et al., 2010) in a 
path-wise fashion (Hastie et al., 2007), 
meaning that it includes ℓଵ (the lasso), ℓଶ 
(ridge regression), and mixtures of the two (the 
elastic net). 

The main problem of these methods is the fact that 
they are linear methods, and real world is highly 
non-linear. There are several non-linear versions of 
some of them, but they are research topics at this 
moment. 

6 METHODOLOGY 

Because it is the main contribution in this PhD 
thesis, in this section we are going to describe the 
data-driven training methodology for a specific type 
of fuzzy system, which we define in the subsequent 
section. Thereby, the main focus will be placed on 
the incremental training aspect from incoming data 
streams, i.e., how to permanently adapt the model 
with new incoming data, such that it is able to follow 
a high dynamics of the process due to a changing 
behavior of (parts of) the system (for instance, 
different behaviors of the spin-bath in our 
application, see previous section). Apart from that, 
we will also shortly summarize how to set up an 
initial fuzzy model based on some pre-recorded 
calibration samples, which will be used as starting 
point for further adaptation. 

6.1 Applied Model Architecture 

In order to follow non-linearities implicitly 
contained in the spectral data, we exploit the 
Takagi–Sugeno fuzzy model architecture (Takagi, 
1985), whose functional relation is defined in the 
following way: 

መ݂ሺݔԦሻ ൌ ොݕ ൌ݈߰ሺݔԦሻ, ߰ሺݔԦሻ ൌ
Ԧሻݔሺߤ

∑ Ԧሻݔሺߤ
ୀଵ



ୀଵ

 (1)
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with 

݈ ൌ ݓ  ଵݔଵݓ ⋯ݓݔ	, ݅ ൌ 1,… , (2) ܥ

This architecture has the main advantage that it can 
express different degrees of non-linearities contained 
in the system, by using a different number of local 
linear predictors, ݈. These are combined by 
weighting the contribution of each hyper-plane 
expressed by normalized membership functions 
߰ሺݔԦሻ to the current local region. The absolute 
membership degrees ߤ are obtained by a 
conjunction of  Gaussian membership functions, 
used as fuzzy sets and defining a multivariate 
normal distribution function in form of ߤሺݔԦሻ ൌ

∏ exp	ሺെ0.5ሺ
ሺ௫ିሻ

మ

ఙ
మ ሻ

ୀଵ . They assure smooth 

approximation surfaces as well as steady 
differentiable functionals in (1). 

Selecting ܥ ൌ 1, the Takagi–Sugeno fuzzy 
model in (1) automatically reduces to a global 
multivariate linear regression model (MLR). 
Dependent on the actual size and characteristics of 
the calibration set, ܥ can be decreased or increased 
in order to become a more linear or a higher non-
linear model. An appropriate selection of ܥ based on 
a calibration set can be handled during the batch off- 
line modeling phase within a specific validation 
scheme. A further adjustment of the degree of non-
linearity during on-line processing is possible and in 
most cases necessary to follow the dynamics of the 
process. 

6.2 Batch off-Line Learning (Initial 
Model) 

The batch modeling phase for extracting an initial 
fuzzy system from some calibration samples consists 
of two steps: 
 Wavelength reduction for reducing the high-

dimensionality of NIR spectra samples and 
focusing on the most important wavelengths 
explaining the target parameter(s) best. 

 Extracting the fuzzy system from calibration 
samples by eliciting the optimal number of 
local regions (rules) ܥ and learning the linear 
parameter vectors ݓሬሬԦ for each local region as 
well as the non-linear parameters ܿ and ߪ in the 
corresponding basis functions. 

The first step is necessary, whenever the 
proportion between the number of training samples 
to the number of input dimen- sions is low, which is 
often seen in chemometric modeling setups, 
especially when the gathering of calibration samples 
is quite costly or time-intensive. In literature, this is 

a well-known effect and referenced under the term 
curse of dimensionality (Cernuda et al., 2011). Our 
wavelength reduction algorithm is based on 
successively adding new wavelength regressors, 
until a certain level of saturation in terms of model 
quality is reached. Therefore, in each iteration we 
elicit that wavelength which is the most important 
for explaining the (remaining) information contained 
in the target, store it into a list of selected regressors 
and subtract its contribution together with the 
contribution of all regressors from the target – for a 
detailed algorithm, please refer to (Cernuda et al., 
2011). 

The second step includes the extraction of local 
regions, which is achieved by applying a two-stage 
clustering algorithm in the reduced wavelength 
space: the first stage passes over the whole data set 
to elicit an appropriate number of local regions ܥ for 
the given problem at hand; the second stage fine-
tunes the parameters of the ܥ clusters by iterating 
over the whole data set a multiple times and 
adjusting its centers Ԧܿ according to the vector 
quantization concept (Gray, 1984). Finally, the the 
spreads (ranges of influence) of clusters are 
calculated using variances ߪ in each directions (in 
case of Euclidean distance measure) resp. inverse 
covariance matrices Σ

ିଵ (in case of Mahalanobis 
distance) on the data samples nearest to each cluster. 
After the local regions are found and positioned, a 
regularized weighted least squares approach is 
conducted for estimating the consequent parameter 
vectors ݓሬሬԦ (Lughofer, 2008b), where the 
regularization parameter is automatically set based 
on the condition of the inverse Hessian matrix. For 
further details on the batch learning process, please 
refer to (Cernuda et al., 2011). 

6.3 Incremental On-line Learning 
(Evolving Model) 

In this section, we describe in detail the incremental 
evolving learning procedure, called FLEXFIS 
(Lughofer, 2008a), which is short for FLEXible 
Fuzzy Inference Systems as being able to flexibly 
adapt to new data. The second part of this section is 
dedicated to advanced topics which are necessary for 
achieving a higher and a faster flexibility of the 
models and for reducing complexity and on-line 
computation time. 

6.3.1 The Basic Procedure 

Once an initial fuzzy regression model is extracted 
during the batch modeling and evaluation phase, the 
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task during the on-line process is to include new 
process characteristics into the models on-the-fly. 
This is achieved by two learning paradigms in 
accordance to the well-known plasticity-stability 
dilemma (Abraham and Robins, 2005): 
 Update of the model parameters (plasticity). 

 Evolution of the model structure on demand 
(stability). 

In our approach, both are conducted within so-called 
incremental learning steps, carried out in single-pass 
manner. Incrementality belongs to the nature of the 
update process that it does not allow any re-training 
steps (e.g., based on sliding data windows), but 
updates the model based on new incoming single 
samples (sample- wise). This guarantees a high 
efficiency regarding computation times. Single-pass 

 

Figure 1: Schematic view of the data acquisition 
framework. 

capability allows to discard a sample, immediately 
after it was used in the update process. This 
guarantees minimal virtual memory usage and is 
therefore also feasible for in-line application (e.g., in 
microprocessors) as conducted in the data 
acquisition framework (see Fig. 1). 

The model evolution and the learning of non-
linear parameters (ܿ and ߪ in the Gaussian 
membership functions ߤ) takes place in the product 
cluster space: hyper-ellipsoidal clusters (rules) can 
be associated with the contours of the multivariate 
Gaussians; projecting them to each input axes 
delivers the single one-dimensional Gaussian fuzzy 
sets, which forming the antecedent parts of the 
corresponding rules. A newly recorded sample is 
checked whether it fits to the current cluster partition 
or not. If it fits, the nearest cluster (also called 
winning cluster) Ԧܿ௪ is updated by moving its 
center towards the current sample ݔԦ: 

Ԧܿ௪ሺ݊݁ݓሻ ൌ Ԧܿ௪ሺ݈݀ሻ 
.ହ
ೢ

൫ݔԦ െ Ԧܿ௪ሺ݈݀ሻ൯ (3)

and recursively adjusting its range of influence 
based on the difference between old and new center 
positions. The intensity of the center movement is 
steered by a learning gain ߟ௪ ൌ 0.5/݊௪ lying in 
[0,1], which decreases with the number of samples 
belonging to the winning clusters seen so far (݊௪). 
This assures convergence of the clusters over time to 
a stable state within a life-long learning context 
(Hamker, 2001). When using Euclidean measure for 
all distance calculations, the recursive calculation of 
the range of influence of a cluster Ԧܿ௪ is achieved 
by the recursive variance method including rank-one 
modification, see (Qin et al., 2000): 

ሺ݊௪  1ሻߪ௪,
ଶ ൌ ݊௪ߪ௪,

ଶ

 ሺ݊௪  1ሻΔܿ௪,
ଶ

 ൫ܿ௪, െ ൯ݔ
ଶ
 

(4)

with ݆ ൌ 1,… ,   1 and Δܿ the difference between 
the updated and the old position of the cluster center. 
When applying Mahalanobis distance, the update of 
the inverse covariance matrix is required, which can 
be approximated by (Backer and Scheunders, 2001): 

Σ௪
ିଵ ሺ݊݁ݓሻ ൌ

Σ௪
ିଵ ሺ݈݀ሻ

1 െ ߙ
െ

ߙ
1 െ ߙ

∙ Θ (5)

with 

Θ ൌ
ሺΣ௪

ିଵ ሺ݈݀ሻሺݔԦ െ Ԧܿ௪ሺ݈݀ሻሻሻሺΣ௪
ିଵ ሺ݈݀ሻሺݔԦ െ Ԧܿ௪ሺ݈݀ሻሻሻ்

1  Ԧݔሺ൫ߙ െ Ԧܿ௪ሺ݈݀ሻ൯
்
ቀΣ௪

ିଵ ሺ݈݀ሻቁ൫ݔԦ െ Ԧܿ௪ሺ݈݀ሻ൯ሻ
 

and ߙ ൌ భ
ೢ

 1. A more exact update is possible 

when using the recursive update formulas for the 
covariance matrix directly, see (Lughofer, 2011a) 
for details, however then the method significantly 
slows down. 

If a new sample does not fit to the current cluster 
partition, a new cluster associated with a new local 
region is evolved by 

1. Setting its center to the current data sample ݔԦ. 
2. Setting its range of influence ߪԦ to 0 in case of 

Euclidean distance and to Σିଵ ൌ  in case of ܫ
Mahalanobis distance. 

3. Setting its parameter vector ݓሬሬԦ to the parameter 
vector of the nearest rule in the rule base, i.e., 
ሬሬԦݓ ൌ  ሬሬԦ and its inverse Hessian matrix toݓ
ሬܲԦ ൌ ሬܲԦ with ሬܲԦ the inverse Hessian 
matrix of the nearest rule. 

4. Increasing the number of clusters (local 
regions): ܥ ൌ ܥ  1. 

The decision whether a new sample fits to the 
current cluster partition or not is decided based on a 
distance criterion employing a vigilance parameter 
(the only sensitive parameter of the method). 

In particular, if ‖ݔԦ െ Ԧܿ௪‖ is bigger than a pre-
defined threshold, then a new cluster is evolved. 
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Thereby, we are dealing with data normalized to the 
unit hyper-cube ሾ0,1ሿାଵ with  the number of the 
selected wavelengths. In this sense, the vigilance 
parameter is lying in ሺ0, ඥ  1ሿ and can be defined 

as a fraction of the space-diagonal ݂ܽܿඥ  1 of the 
product space ( inputs, 1 output), with ݂ܽܿ usually 
set in ሺ0,0.9ሿ. 

After a new sample is processed through the 
structure evolution and non-linear parameter 
learning part, the consequent parameters of all rules 
are updated with the goal to minimize the least 
squares optimization problem. Thereby, the intensity 
of the update is guided by the activation degree of 
each local region expressed as the normalized 
membership function values ߰. This results in a 
weighted least squares optimization problem: 

ܬ ൌ ߰ሺݔԦሺ݇ሻሻ݁
ଶሺ݇ሻ

ே

ୀଵ

→ 	
݉݅݊
ሬሬԦݓ

	, ݅ ൌ 1,… , (6) ܥ

where ݁ሺ݇ሻ ൌ ሺ݇ሻݕ െ  ොሺ݇ሻ represents the error ofݕ
the local linear model in the ݇th sample. Its 
incremental solution (adapting ݓሬሬԦ from sample ݇ to 
݇  1) is a recursive fuzzily weighted least squares 
estimator (RFWLS) (Lughofer, 2008a; Ljung, 
1999), where the ߰’s are contributing in the 
denominator when updating ߛ, see (8)-(9) below. 
The whole incremental learning engine is 
demonstrated in Algorithm 1. 

Algorithm 1. Evolving Chemometric 
Modelling using FLEXFIS (Cernuda, 2012a) 

1. Input: Chemometric model (fuzzy system) 
from initial batch training or previous cycle 
containing ܥ local regions and selected 
wavelengths as inputs; ranges of features 
estimated from off-line data; new incoming 
spectrum ݔԦ. 

2. Reduce the dimensionality of ݔԦ according to 
the selected (input) wavelengths. 

3. Normalize ݔԦ to [0,1] and the clusters according 
to the current ranges of selected wavelengths. 

4. If ݔԦ does not fit into the current cluster 
partition, then evolve a new cluster by using 
Steps 1–4 in above itemization. 

5. Else Update the center of the nearest cluster 
Ԧܿ௪ by (3) and its range of influence by (4) if 
A=Euclidan resp. by (5) if A=Mahalanobis. 

6. Transfer the clusters back to the original 
feature space, according to the ranges of the 
wavelengths. 

7. Project modified/evolved cluster to the input

 axes in order to update/evolve the fuzzy set 
partition in each input dimension and the 
antecedent part in the corresponding rule. 

8. Perform recursive fuzzily weighted least 
squares using (8)–(10) for all ܥ local regions. 

9. Update the ranges of all selected wavelengths. 

10. Output: Updated fuzzy system, either with one 
local region more or with one local region 
updated. 

6.3.2 Advanced Topics 

Some advanced aspects of the modelling process 
will help the user to achieve less complex and more 
interpretable models for a low price in terms of 
accuracy: 

 More Flexibility by Gradual forgetting: in 
some cases, the life-long learning concept 
together with convergence properties may 
become disadvantageous, especially when the 
system shows a highly dynamic changing 
process over time (as is the case in the type of 
application demonstrated in this paper). From 
methodological viewpoint, such a situation is 
also called drift, which is characterized by a 
change of the underlying data distribution in 
some local parts of the feature space (Widmer 
and Kubat, 1996). An example is demonstrated 
in Fig. 2, where the process change affects the 
functional dependency on the right part of the 
input feature (compare gray dots (original 
situation) with dark dots (after the process 
change)). In such cases, it is necessary to adapt 
(more) quickly to the new process behavior in 
order to assure predictions with reasonable 
quality and to re-activate components from 
their ‘freezed’ (converged) positions.  
This can be achieved by including forgetting 
mechanisms in the incremental learning 
procedure, which gradually out-dates older 
learned relations from samples incorporated 
into the models at a former point of time. 
Graduality is important in order to get smooth 
transitions from old to new states. We integrate 
forgetting in the consequent (achieving elastic 
hyper-planes) as well as in the antecedent part 
(assuring more lively movements of clusters). 
For the former, we re-define the optimization 
problem in (6): 

ܬ ൌ ߣேି߰൫ݔԦሺ݇ሻ൯݁
ଶሺ݇ሻ

ே

ୀଵ

→
݉݅݊
ሬሬԦݓ

 (7)
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Figure 2: A typical drift in the target (right part of the 
image) – life long learning (using RWLS relying on the 
optimization problem in (6)) is too lazy and ends up in-
between the two data clouds (before = gray and after = 
dark the drift), not being able to approximate the current 
trend with sufficient accuracy. 

with ݅ ൌ 1,… , ሺ݇ሻ݁ ,ܥ ൌ ሺ݇ሻݕ െ  ොሺ݇ሻ theݕ
error of the ith rule in sample ݇ and ߣ a 
forgetting factor. The smaller ߣ is, the faster 
the forgetting; usually a reasonable value lies in 
[0.9, 1], where a value of 1 denotes no 
forgetting. For instance, a forgetting of 0.9 
would mean to include the last 21 samples with 
a weight higher than 0.1 in the learning 
process. Then, the deduction of the recursive 
fuzzily weighted least squares estimator for 
local region ݅ leads to (Lughofer, 2011d): 

ሬሬԦሺ݇ݓ  1ሻ ൌ 	ሬሬԦሺ݇ሻݓ

ߛሺ݇ሻ ቀݕሺ݇  1ሻ െ Ԧ்ሺ݇ݎ  1ሻݓሬሬԦሺ݇ሻቁ 
(8)

with 
ሺ݇ሻߛ ൌ																																																					             (9) 

ܲሺ݇ሻ ∙ Ԧሺ݇ݎ  1ሻ

ሺߣ ߰ሺݔԦሺ݇  1ሻሻሻ  Ԧ்ሺ݇ݎ  1ሻ ܲሺ݇ሻ ∙ Ԧሺ݇ݎ  1ሻ⁄
	 

 

and 
 

ܲሺ݇  1ሻ ൌ ሺܫ െ ሺߛሺ݇ሻݎԦ்ሺ݇  1ሻሻ ܲሺ݇ሻ
ଵ

ఒ
  (10) 

 

where ݎሺ݇  1ሻ ൌ ሾݔଵሺାଵሻ, … , ,ሺାଵሻݔ 1ሿ and 
 ሺାଵሻ the value of variable ݆ at time instanceݔ
݇  1. 

 

Including forgetting in the antecedent part is 
achieved by reactivating the winning cluster 
with reducing the number of samples attached 
to them, whenever ݊௪   ௦௨ݎ݄ݐ) ௦௨ݎ݄ݐ
usually set to 30): 

 

݊௪ ൌ ݊௪  9.9 ∙ ݊௪ ∙ ሺ1 െ  ሻ       (11)ߣ

This automatically increases the learning gain 
in (3) (ߟ௪ ൌ 0.5/݊௪ሻ, which was decreased 

before with increasing ݊௪ over time. In the 
evaluation section, we will see that a forgetting 
within the learning process is indispensable for 
the application described in this paper, as no 
forgetting will achieve an approximation error 
which is 3-5 times higher. 

 Reducing unnecessary Complexity by Rule 
merging: Reducing the complexity is important 
in order to keep the models as slender as 
possible, which also decreases the computation 
time for model updates during the on-line 
process. Furthermore, the models become more 
transparent, when their complexity is low. In 
fact, it is only possible to eliminate that 
complexity which is not really necessary as 
containing redundant, superfluous information. 
The problem of unnecessary complexity during 
the incremental update of fuzzy systems arises 
whenever two (or more) clusters seem to model 
distinct local regions at the beginning of the 
data stream (due to a necessary non-linearity to 
be modeled), however may move together due 
to data samples filling up the gap in-between 
these (also known as cluster fusion) (Lughofer, 
2011c). The example in Fig. 3 shows such an 
occurrence. Obviously, the fused regions can 
be merged to one with hardly loosing any 
accuracy. 
In order to circumvent time-intensive overlap 
criteria between two clusters ݅ and ݇ on high-
dimensional ellipsoids (Ros et al., 2002), we 
use virtual projections of the two clusters in all 
dimensions to one- dimensional Gaussians and 
calculate an aggregated overlap degree based 
on all intersection points according to the 
highest membership degree in each dimension 
(Lughofer, 2011c): 
 

݈ܽݎ݁ݒ ൌ ୀଵ݃݃ܣ
ାଵ݈ܽݎ݁ݒሺ݆ሻ             (12) 

with 

ሺ݆ሻ݈ܽݎ݁ݒ ൌ																																																			 
max	ሺߤ൫݅݊ݎ݁ݐ௫ሺ1ሻ൯,  ௫ሺ2ሻ൯ሻݎ݁ݐ൫݅݊ߤ

where ݃݃ܣ denotes an aggregation operator 
and ߤ൫݅݊ݎ݁ݐ௫ሺ1ሻ൯ and ߤ൫݅݊ݎ݁ݐ௫ሺ2ሻ൯ the 
membership degrees of the two intersection 
points of virtually projected Gaussians on 
dimension ݆. A feasible choice for ݃݃ܣ is a t-
norm (Klement, 2000), as a strong non-overlap 
along one single dimension is sufficient that 
the clusters do not overlap at all – we used the 
minimum operator in all test cases. 
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Figure 3: (Up) Two distinct clusters from original data and 
(Down) samples are filling up the gap between the two 
original clusters which get overlapping due to movements 
of their centers and expansion of their ranges of influence. 

If ݈ܽݎ݁ݒ is higher than a pre-defined 
threshold (we used 0.8 as value in all tests), 
then either a merge is conducted or the less 
significant cluster deleted. This choice depends 
on the similarity of the associated hyper-planes 
defined in the local regions ݅ and ݇: if the 
similarity degree between the hyper-planes is 
lower than those of the antecedents expressed 
by (12), it points to an incon- sistency in the 
rule base of the fuzzy system (Lughofer, 
2011b). Thus, the less significant cluster is 
deleted; otherwise the two clusters can be 
merged. Similarity of the consequents can be 
expressed by the angle spanned between the 
normal vectors ܽ ൌ ሺݓଵ, … ,ݓ, െ1ሻ் and 
ܾ ൌ ሺݓଵ,… ,ݓ, െ1ሻ் of the two hyper-
planes: an angle close to 0 or 180 degrees 
denotes a high similarity. 
Merging of two rules ݅ and ݇ (defined by their 
centers Ԧܿ, Ԧܿ, their spreads ߪ, ߪ, their 
supports ݊, ݊, their consequent parameters 
(hyper-planes) ݓሬሬԦ, ݓሬሬԦ, and their inverse 
Hessian matrices ܲ, ܲ used for recursively 
updating ݓሬሬԦ in (10)) is conducted by (Lughofer, 
2011c): 

Ԧܿ௪ ൌ
Ԧܿ݊  Ԧܿ݊
݊  ݊

, 		݊௪ ൌ ݊  ݊ 

 

ሬሬԦ௪ݓ ൌ
௪ሬሬԦା௪ሬሬԦೖೖ

ାೖ
, ܲ௪ ൌ

ାೖೖ
ାೖ

          (13) 

௪,ߪ ൌ 	
మ

భାమ
మ,ߪ   

ඨ
భఙభ,ೕ

మ

భାమ
 Δଶܿଵ, 

మమ,ೕ
భାమ

                    (14) 

 
where ݆ ൌ 1,… ,   1, Δଶܿ, ൌ ൫ܿ, െ

ܿ௪,൯
ଶ
, ݈ܿଵ ൌ argmax	ሺ݇, ݇ሻ denoting the 

(index of the) more significant cluster, and 
consequently ݈ܿଶ ൌ argmin	ሺ݇, ݇ሻ denoting 
the (index of the) less significant cluster. The 
merging criterion and merging process is 
integrated after each incremental update step, 
i.e., after Step 9 in Algorithm 1. 

7 EXPECTED OUTCOME 

The objective of this PhD is to overcome the State-
of-Art methods in all the steps of the chemometric 
modelling and then contribute in the rise of 
Chemometrics as an important research field. Now it 
is undervalued by the mathematics community and 
also by part of the chemistry community, even when 
it has proved its advantages in Analytical Chemistry 
in the last decades. 

Part of the points shown in Section 2 are already 
finished and published. In preprocessing, and 
concretely outlier detection, see (Cernuda, 2012a). 
In dimensionality reduction we have tried several 
novel approaches, see (Cernuda, 2012a; Cernuda, 
2012b; Cernuda, 2013c). When it comes to off-line 
batch modelling, use of problem specific 
information and validation in presence of several 
repeated measurements results can be seen in 
(Cernuda, 2011; Cernuda, 2013a). In on-line 
modelling we have succed on modelling highly 
dynamic processes, see (Cernuda, 2012a). Last but 
not least, cost reduction results has been recently 
presented in the 13th Scandinavian Symposium on 
Chemometrics, see [SSC13]. 
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