Virtual Arm Representation and Multimodal Monitoring for the Upper Limb Robot Assisted Teletherapy

Gorka Epelde, Xabier Valencia, Aitor Ardanza, Elsa Fanchon, Alessandro De Mauro, Francisco Molina Rueda, Eduardo Carrasco, Shabs Rajasekharan

2013

Abstract

The use of technology in rehabilitation therapies targets the sustainability of health systems and the improvement of quality of life of the user (therapists, patients and informal carers). Robot or exoskeleton assisted rehabilitation systems, which are based on neurorehabilitation principles, are tools that not only help patients move the arm with precision; they also help reduce the fatigue of the therapist during the process. One of the challenges of the virtual reality based robot assisted upper limb rehabilitation is patients’ immersion within the therapy to achieve an improved progress of the rehabilitation. This paper, presents a new virtual reality therapy that has been created using the Armeo Spring exoskeleton. A 3D representation of the arm serves as an interaction mechanism with the virtual world. This makes the user more aware of the movements that he/she is making and improves the rehabilitation outcomes. It also encourages the user motivation and engagement to the therapy. Additionally, an application for the multimodal monitoring of the patient has been developed, together with tools for the online assessment of patients. These developments allow the physician to review the therapy without being in the same place and time, optimizing the use of hospital’s human resources.

References

  1. Adams, D. L. (1999). Develop Better Motor Skill Progressions with Gentile's Taxonomy of Tasks. Journal of Physical Education, Recreation & Dance, 70(8), 35-38. doi:10.1080/07303084.1999.10605704.
  2. Alankus, G., Lazar, A., May, M., & Kelleher, C. (2010). Towards customizable games for stroke rehabilitation. In Proceedings of the SIGCHI Conference on Human Factors in Computing Systems (pp. 2113-2122). New York, NY, USA: ACM. doi:10.1145/ 1753326.1753649.
  3. Angob, K. K., Guan, C., Sui Geok Chua, K., Ang, B.-T., Kuah, C., Wang, C., … Zhang, H. (2010). Clinical study of neurorehabilitation in stroke using EEGbased motor imagery brain-computer interface with robotic feedback. In Engineering in Medicine and Biology Society (EMBC), 2010 Annual International Conference of the IEEE (pp. 5549-5552). doi:10.1109/IEMBS.2010.5626782.
  4. August, K. G., Guidali, M., Sellathurai, M., Jenu, S., Bleichenbacher, D., Klamroth-Marganska, V., … Riener, R. (2011). A system for sensory motor rehabilitation of the upper limb with virtual reality, exoskeleton robot, and real objects. In Technologies for Practical Robot Applications (TePRA), 2011 IEEE Conference on (pp. 54-63). doi:10.1109/ TEPRA.2011.5753482.
  5. Bobath, B. (1990). Adult hemiplegia: evaluation and treatment. Butterworth-Heinemann Oxford.
  6. Brienza, D. M., & McCue, M. (2013). Introduction to Telerehabilitation. In S. Kumar & E. R. Cohn (Eds.), Telerehabilitation (pp. 1-11). Springer London. Retrieved from http://dx.doi.org/10.1007/978-1-4471- 4198-3_1.
  7. Burke, J. W., McNeill, M. D. J., Charles, D. K., Morrow, P. J., Crosbie, J. H., & McDonough, S. M. (2010). Augmented Reality Games for Upper-Limb Stroke Rehabilitation. In Games and Virtual Worlds for Serious Applications (VS-GAMES), 2010 Second International Conference on (pp. 75-78). doi:10.1109/VS-GAMES.2010.21.
  8. Cano-de-la-Cuerda, R., Molero-Sánchez, A., Carratalá- Tejada, M., Alguacil-Diego, I. M., Molina-Rueda, F., Miangolarra-Page, J. C., & Torricelli, D. (2012). Teorías y modelos de control y aprendizaje motor. Aplicaciones clínicas en neurorrehabilitación. Neurología, (0), -. doi:10.1016/j.nrl.2011.12.010.
  9. De Mauro, A., Carrasco, E., Oyarzun, D., Ardanza, A., Frizera-Neto, A., Torricelli, D., … Florez, J. (2012). Advanced Hybrid Technology for Neurorehabilitation: The HYPER Project. In T. Gulrez & A. Hassanien (Eds.), Advances in Robotics and Virtual Reality SE - 4 (Vol. 26, pp. 89-108). Springer Berlin Heidelberg. doi:10.1007/978-3-642-23363-0_4.
  10. Hilton, D., Cobb, S., Pridmore, T., Gladman, J., & Edmans, J. (2011). Development and Evaluation of a Mixed Reality System for Stroke Rehabilitation. In S. Brahnam & L. Jain (Eds.), Advanced Computational Intelligence Paradigms in Healthcare 6. Virtual Reality in Psychotherapy, Rehabilitation, and Assessment (pp. 193-228). Springer Berlin Heidelberg. doi:http://dx.doi.org/10.1007/978-3-642- 17824-5_10.
  11. Hocine, N., & Gouaich, A. (2011). Therapeutic games' difficulty adaptation: An approach based on player's ability and motivation. Computer Games (CGAMES), 2011 16th International Conference on. doi:10.1109/CGAMES.2011.6000349.
  12. Hocoma. (2013). Armeo Spring. Retrieved from http://www.hocoma.com/products/armeo/armeospring/.
  13. InMotion. (2013). InMotion Robots for Rehabilitation. Retrieved from http://interactive-motion.com/.
  14. Krakauer, J. W. (2006). Motor learning: its relevance to stroke recovery and neurorehabilitation. Current Opinion in Neurology, 19(1). Retrieved from http://journals.lww.com/co-neurology/Fulltext/2006/ 02000/Motor_learning__its_relevance_to_stroke_reco very.14.aspx.
  15. Ma, S., Varley, M., Shark, L., & Richards, J. (2010). EMG Biofeedback Based VR System for Hand Rotation and Grasping Rehabilitation. In Information Visualisation (IV), 2010 14th International Conference (pp. 479- 484). doi:10.1109/IV.2010.73.
  16. Maclean, N., Pound, P., Wolfe, C., & Rudd, A. (2000). Qualitative analysis of stroke patients' motivation for rehabilitation. BMJ, 321(7268), 1051-1054. doi:10.1136/bmj.321.7268.1051.
  17. McKay, J., Mensah, G. A., & Greenlund, K. (2004). The atlas of heart disease and stroke. World Health Organization.
  18. Murray, C. D., Pettifer, S., Howard, T., Patchick, E. L., Caillette, F., Kulkarni, J., & Bamford, C. (2007). The treatment of phantom limb pain using immersive virtual reality: Three case studies. Disability and Rehabilitation, 29(18), 1465-1469. doi:10.1080/ 09638280601107385.
  19. Oboe, R., Daud, O. A., Masiero, S., Oscari, F., & Rosati, G. (2010). Development of a haptic teleoperation system for remote motor and functional evaluation of hand in patients with neurological impairments. In Advanced Motion Control, 2010 11th IEEE International Workshop on (pp. 518-523). doi:10.1109/AMC.2010.5464078.
  20. Parmanto, B., & Saptono, A. (2009). Telerehabilitation: State-of-the-Art from an Informatics Perspective. International Journal of TeleRehabilitation, 1(1). doi:doi: 10.5195/ijt.2009.6015.
  21. Prashun, P., Hadley, G., Gatzidis, C., & Swain, I. (2010). Investigating the Trend of Virtual Reality-Based Stroke Rehabilitation Systems. In Information Visualisation (IV), 2010 14th International Conference (pp. 641-647). doi:10.1109/IV.2010.93.
  22. Qiu, Q., Fluet, G. G., Saleh, S., Ramirez, D., & Adamovich, S. (2010). Robot-assisted virtual rehabilitation (NJIT-RAVR) system for children with cerebral palsy. In Bioengineering Conference, Proceedings of the 2010 IEEE 36th Annual Northeast (pp. 1-2). doi:10.1109/NEBC.2010.5458203.
  23. Rego, P. A., Moreira, P. M., & Reis, L. P. (2010). Serious games for rehabilitation: A survey and a classification towards a taxonomy. In Information Systems and Technologies (CISTI), 2010 5th Iberian Conference on (pp. 1-6).
  24. Reinthal, A., Szirony, K., Clark, C., Swiers, J., Kellicker, M., & Linder, S. (2012). ENGAGE: Guided ActivityBased Gaming in Neurorehabilitation after Stroke: A Pilot Study. Stroke research and treatment, 2012.
  25. Sveistrup, H. (2004). Motor rehabilitation using virtual reality. Journal of NeuroEngineering and Rehabilitation, 1(10). doi:10.1186/1743-0003-1-10.
  26. World Heath Organization. (2011). Global Health and Aging.
Download


Paper Citation


in Harvard Style

Epelde G., Valencia X., Ardanza A., Fanchon E., De Mauro A., Molina Rueda F., Carrasco E. and Rajasekharan S. (2013). Virtual Arm Representation and Multimodal Monitoring for the Upper Limb Robot Assisted Teletherapy . In Proceedings of the International Congress on Neurotechnology, Electronics and Informatics - Volume 1: VirtRehab, (NEUROTECHNIX 2013) ISBN 978-989-8565-80-8, pages 69-80. DOI: 10.5220/0004642300690080


in Bibtex Style

@conference{virtrehab13,
author={Gorka Epelde and Xabier Valencia and Aitor Ardanza and Elsa Fanchon and Alessandro De Mauro and Francisco Molina Rueda and Eduardo Carrasco and Shabs Rajasekharan},
title={Virtual Arm Representation and Multimodal Monitoring for the Upper Limb Robot Assisted Teletherapy},
booktitle={Proceedings of the International Congress on Neurotechnology, Electronics and Informatics - Volume 1: VirtRehab, (NEUROTECHNIX 2013)},
year={2013},
pages={69-80},
publisher={SciTePress},
organization={INSTICC},
doi={10.5220/0004642300690080},
isbn={978-989-8565-80-8},
}


in EndNote Style

TY - CONF
JO - Proceedings of the International Congress on Neurotechnology, Electronics and Informatics - Volume 1: VirtRehab, (NEUROTECHNIX 2013)
TI - Virtual Arm Representation and Multimodal Monitoring for the Upper Limb Robot Assisted Teletherapy
SN - 978-989-8565-80-8
AU - Epelde G.
AU - Valencia X.
AU - Ardanza A.
AU - Fanchon E.
AU - De Mauro A.
AU - Molina Rueda F.
AU - Carrasco E.
AU - Rajasekharan S.
PY - 2013
SP - 69
EP - 80
DO - 10.5220/0004642300690080